首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Structural information on the complexes of drug like molecules with quadruplex DNAs can aid the development of therapeutics and research tools that selectively target specific quadruplex DNAs. Screening can identify candidate molecules that require additional evaluation. An enhanced hydroxyl radical cleavage protocol is demonstrated that can efficiently provide structural information on the complexes of the candidate molecules with quadruplex DNA. NMR methods have been used to offer additional structural information about the complexes as well as validate the results of the hydroxyl radical approach. This multi-step protocol has been demonstrated on complexes of the chair type quadruplex formed by the thrombin binding aptamer, d(GGTTGGTGTGGTTGG). The hydroxyl radical results indicate that NSC 176319, Cain’s quinolinium that was found by screening, exhibits selective binding to the two TT loops. The NMR results are consistent with selective disruption of the hydrogen bonding between T4 and T13 as well as unstacking of these residues from the bottom quartet. Thus, the combination of screening, hydroxyl radical footprinting and NMR can find new molecules that selectively bind to quadruplex DNAs as well as provide structural information about their complexes.  相似文献   

2.
Bioinformatics approaches to quadruplex sequence location   总被引:1,自引:0,他引:1  
Guanine quadruplex structures are potentially useful therapeutic targets. There have been several studies attempting to locate genomic sequences which are capable of forming these structures. Since the number of potential quadruplex forming sequences which have been identified is so high, several different strategies have been applied to try and determine which of these sequences may be physiologically relevant and which sequences are most likely to form quadruplex structures. These are based on the limited structural information that is currently available and comparative analyses of the location of these sequences with respect to different genomic regions. Sequence information alone is not enough to identify regions of nucleic acid which participate in quadruplex structures, however it is the starting point for quadruplex structure discovery when complemented with further experimentation.  相似文献   

3.
The paramagnetic metal ion Mn2+ has been used to probe the electrostatic potentials of a DNA quadruplex that has two quartets with an overall fold of the chair type. A quadruplex with a basket type structure has also been examined. The binding of the paramagnetic ion manganese to these quadruplex DNAs has been investigated by solution state electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies. The EPR results indicate that the DNA aptamer, d(GGTTGGTGTGGTTGG), binds two manganese ions and that the binding constants for each of these sites is approximately 10(5) M-1. The NMR results indicate that the binding sites of the manganese are in the narrow grooves of this quadruplex DNA. The binding sites of the DNA quadruplex formed by dimers of d(GGGGTTTTGGGG) which forms a basket structure are also in the narrow groove. These results indicate that the close approach of phosphates in the narrow minor grooves of the quadruplex structures provide strong binding sites for the manganese ions and that EPR and NMR monitoring of manganese binding can be used to distinguish between the different types of quadruplex structures.  相似文献   

4.
Quadruplex DNAs can fold into a variety of distinct topologies, depending in part on loop types and orientations of individual strands, as shown by high-resolution crystal and NMR structures. Crystal structures also show associated water molecules. We report here on an analysis of the hydration arrangements around selected folded quadruplex DNAs, which has revealed several prominent features that re-occur in related structures. Many of the primary-sphere water molecules are found in the grooves and loop regions of these structures. At least one groove in anti-parallel and hybrid quadruplex structures is long and narrow and contains an extensive spine of linked primary-sphere water molecules. This spine is analogous to but fundamentally distinct from the well-characterized spine observed in the minor groove of A/T-rich duplex DNA, in that every water molecule in the continuous quadruplex spines makes a direct hydrogen bond contact with groove atoms, principally phosphate oxygen atoms lining groove walls and guanine base nitrogen atoms on the groove floor. By contrast, parallel quadruplexes do not have extended grooves, but primary-sphere water molecules still cluster in them and are especially associated with the loops, helping to stabilize loop conformations.  相似文献   

5.
Marathias VM  Bolton PH 《Biochemistry》1999,38(14):4355-4364
There are DNA sequences which adopt the same quadruplex structural type in the presence of sodium as in the presence of sodium and potassium. There are also sequences that appear to have a requirement for the presence of potassium for the adoption of a particular quadruplex structural type. Information about the basis for these potassium effects has been obtained by examining the structures of a set of DNAs with differing numbers of loop residues and different lengths of runs of dG residues in the presence of sodium alone and in the presence of potassium and sodium. On the basis of the results, obtained primarily via solution-state NMR, it appears that very small loops favor parallel stranded quartet structures which do not require the presence of potassium. DNAs with loops of two to four residues and runs of two dG residues can form quadruplex structures of the "edge" or "chair" type in the presence of potassium but not in the presence of sodium alone. When all of the loops contain four residues, a "crossover" or "basket" type structure can be formed in the presence of sodium as well as in the presence of sodium and potassium. Structures with runs of three or four dG residues and with loops from two to four residues can form basket or crossover type structures in the absence of potassium. The presence of a purine in a loop can block both potassium binding and formation of chair type structures. Modeling of the interactions of cations with these quadruplex structures indicates that the potassium ions required for chair type structures interact with a terminal quartet and residues in the adjacent loop.  相似文献   

6.
The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we describe ethidium derivatives that stabilize G-quadruplexes. These molecules were shown to increase the melting temperature of an intramolecular quadruplex structure, as shown by fluorescence and absorbance measurements, and to facilitate the formation of intermolecular quadruplex structures. In addition, these molecules may be used to reveal the formation of multi-stranded DNA structures by standard fluorescence imaging, and therefore become fluorescent probes of quadruplex structures. This recognition was associated with telomerase inhibition in vitro: these derivatives showed a potent anti-telomerase activity, with IC50 values of 18–100 nM in a standard TRAP assay.  相似文献   

7.
8.
9.
Potassium can stabilize the formation of chair- or edge-type quadruplex DNA structures and appears to be the only naturally occurring cation that can do so. As quadruplex DNAs may be important in the structure of telomere, centromere, triplet repeat and other DNAs, information about the details of the potassium–quadruplex DNA interactions are of interest. The structures of the 1:1 and the fully saturated, 2:1, potassium–DNA complexes of d(GGTTGGTGTGGTTGG) have been determined using the combination of experimental NMR results and restrained molecular dynamics simulations. The refined structures have been used to model the interactions at the potassium binding sites. Comparison of the 1:1 and 2:1 potassium:DNA structures indicates how potassium binding can determine the folding pattern of the DNA. In each binding site potassium interacts with the carbonyl oxygens of both the loop thymine residues and the guanine residues of the adjacent quartet.  相似文献   

10.
Abstract Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G(7)) quadruplex structures with Na(+) or K(+) ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 ? from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na(+) counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na(+) ions, within the quadruplex cavity, are more mobile than coordinated K(+) ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.  相似文献   

11.
Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the 06 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 A from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, 06 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.  相似文献   

12.
G-quadruplex structures, formed from guanine rich sequences, have previously been shown to be involved in various physiological processes including cancer-related gene expression. Furthermore, G-quadruplexes have been found in several oncogene promoter regions, and have been shown to play a role in the regulation of gene expression. The mutagenic properties of oxidative stress on DNA have been widely studied, as has the association with carcinogenesis. Guanine is the most susceptible nucleotide to oxidation, and as such, G-rich sequences that form G-quadruplexes can be viewed as potential "hot-spots" for DNA oxidation. We propose that oxidation may destabilise the G-quadruplex structure, leading to its unfolding into the duplex structure, affecting gene expression. This would imply a possible mechanism by which oxidation may impact on oncogene expression. This work investigates the effect of oxidation on two biologically relevant G-quadruplex structures through 500 ns molecular dynamics simulations on those found in the promoter regions of the c-Kit and c-Myc oncogenes. The results show oxidation having a detrimental effect on stability of the structure, substantially destabilising the c-Kit quadruplex, and with a more attenuated effect on the c-Myc quadruplex. Results are suggestive of a novel route for oxidation-mediated oncogenesis and may have wider implications for genome stability.  相似文献   

13.
We report here the 1.62 Å crystal structure of an intramolecular quadruplex DNA formed from a sequence in the promoter region of the c-kit gene. This is the first reported crystal structure of a promoter quadruplex and the first observation of localized magnesium ions in a quadruplex structure. The structure reveals that potassium and magnesium ions have an unexpected yet significant structural role in stabilizing particular quadruplex loops and grooves that is distinct from but in addition to the role of potassium ions in the ion channel at the centre of all quadruplex structures. The analysis also shows how ions cluster together with structured water molecules to stabilize the quadruplex arrangement. This particular quadruplex has been previously studied by NMR methods, and the present X-ray structure is in accord with the earlier topology assignment. However, as well as the observations of potassium and magnesium ions, the crystal structure has revealed a highly significant difference in the dimensions of the large cleft in the structure, which is a plausible target for small molecules. This difference can be understood by the stabilizing role of structured water networks.  相似文献   

14.
Abstract

Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 Å from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.  相似文献   

15.
Nanosecond scale molecular dynamics simulations have been performed on antiparallel Greek key type d(G7) quadruplex structures with different coordinated ions, namely Na+ and K+ ion, water and Na+ counter ions, using the AMBER force field and Particle Mesh Ewald technique for electrostatic interactions. Antiparallel structures are stable during the simulation, with root mean square deviation values of approximately 1.5 A from the initial structures. Hydrogen bonding patterns within the G-tetrads depend on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate different cations. However, alternating syn-anti arrangement of bases along a chain as well as in a quartet is maintained through out the MD simulation. Coordinated Na+ ions, within the quadruplex cavity are quite mobile within the central channel and can even enter or exit from the quadruplex core, whereas coordinated K+ ions are quite immobile. MD studies at 400K indicate that K+ ion cannot come out from the quadruplex core without breaking the terminal G-tetrads. Smaller grooves in antiparallel structures are better binding sites for hydrated counter ions, while a string of hydrogen bonded water molecules are observed within both the small and large grooves. The hydration free energy for the K+ ion coordinated structure is more favourable than that for the Na+ ion coordinated antiparallel quadruplex structure.  相似文献   

16.
Fluorescent dyes specific for quadruplex DNA.   总被引:7,自引:5,他引:2       下载免费PDF全文
Fluorescent dyes which are specific for duplex DNA have found a wide range of applications from staining gels to visualization of chromosomes. Porphyrin dyes have been found which are highly fluorescent in the presence of quadruplex but not duplex DNA. These dyes may offer a route to the specific detection of quadruplex DNA under biologically important conditions. There are three types of DNA quadruplex structures, and these may play important roles in telomere, centromere, triplet repeat, integration sites and other DNAs, and this first set of porphyrin dyes show some selectivity between the quadruplex types.  相似文献   

17.
Circular dichroism, CD, spectra can be used to gain information about quadruplex structures of DNAs as well as the effects of sequence, cations, chemical modification and ligand binding on quadruplex structure. There is not yet a validated approach to calculate a CD spectrum from a quadruplex structure nor is their one to go from a CD spectrum to a structure. However, it is possible to empirically correlate CD spectra features with quadruplex structural type in many cases. In this article four case studies are presented to indicate the strengths and limitations of CD in investigations of the properties of quadruplex structures formed by telomere repeat sequences. The case studies include determination of the quadruplex structural type present as a function of potassium concentration, the effect of sequence on the equilibrium between quadruplex structural types as a function of potassium concentration, the effect of ligand binding on quadruplex structure and the effect of 5' phosphorylation on quadruplex structural type.  相似文献   

18.
Haider SM  Autiero I  Neidle S 《Biochimie》2011,93(8):1275-1279
Solvent-accessible surface area calculations have been performed on two human telomeric quadruplex structures, the parallel crystal structure and an (3 + 1) anti-parallel structure determined by NMR methods. The differences in net ligand solvent-accessible surface area (ΔSASA) for four structurally distinct categories of small-molecule ligand have been computed, using docked structures of complexes with both types of quadruplex, as well as the relative contributions of polar and non-polar surface areas. It has been hypothesized that the surface area occupied by the ligand is a determinant of selectivity between different quadruplex topologies, where the ligand maximizes the accessible surface area by contacting all accessible atoms at one end of a quadruplex structure. This has enabled selectivity for a particular ligand to be assessed, for parallel compared an anti-parallel topology. The predictions for the ligands chosen, all of which have their quadruplex topological preferences experimentally determined and reported in the literature, are fully in accord with observation. It is suggested that this approach, which does not depend on energy functions, can be useful in the rational design of topology-specific ligands, especially in the case of polymorphic quadruplexes.  相似文献   

19.
Parkinson GN  Ghosh R  Neidle S 《Biochemistry》2007,46(9):2390-2397
Maintenance of telomere integrity is a hallmark of human cancer, and the single-stranded 3' ends of telomeric DNA are targets for small-molecule anticancer therapies. We report here the crystal structure of a bimolecular human telomeric quadruplex, of the sequence d(TAGGGTTAGGG), in a complex with the quadruplex-binding ligand 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) to a resolution of 2.09 A. The DNA quadruplex topology is parallel-stranded with external double-chain-reversal propeller loops, consistent with previous structural determinations. The porphyrin molecules bind by stacking onto the TTA nucleotides, either as part of the external loop structure or at the 5' region of the stacked quadruplex. This involves stacked on hydrogen-bonded base pairs, formed from those nucleotides not involved in the formation of G-tetrads, and there are thus no direct ligand interactions with G-tetrads. This is in accord with the relative nonselectivity by TMPyP4 for quadruplex DNAs compared to duplex DNA. Porphyrin binding is achieved by remodeling of loops compared to the ligand-free structures. Implications for the design of quadruplex-binding ligands are discussed, together with a model for the formation of anaphase bridges, which are observed following cellular treatment with TMPyP4.  相似文献   

20.
The effects of incorporation of 8-oxoadenosine in two different truncations of human telomeric sequence forming quadruplex structures are reported. In order to characterise their structures, a combination of NMR and UV spectroscopy and computational techniques were used. Both oligonucleotides have been found to form fourfold symmetric quadruplex structures. As a tautomeric equilibrium between keto and enol forms of 8-oxoadenosine may establish in solution and intrinsic stabilities effects, such as internal H-bonds, for example, may determine the predominance of some particular tautomer, molecular modelling studies were performed on quadruplex structures containing both the tautomeric forms. Both molecules resulted to be thermally less stable than the natural.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号