首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Localization of GRF-like immunoreactive neurons in the rat brain   总被引:2,自引:0,他引:2  
The localization of human GRF1-44-immunoreactive neurons was studied in the rat brain. A dense accumulation of GRF-containing fibers was noted in the external layer of the median eminence. Cell bodies were observed in colchicine-treated rats. The most intensely fluorescent cluster of cells was contained in the arcuate nucleus. Other cells were seen on the base of the hypothalamus, within the median forebrain bundle, dorsal and ventral aspects of the ventromedial nucleus, zona incerta and dorsal part of the dorsomedial nucleus. These cells may influence the pulsatile release of pituitary growth hormone.  相似文献   

2.
In general, antisera generated against ovine CFR do not reveal immunopositive neuronal perikarya in the rat. If animals are adrenalectomized significant amounts of immunoreactive CFR are present in the hypothalamus. By using this model, we have visualized the CFR system of the rat. Intact, intact pretreated with dexamethasone, adrenalectomized, and adrenalectomized pretreated with dexamethasone animals were used in the present study. In adrenalectomized and adrenalectomized plus dexamethasone treated animals the CFR-immunopositive neurons were observed in the parvocellular portion of the paraventricular nucleus. Distinct pathways of CRF fibers could be seen emerging from this hypothalamic nucleus. The greatest number of these fibers exited the PVN laterally and crossed either superior to or beneath the fibers of the fornix. The fibers then turned ventrally and cascaded to form a bundle of fibers above the superio-lateral margin of the optic chiasm. They turned caudally and followed the optic tract. As these fibers reached the level of the anterior median eminence, they turned medially to run along the inferior margin of the hypothalamus and enter the median eminence. A few fibers emerged from the PVN along the periventricular margin of the third ventricle, traveled caudally in the periventricular nucleus and entered the median eminence. Adrenalectomized and adrenalectomized-dexamethasone treated rats had very dense accumulations of immunoreactive CRF in the median eminence when compared with controls. Immunoreactive neurons and fibers were also observed in the central nucleus of the amygdala in the adrenalectomized and adrenalectomized-dexamethasone treated animals.  相似文献   

3.
Summary The anatomical distribution of neurons and nerve fibers containing corticotropin-releasing factor (CRF) has been studied in the brain of the snake, Natrix maura, by means of immunocytochemistry using an antiserum against rat CRF. To test the possible coexistence of CRF with the neurohypophysial peptides arginine vasotocin (AVT) and mesotocin (MST) adjacent sections were stained with antisera against the two latter peptides. CRF-immunoreactive (CRF-IR) neurons exist in the paraventricular nucleus (PVN). In some neurons of the PVN, coexistence of CRF with MST or of CRF with AVT has been shown. Numerous CRF-IR fibers run along the hypothalamo-hypophysial tract and end in the outer layer of the median eminence. In addition, some fibers reach the neural lobe of the hypophysis. CRF-IR perikarya have also been identified in the following locations: dorsal cortex, nucleus accumbens, amygdala, subfornical organ, lamina terminalis, nucleus of the paraventricular organ, nucleus of the oculomotor nerve, nucleus of the trigeminal nerve, and reticular formation. In addition to all these locations CRF-IR fibers were also observed in the lateral septum, supraoptic nucleus, habenula, lateral forebrain bundle, paraventricular organ, hypothalamic ventromedial nucleus, raphe and interpeduncular nuclei.  相似文献   

4.
Quantitative receptor autoradiography using Bolton-Hunter iodinated substance P (SP) was used to localize specific sites in the rat hypothalamus. The amount of SP and neurokinin A (NkA) in extracts from discrete areas of the hypothalamus was measured using specific radioimmunoassays. A high density of SP binding sites was observed in the perimeter of the magnocellular paraventricular and supraoptic nuclei, while the magnocellular nuclei themselves possessed a low receptor density. In control animals, the number of SP binding sites was also low in the arcuate nucleus and the median eminence. Substance P and NkA peptide concentrations were highest in the paraventricular nucleus (PVN), decreasing in the following order: arcuate nucleus (Arc) greater than median eminence (ME) greater than supraoptic nucleus (SON) greater than subfornical organ (SFO). In animals given 340 mmol/l NaCl instead of tap water to drink for 12 days, significant increases in the number of SP binding sites occurred in the medial parvocellular subdivision of the PVN, periamygdaloid cortex, medial preoptic nucleus, Arc, and ME, but other hypothalamic areas were unaffected. In saline-treated animals, significant increases in SP and NkA peptide concentrations were observed in the ME, while in the SFO only the concentration of NkA increased significantly. In the SON, substance P and neurokinin A levels were doubled, whereas in the PVN and Arc no changes in peptide levels were observed. Chronic osmotic stimulation is associated with lowered circulating levels of adrenocorticotropin releasing hormone (ACTH), and the present data further substantiate the hypothesis that hypothalamic tachykinin-containing neuronal terminals are centrally involved in the inhibition of anterior pituitary ACTH release observed during chronic osmotic stimulation.  相似文献   

5.
The stress-related corticotropin-releasing hormone (CRH) was first identified by isolation of its cDNA from the brain of the Japanese eel Anguilla japonica. CRH cDNA encodes a signal peptide, a cryptic peptide and CRH (41 amino acids). The sequence homology to mammalian CRH is high. Next, the distribution of CRH-immunoreactive (ir) cell bodies and fibers in the brain and pituitary were examined by immunohistochemistry. CRH-ir cell bodies were detected in several brain regions, e.g., nucleus preopticus pars magnocellularis, nucleus preopticus pars gigantocellularis and formatio reticularis superius. In the brain, CRH-ir fibers were distributed not only in the hypothalamus but also in various regions. Some CRH-ir fibers projected to adrenocorticotropic hormone (ACTH) cells in the rostral pars distalis of the pituitary and also the α-melanocyte-stimulating hormone (α-MSH) cells in the pars intermedia of the pituitary. Finally, the neuroanatomical relationship between the CRH neurons and gonadotropin-releasing hormone (GnRH) neurons was examined by dual-label immunohistochemistry. CRH-ir fibers were found to be in close contact with GnRH-ir cell bodies in the hypothalamus and in the midbrain tegmentum and GnRH-ir fibers were in close contact with CRH-ir cell bodies in the nucleus preopticus pars magnocellularis. These results suggest that CRH has some physiological functions other than the stimulation of ACTH and α-MSH secretion and that reciprocal connections may exist between the CRH neurons and GnRH neurons in the brain of the Japanese eel.  相似文献   

6.
Catecholamines are known to exert a central influence on the hypothalamo-hypophyseal-adrenal neuroendocrine system. The selective dopaminergic innervation of the hypothalamic paraventricular nucleus (PVN) and putative relationships between dopaminergic fibers and corticotropin releasing hormone (CRH)-synthesizing neurons were studied in the male rat by means of immunocytochemistry following the elimination of noradrenergic and adrenergic inputs to the hypothalamus. A 3.0-mm-wide coronal cut was placed unilaterally in the brain at the rostral level of the mesencephalon. All neuronal structures from the cortex to the ventral surface of the brainstem, including the ascending catecholaminergic fiber bundles were transected. This surgical intervention resulted in the accumulation of dopamine-beta-hydroxylase (DBH)-immunoreactivity in axons proximal to the cut, and an almost complete disappearance of DBH activity in those located distal to the lesion. Two weeks following the operation, DBH immunoreactivity was significantly diminished in the PVN located on the side of lesion, while tyrosine hydroxylase (TH)-immunoreactivity was present in a substantial number of fibers in the same nucleus. Both DBH- and TH-immunoreactive axons were preserved in the contralateral PVN. Simultaneous immunocytochemical localization of either DBH- or TH-IR fibers and corticotropin releasing hormone-synthesizing neurons in the hypothalami from brainstem-lesioned, colchicine treated animals revealed that the distribution of catecholaminergic fibers and CRH neurons is homologous within the PVN of the intact side. Only a few scattered DBH-immunoreactive axons were detected among CRH-producing neurons in the PVN on the side of the lesion. In contrast, many tyrosine hydroxylase containing neurons and neuronal processes were observed on the lesioned side and the TH-IR fibers established juxtapositions with CRH-synthesizing neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Summary The distribution of VIP- and TRH-immunoreactivity in neurons and processes within the hypothalamus of the pigeon was investigated with light-microscopic immunocytochemical techniques. Most of the VIP-containing neurons are concentrated in the middle and caudal parts of the hypothalamus, with the greatest concentration of perikarya occurring in the medial and lateral part of the ventromedial hypothalamic nucleus and the infundibular nucleus. These cells give rise to axons that seem to extend into the median eminence. An extensive network of VIP-immunoreactive fibers and varicosities occupy the external layer of the median eminence. The majority of TRH-containing neurons is found in the anterior hypothalamus with the greatest concentration of cells in the magnocellular preoptic, medial preoptic, suprachiasmatic and paraventricular nuclei. TRH-immunoreactive fibers and varicosities form a dense arborization in the external layer of the median eminence. Lactation seems to induce substantial changes in VIP as well as in TRH-immunostaining in the median eminence and other hypothalamic regions as compared to control, sexually active animals. Furthermore, TRH-immunoreactivity decreased in the median eminence following 60-min exposure to cold. These results suggest that VIP- and TRH-containing pathways in the pigeon hypothalamus are involved in the mediation of neuroendocrine responses.  相似文献   

8.
Summary The localization and distribution of prolactinlike-immunoreactive perikarya and nerve fibers in the rat central nervous system have been studied by a preembedding immunoperoxidase method using well-characterized specific immunsera to rat prolactin. Although the localization of labeled neuronal structures in a number of brain areas correlates with the data of previous immunocytochemical studies, we found prolactin-immunoreactive neurons in various regions not previously reported. In untreated animals, the highest concentrations of prolactinfibers were observed: (i) in the external layers of the median eminence where they exhibited close contact with blood vessels, and (ii) in the bed nucleus of the stria terminalis and in the central nucleus of the amygdala where they closely surrounded unlabeled perikarya. Dense networks of finely varicose prolactin fibers were also observed in the organum vasculosum of the lamina terminalis, in the subfornical organ, and in the dorsolateral regions of the medulla oblongata and the spinal cord. Lastly, a number of large, varicose, intensely immunoreactive fibers were found in the olfactory bulb, the cingulum, and the periventricular regions of the hypothalamus and central gray, whereas isolated fibers could be detected in the caudate nucleus and in the cerebral cortex. In animals treated with colchicine, prolactin-immunoreactive perikarya were essentially located within the periventricular and perifornical regions of the hypothalamus, and within the bed nucleus of the stria terminalis. Although corticotropin (ACTH 17-39)-immunoreactive fibers could be detected in several regions found to contain prolactin fibers, the distribution and organization of both fiber types clearly differed in numerous brain regions, and the regions containing the corresponding perikarya did not overlap. The ultrastructural organization of the prolactin-immunoreactive fibers revealed by electronmicroscopic immunocytochernistry in various brain regions, allowed the characterization of two main types of prolactinergic neurons including: (i) endocrine neurons, whose axons terminated in close vicinity to portal blood vessels in the external median eminence, and (ii) neurons projecting to extrahypothalamic regions, whose axons formed typical synaptic connections with unidentified neuronal units.  相似文献   

9.
We recently identified a novel hypothalamic neuropeptide inhibiting gonadotropin release in the quail brain and termed it gonadotropin inhibitory hormone (GnIH). In this study, we investigated the localization and distribution of GnIH in both sexes of adult quails by immunohistochemistry with a specific antiserum against GnIH and in situ hybridization. Quantitative analysis demonstrated that the concentration of GnIH in the diencephalon was greater than that in the mesencephalon without sex difference. GnIH concentrations in the cerebrum and cerebellum were below the level of detectability. Clusters of GnIH-like immunoreactive (GnlH-ir) cell bodies were localized in the paraventricular nucleus (PVN) of the hypothalamus. There was no significant difference in the number of GnlH-ir cells in the PVN between males and females. By double immunostaining with antisera reacting with GnIH or avian posterior pituitary hormones (vasotocin and mesotocin), GnIH-ir cells were found to be parvocellular neurons in the ventral portion of PVN, which showed no immunoreaction with the antisera against vasotocin and mesotocin. In situ hybridization revealed the cellular localization of GnIH mRNA in the PVN. GnIH-ir nerve fibers were however widely distributed in the diencephalic and mesencephalic regions. Dense networks of immunoreactive fibers were found in the ventral paleostriatum, septal area, preoptic area, hypothalamus, and optic tectum. The most prominent fibers were seen in the median eminence of the hypothalamus and the dorsal motor nucleus of the vagus in the medulla oblongata. Thus, GnIH may participate not only in neuroendocrine functions, but also in behavioral and autonomic mechanisms.  相似文献   

10.
Summary Catecholamines are known to exert a central influence on the hypothalamo-hypophyseal-adrenal neuroendocrine system. The selective dopaminergic innervation of the hypothalamic paraventricular nucleus (PVN) and putative relationships between dopaminergic fibers and corticotropin releasing hormone (CRH)-synthesizing neurons were studied in the male rat by means of immunocytochemistry following the elimination of noradrenergic and adrenergic inputs to the hypothalamus. A 3.0-mm-wide coronal cut was placed unilaterally in the brain at the rostral level of the mesencephalon. All neuronal structures from the cortex to the ventral surface of the brainstem, including the ascending catecholaminergic fiber bundles were transected. This surgical intervention resulted in the accumulation of dopamine--hydroxylase (DBH)-immunoreactivity in axons proximal to the cut, and an almost complete disappearance of DBH activity in those located distal to the lesion. Two weeks following the operation, DBH immunoreactivity was significantly diminished in the PVN located on the side of lesion, while tyrosine hydroxylase (TH)-immunoreactivity was present in a substantial number of fibers in the same nucleus. Both DBH- and TH-immunoreactive axons were preserved in the contralateral PVN. Simultaneous immunocytochemical localization of either DBH- or TH-IR fibers and corticotropin releasing hormone-synthesizing neurons in the hypothalami from brainstem-lesioned, colchicine treated animals revealed that the distribution of catecholaminergic fibers and CRH neurons is homologous within the PVN of the intact side. Only a few scattered DBH-immunoreactive axons were detected among CRH-producing neurons in the PVN on the side of the lesion. In contrast, many tyrosine hydroxylase containing neurons and neuronal processes were observed on the lesioned side and the TH-IR fibers established juxtapositions with CRH-synthesizing neurons.These morphological data demonstrate that following the surgical ablation of noradrenergic and adrenergic afferents to the PVN, a substantial number of tyrosine hydroxylase-IR fibers remained in the nucleus and they were associated with corticotropin releasing hormone synthesizing neurons. Therefore, it is hypothesized that the paraventricular nucleus receives a selective dopaminergic innervation and these dopaminergic axons might influence the function of the pituitary and adrenal glands via the hypothalamic CRH system.Supported by grants from the National Science Foundation (NSF INT 8703030), the Hungarian Academy of Sciences (OTKA 104), the National Institutes of Health (NS 19266) and the National Foundation of Technical Development (OKKFT Tt 286/1986)  相似文献   

11.
The anatomical distribution of neurons containing galanin has been studied in the central nervous system of the chicken by means of immunocytochemistry using antisera against rat galanin. Major populations of immunostained perikarya were detected in several brain areas. The majority of galanin-immunoreactive cell bodies was present in the hypothalamus and in the caudal brainstem. Extensive groups of labeled perikarya were found in the paraventricular, periventricular, dorsomedial and tuberal hypothalamic nuclei, and in the nucleus of the solitary tract in the medulla oblongata. In the telencephalon, immunoreactive perikarya were observed in the preoptic area, in the lateral septal nucleus and in the hippocampus. The mesencephalon contained only a few galanin-positive perikarya located in the interpeduncular nucleus. Immunoreactive nerve fibers of varying density were detected in all subdivisions of the brain. Dense accumulations of galanin-positive fibers were seen in the preoptic area, periventricular region of the diencephalon, the ventral hypothalamus, the median eminence, the central gray of the brainstem, and the dorsomedial caudal medulla. The distributional pattern of galanin-immunoreactive neurons suggests a possible involvement of a galanin-like peptide in several neuroregulatory mechanisms.  相似文献   

12.
Summary The distribution pattern of CPP-containing neurons and fibers in the human pituitary and hypothalamus was studied with a specific antiserum to human CPP and the unlabeled antibody technique. Immunoreactive CPP was found in the magnocellular neurons of the supraoptic nucleus (SON), the paraventricular nucleus (PVN) and in neurons scattered in the supraoptic hypophyseal tract. CPP-containing parvocellular neurons were found in the suprachiasmatic nucleus (SCN). The CPP-containing fibers from the magnocellular neurons formed a tract coursing through the median eminence and the pituitary stalk to the posterior lobe of the hypophysis. In contrast, no such fibers from the SCN projected to SON, PVN and the median eminence. This pattern is identical to that of vasopressin and its associated neurophysin-containing neurons and fibers and strongly supports the concept that CPP is a part of the common precursor for vasopressin and neurophysin II. The biological importance of human CPP other than being a precursor fragment remains to be elucidated.To whom requests for reprints should be addressed  相似文献   

13.
Immunohistochemical localization of corticotropin-releasing factor (CRF)-like immunoreactivity in the brain of the Japanese quail was studied by means of the peroxidase anti-peroxidase (PAP) method. CRF-immunopositive perikarya of parvocellular neurons were observed mainly in the nucleus praeopticus medialis and nucleus paraventricularis. Additional perikarya were also detected in the nucleus hypothalamicus posterior medialis in the hypothalamus and in the non-hypothalamic nucleus accumbens, nucleus septalis lateralis and nucleus dorsomedialis and dorsolateralis thalami. No CRF immunoreaction was found to coexist with the vasotocin (Vt)-containing system in comparative examination of consecutive sections treated with anti-vasopressin (Vp) serum. The CRF-immunoreactive fibers were detected mainly in the external layer of the anterior median eminence but not in its posterior division. Unilateral adrenalectomy induced the marked reduction in number of the CRF immunopositive fibers in the anterior median eminence.  相似文献   

14.
Various kinds of stress cause neuroendocrine responses such as corticotropin-releasing hormone (CRH) or arginine vasopressin (AVP) release from parvocellular division of the paraventricular nucleus (PVN) and activation of the hypothalamo-pituitary adrenal (HPA) axis. We examined the effects of acute and chronic stress on the expression of the AVP-enhanced green fluorescent protein (eGFP) fusion gene in the hypothalamus, using chronic salt loading as an osmotic stimulation, intraperitoneal administration of lipopolysaccharide (LPS) as acute inflammatory stress and adjuvant arthritis (AA) as chronic inflammatory/nociceptive stress. Salt loading caused a marked increase in the eGFP gene expression and eGFP fluorescence in the supraoptic nucleus, magnocellular division of the PVN and internal layer of the median eminence (ME). Administration of LPS caused increased fluorescence in parvocellular division of the PVN and external layer of the ME. AA rats revealed an increased expression of the eGFP gene and eGFP fluorescence in both magnocellular and parvocellular divisions of the PVN and both internal and external layers of the ME. On the other hand, the levels of the CRH gene expression in parvocellular division of the PVN were significantly decreased as AA developed, though plasma concentrations of corticosterone were significantly increased. These results indicate that AVP-eGFP transgenic rats enable the detection of changes in AVP expression more easily than by using procedures such as immunohistochemistry. We propose that AVP-eGFP transgenic rats represent a useful animal model for further understanding of the physiology of AVP expression in the hypothalamo-pituitary system under various physiological conditions, including various kinds of stress.  相似文献   

15.
A novel pituitary protein called 7B2 was localized in rat pituitary and brain by immunocytochemistry (unlabeled antibody technique). Immunoreactive material was present in the secretory cells of anterior and intermediate lobes and in neural structures of the posterior lobe of the hypophysis. 7B2-immunoreactive neurons were evident within the hypothalamus in the supraoptic nucleus, paraventricular nucleus (magnocellular and parvocellular parts), and lateral hypothalamus. Immunoreactive nerve fibers were seen within the internal and external zone of the median eminence. Among extrahypothalamic regions, the substantia nigra, dorsal tegmental nucleus, cuneiform nucleus, dorsal parabrachial nucleus, spinal tract trigeminal nerve, interior olive, solitary nucleus, and layers I and II of the spinal cord contained 7B2-immunoreactive material. This anatomical distribution suggests a role for 7B2 in endocrine and autonomic functions.  相似文献   

16.
Summary To elucidate the role of hypothalamic neuropeptides in regulation of reproductive phenomena of seasonally breeding feral mammals, we used Japanese long-fingered bats, Miniopterus schreibersii fuliginosus, for immunocytochemical study of distribution of the following neuropeptides in the hypothalamus: arginin vasopressin, oxytocin, luteinizing hormone-releasing hormone, somatostatin, corticotropin-releasing factor, and growth hormone-releasing factor. The size, shape and location of supraoptic, paraventricular, suprachiasmatic, and arcuate nuclei of the bat were determined. Arginin vasopressin-and oxytocin-immunoreactive magnocellular neurons were found in the supraoptic and paraventricular nuclei, where they exhibited separate distribution into two distinct groups. Parvocellular arginin vasopressin neurons occurred only in the suprachiasmatic nucleus. The hibernating bats exhibited slightly increased numbers of vasopressin and oxytocin neurons in the supraoptic and paraventricular nuclei. The pregnant bat displayed further increased numbers of vasopressin and oxytocin neurons in both nuclei. Somatostatin-immunoreactive neurons in the paraventricular nucleus were also immunopositive to anti-oxytocin serum, while those in the ventromedial and arcuate nuclei reacted solely to anti-somatostatin serum. They projected to the anterior median eminence and infundibular stalk. Luteinizing hormone-releasing hormone-immunoreactive perikarya were scattered throughout the basal hypothalamus, being particularly abundant in the arcuate nucleus. They were larger in size in hibernating bats than those in normal (non-pregnant) and pregnant females. They projected fibers mainly to the internal layer of the median eminence and infundibular stalk. A few luteinizing hormone-releasing hormone-reactive fibers were also observed in the organum vasculosum laminae terminalis, lateral habenular nuclei, pineal stalk, retroflexus fasciculus, and olfactory tubercle. Corticotropin releasing factor-immunoreactive perikarya were distributed in the paraventricular nucleus and medial preoptic area and projected into the external layer of the anterior median eminence, while growth hormone-releasing factor-immunoreactive perikarya occurred only in the arcuate nucleus and projected into the posterior part of the median eminence.  相似文献   

17.
Summary Appearance of immunoreactive corticotropin-releasing factor (CRF)-containing neurons was studied in developing hypothalamus of the rat by use of antisera against rat- and ovine CRF. These neurons were first recognized in the lateral and paraventricular nuclei on days 15.5 and 16.5 of gestation, respectively, when antiserum against rat CRF was employed. Antiserum against ovine CRF revealed the cells two days later exclusively in the latter nucleus. In both nuclei, the neurons increased in number with development. The neurons in the paraventricular nucleus appeared to project their immunoreactive processes to the median eminence via the periventricular and lateral pathways. In the median eminence, the immunoreaction with antiserum to rat CRF was first recognized in its anterior portion in the form of dots on day 16.5 of gestation but as beaded fibers in the external layer on day 17.5; these structures increased in amount with development in rostro-caudal direction. Although antiserum to ovine CRF was less potent in immunostainability than antiserum to rat CRF, it also revealed the beaded fibers in the median eminence on day 17.5 of gestation. Since evidence is available that the paraventricular nucleus is involved in corticotropin release, it is concluded that, in rats, the hypothalamic regulatory mechanism controlling the release of corticotropin initially appears on days 16.5–17.5 of gestation.  相似文献   

18.
The immunohistochemical localization of CRF- and neurophysin-containing neurons in the hypothalamus of the Mongolian gerbil was studied by means of the PAP technique. The CRF-immunoreactive fibers were detected mainly in the outer layer of the median eminence of intact adult male gerbils. The CRF-positive neurons respond to aminoglutethimide (Elipten, Ciba) administration by showing increased immunoreactivity and an increase in the number of stained cell bodies in the parvocellular division of the paraventricular nucleus. Aminoglutethimide treatment results also in an increase in the number of neurophysin-immunoreactive nervous fibers localized in the internal layer of the median eminence. However, CRF-immunoreactive fibers are observed mainly in the outer layer of the median eminence while neurophysin-immunopositive axons are seen predominantly in the internal layer of this region. Since the axons of paraventricular neurons run to the median eminence and their staining ability is changed due to aminoglutethimide, their involvement in the endocrine control of hypophysial ACTH release is postulated.  相似文献   

19.
Summary The localization of vasoactive intestinal polypeptide (VIP) in the hypothalamus of the quail has been studied by means of light- and electron-microscopic immunohistochemistry. Numerous VIP-immunoreactive perikarya are distributed in the caudal portion of the nucleus infundibularis (n. tuberis) and nucleus mamillaris lateralis, and sparse in the preoptic area, nucleus supraopticus and nucleus paraventricularis. Dense localization of immunoreactive-VIP fibers is observed in the external layer of the median eminence, in close contact with the primary portal capillaries. The main origins of these fiber terminals are VIP-immunoreactive perikarya of the nucleus infundibularis. These neurons are spindle or bipolar and extend one process to the ventricular surface and another to the external layer of median eminence. They are CSF-contacting neurons and apparently constitute the tubero-hypophysial tract that links the third ventricle and the hypophysial portal circulation. VIP-reactive neurons in the nucleus mamillaris lateralis also project axons to the external layer of the median eminence, constituting the posterior bundle of the tuberohypophysial tract. Numerous VIP-immunoreactive perikarya occur also in the nucleus accumbens/pars posterior close to the lateral ventricle. They are also CSF-contacting neurons extending a process to the lateral ventricle. There are moderate distributions of VIP-reactive fibers in the area ventralis and in the area septalis.Ultrastructurally, the immunoreactive products against VIP are found in the elementary granules, 75–115 nm in diameter, within the nerve fibers in the median eminence.This investigation was supported by Scientific Research Grants No. 00556196, No. 56360027 and No. 56760183 from the Ministry of Education of Japan to Professor Mikami and Mr. Yamada  相似文献   

20.
We investigated the photoperiodic response of serotonin- and galanin (GA)- immunoreactive (ir) cells in the paraventricular organ (PVO) and infundibular nucleus (IF) of the Japanese quail and the interaction of these cells with gonadotropin-releasing hormone (GnRH)-ir neurons in the hypothalamus. Serotonin-ir cells were located in series from the PVO to the IF, and were connected with each other. The number of serotonin-ir cells differed significantly between light and dark phases on the short days (SD), but did not differ between light and dark phases on long days (LD). GA-ir cells were also found in the PVO and IF. The number of GA-ir cells under SD conditions was significantly greater than under LD conditions but did not change diurnally. Both serotonin-ir and GA-ir fibers ran along the GnRH-ir cells in the nucleus commissurae pallii. Serotonin-ir and GA-ir fibers were connected with the GnRH-ir fibers in the external layer of the median eminence (ME). We confirmed that GA-ir fibers were closely associated with serotonin-ir neurons in the PVO and IF. GA-ir neurons have at least 2 routes of regulating GnRH neurons directly, and indirectly via the serotonin-ir cells in the PVO and IF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号