首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrothermal system at Vulcano, Aeolian Islands (Italy), is home to a wide variety of thermophilic, chemolithoautotrophic archaea and bacteria. As observed in laboratory growth studies, these organisms may use an array of terminal electron acceptors (TEAs), including O2, , Fe(III), , elemental sulphur and CO2; electron donors include H2, , Fe2+, H2S and CH4. Concentrations of inorganic aqueous species and gases were measured in 10 hydrothermal fluids from seeps, wells and vents on Vulcano. These data were combined with standard Gibbs free energies () to calculate overall Gibbs free energies (ΔGr) of 90 redox reactions that involve 16 inorganic N‐, S‐, C‐, Fe‐, H‐ and O‐bearing compounds. It is shown that oxidation reactions with O2 as the TEA release significantly more energy (normalized per electron transferred) than most anaerobic oxidation reactions, but the energy yield is comparable or even higher for several reactions in which , or Fe(III) serves as the TEA. For example, the oxidation of CH4 to CO2 coupled to the reduction of Fe(III) in magnetite to Fe2+ releases between 94 and 123 kJ/mol e?, depending on the site. By comparison, the aerobic oxidation of H2 or reduced inorganic N‐, S‐, C‐ and Fe‐bearing compounds generally yields between 70 and 100 kJ/mol e?. It is further shown that the energy yield from the reduction of elemental sulphur to H2S is relatively low (8–19 kJ/mol e?) despite being a very common metabolism among thermophiles. In addition, for many of the 90 reactions evaluated at each of the 10 sites, values of ΔGr tend to cluster with differences < 20 kJ/mol e?. However, large differences in ΔGr (up to ~ 60 kJ/mol e?) are observed in Fe redox reactions, due largely to considerable variations in Fe2+, H+ and H2 concentrations. In fact, at the sites investigated, most variations in ΔGr arise from differences in composition and not in temperature.  相似文献   

2.
Cyanobacterial mats collected in hypersaline salterns were incubated in a greenhouse under low sulphate concentrations ([]) and examined for their primary productivity and emissions of methane and other major carbon species. Atmospheric greenhouse warming by gases such as carbon dioxide and methane must have been greater during the Archean than today in order to account for a record of moderate to warm palaeoclimates, despite a less luminous early sun. It has been suggested that decreased levels of oxygen and sulphate in Archean oceans could have significantly stimulated microbial methanogenesis relative to present marine rates, with a resultant increase in the relative importance of methane in maintaining the early greenhouse. We maintained modern microbial mats, models of ancient coastal marine communities, in artificial brine mixtures containing both modern [] (c. 70 mm ) and ‘Archean’[] (<0.2 mm ). At low [], primary production in the mats was essentially unaffected, while rates of sulphate reduction decreased by a factor of three, and methane fluxes increased by up to 10‐fold. However, remineralization by methanogenesis still amounted to less than 0.4% of the total carbon released by the mats. The relatively low efficiency of conversion of photosynthate to methane is suggested to reflect the particular geometry and chemical microenvironment of hypersaline cyanobacterial mats. Therefore, such mats were probably relatively weak net sources of methane throughout their 3.5 Ga history, even during periods of low environmental levels oxygen and sulphate.  相似文献   

3.
  • 1 We quantified the relationships between diatom relative abundance and water conductivity and ionic composition, using a dataset of 3239 benthic diatom samples collected from 1109 river sites throughout the U.S.A. [U.S. Geological Survey National Water‐Quality Assessment (NAWQA) Program dataset]. This dataset provided a unique opportunity to explore the autecology of freshwater diatoms over a broad range of environmental conditions.
  • 2 Conductivity ranged from 10 to 14 500 μS cm?1, but most of the rivers had moderate conductivity (interquartile range 180–618 μS cm?1). Calcium and bicarbonate were the dominant ions. Ionic composition, however, varied greatly because of the influence of natural and anthropogenic factors.
  • 3 Canonical correspondence analysis (CCA) and Monte Carlo permutation tests showed that conductivity and abundances of major ions (HCO + CO, Cl?, SO, Ca2+, Mg2+, Na+, K+) all explained a statistically significant amount of the variation in assemblage composition of benthic diatoms. Concentrations of HCO + CO and Ca2+ were the most significant sources of environmental variance.
  • 4 The CCA showed that the gradient of ionic composition explaining most variation in diatom assemblage structure ranged from waters dominated by Ca2+ and HCO + CO to waters with higher proportions of Na+, K+, and Cl?. The CCA also revealed that the distributions of some diatoms correlated strongly with proportions of individual cations and anions, and with the ratio of monovalent to divalent cations.
  • 5 We present species indicator values (optima) for conductivity, major ions and proportions of those ions. We also identify diatom taxa characteristic of specific major‐ion chemistries. These species optima may be useful in future interpretations of diatom ecology and as indicator values in water‐quality assessment.
  相似文献   

4.
Evolutionary processes are routinely modelled using ‘ideal’ Wright–Fisher populations of constant size N in which each individual has an equal expectation of reproductive success. In a hypothetical ideal population, variance in reproductive success (Vk) is binomial and effective population size (Ne) = N. However, in any actual implementation of the Wright–Fisher model (e.g., in a computer), Vk is a random variable and its realized value in any given replicate generation () only rarely equals the binomial variance. Realized effective size () thus also varies randomly in modelled ideal populations, and the consequences of this have not been adequately explored in the literature. Analytical and numerical results show that random variation in  and  can seriously distort analyses that evaluate precision or otherwise depend on the assumption that  is constant. We derive analytical expressions for Var(Vk) [4(2N – 1)(N – 1)/N3] and Var(Ne) [N(N – 1)/(2N – 1) ≈ N/2] in modelled ideal populations and show that, for a genetic metric G = f(Ne), Var(?) has two components: VarGene (due to variance across replicate samples of genes, given a specific ) and VarDemo (due to variance in ). Var(?) is higher than it would be with constant Ne = N, as implicitly assumed by many standard models. We illustrate this with empirical examples based on F (standardized variance of allele frequency) and r2 (a measure of linkage disequilibrium). Results demonstrate that in computer models that track multilocus genotypes, methods of replication and data analysis can strongly affect consequences of variation in . These effects are more important when sampling error is small (large numbers of individuals, loci and alleles) and with relatively small populations (frequently modelled by those interested in conservation).  相似文献   

5.
1. Increased ammonium concentrations and decreased light availability in a water column have been reported to adversely affect submersed vegetation in eutrophic waters worldwide. 2. We studied the chronic effects of moderate enrichment (NH4–N: 0.16–0.25 mg L?1) on the growth and carbon and nitrogen metabolism of three macrophytes (Ceratophyllum demersum, Myriophyllum spicatum and Vallisneria natans) under contrasting light availability in a 2‐month experiment. 3. The enrichment greatly increased the contents of free amino acids and nitrogen in the shoot / leaf of the macrophytes. This indicates that was the dominant N source for the macrophytes. 4. Soluble carbohydrate contents remained relatively stable in the shoot / leaf of the macrophytes irrespective of the treatments. Under ambient light, the starch contents in the shoot / leaf of C. demersum and M. spicatum increased with enrichment, whereas V. natans did not exhibit any change. The starch contents decreased in C. demersum, increased in M. spicatum and remained unchanged in V. natans after the combined treatment of enrichment and reduced light. 5. The enrichment did not affect the growth of the three macrophytes under the ambient light. However, it did suppress the growth of C. demersum and M. spicatum under the reduced light. The results indicate that a moderate enrichment was not directly toxic to the macrophytes although it might change their viability in eutrophic lakes in terms of the carbon and nitrogen metabolism.  相似文献   

6.
Pristine New Zealand forest soil is a strong methane sink   总被引:1,自引:0,他引:1  
Methanotrophic bacteria oxidize methane (CH4) in forest soils that cover ~30% of Earth's land surface. The first measurements for a pristine Southern Hemisphere forest are reported here. Soil CH4 oxidation rate averaged 10.5±0.6 kg CH4 ha?1 yr?1, with the greatest rates in dry warm soil (up to 17 kg CH4 ha?1 yr?1). Methanotrophic activity was concentrated beneath the organic horizon at 50–100 mm depth. Water content was the principal regulator of (r2=0.88) from the most common value of field capacity to less than half of this when the soil was driest. Multiple linear regression analysis showed that soil temperature was not very influential. However, inverse co‐variability confounded the separation of soil water and temperature effects in situ. Fick's law explained the role of water content in regulating gas diffusion and substrate supply to the methanotrophs and the importance of pore size distribution and tortuosity. This analysis also showed that the chambers used in the study did not affect the oxidation rate measurements. The soil was always a net sink for atmospheric CH4 and no net CH4 (or nitrous oxide, N2O) emissions were measured over the 17‐month long study. For New Zealand, national‐scale extrapolation of our data suggested the potential to offset 13% of CH4 emissions from ca. 90 M ruminant animals. Our average was about 6.5 times higher than rates reported for most Northern Hemisphere forest soils. This very high was attributed to the lack of anthropogenic disturbance for at least 3000–5000 years and the low rate of atmospheric nitrogen deposition. Our truly baseline data could represent a valid preagricultural, preindustrial estimate of the soil sink for temperate latitudes.  相似文献   

7.
1. Unlike other nuisance algal species, the freshwater benthic diatom Didymosphenia geminata typically forms blooms in low‐nutrient rivers. The negative association between D. geminata blooming behaviour and nutrient levels appears at both catchment and smaller scales. We conducted a series of trials in streamside experimental channels colonised with D. geminata using water from the D. geminata‐affected, oligotrophic Waitaki River, South Island, New Zealand to determine how elevated nitrate and phosphate concentrations affected D. geminata cell division. Because D. geminata blooms are typically most pronounced in unshaded waters, we also investigated the growth response to shading. In all experiments, we used the frequency of dividing cells (FDC) as a metric of cell division. 2. Concentrations of nitrate and dissolved reactive phosphorus (DRP) in the Waitaki River were very low (4 mg m?3‐N and <1 mg m?3 DRP). In pilot trials, substrata colonised by D. geminata were subjected to enrichment by either switching the water source toN‐ and P‐rich spring water or by adding a stock solution. Both trials resulted in periods of rapid cell division lasting at least 8 days. 3. Experimental addition of alone triggered an initial cell division which was not sustained. However, addition of alone or together with resulted in prolonged elevation in cell division indicating that the cell division rate was P‐limited. 4. Reduced light levels resulted in decreased FDC in D. geminata in both ambient and N, N + P and P‐enriched river water. 5. Stimulation of D. geminata division rate by addition of above ambient levels confirms that, while blooming behaviour is often associated with oligotrophic rivers, the cells divide faster with greater levels of phosphorus enrichment.  相似文献   

8.
Isotopic fractionations produced by biosynthetic processes are the result of networks of individual biochemical reactions that operate at differing efficiencies and with distinct fractionation factors. These reaction networks determine the magnitude and direction of the net isotopic fractionation associated with a given process. Here we examine the ways that biological reaction networks control mass‐dependent isotopic fractionations of multiple sulphur isotopes. We describe how material‐flow through some networks can produce characteristic multiple‐sulphur‐isotope signatures that differ from those produced by their constituent steps and demonstrate that experimental results with Archaeaglobus fulgidus can be evaluated using multiple sulphur isotopes in the context of previously published models for dissimilatory sulphate reduction. Our evaluation of these data is consistent with the interpretation that the dependence of sulphur isotope fractionation on external sulphate concentration is rooted in differences between the forward and reverse  ? adenosine‐5′‐phosphosulphate (APS) ?  steps. The framework provided by our analysis has the potential to evaluate the biosynthetic pathways that produce the isotopic fractionations, to isolate the primary sources of isotopic fractionations (sulphate reduction or disproportionation reactions) and to establish criteria to identify the signature of specific sulphur metabolisms in the geological record. The results highlight the new types of information that can be obtained by including measurements of δ33S {δ33S = [(33S/32S)sample/(33S/32S)reference ? 1]*1000} with measurements of δ34S.  相似文献   

9.
Flux measurements from eight global FLUXNET sites were used to estimate parameters in a process‐based, land‐surface model (CSIRO Biosphere Model (CBM), using nonlinear parameter estimation techniques. The parameters examined were the maximum photosynthetic carboxylation rate () the potential photosynthetic electron transport rate (jmax, 25) of the leaf at the top of the canopy, and basal soil respiration (rs, 25), all at a reference temperature of 25°C. Eddy covariance measurements used in the analysis were from four evergreen forests, three deciduous forests and an oak‐grass savanna. Optimal estimates of model parameters were obtained by minimizing the weighted differences between the observed and predicted flux densities of latent heat, sensible heat and net ecosystem CO2 exchange for each year. Values of maximum carboxylation rates obtained from the flux measurements were in good agreement with independent estimates from leaf gas exchange measurements at all evergreen forest sites. A seasonally varying and jmax, 25 in CBM yielded better predictions of net ecosystem CO2 exchange than a constant and jmax, 25 for all three deciduous forests and one savanna site. Differences in the seasonal variation of and jmax, 25 among the three deciduous forests are related to leaf phenology. At the tree‐grass savanna site, seasonal variation of and jmax, 25 was affected by interactions between soil water and temperature, resulting in and jmax, 25 reaching maximal values before the onset of summer drought at canopy scale. Optimizing the photosynthetic parameters in the model allowed CBM to predict quite well the fluxes of water vapor and CO2 but sensible heat fluxes were systematically underestimated by up to 75 W m−2.  相似文献   

10.
In this work, we experimentally evaluate pH and  dynamics associated with abiotic and microbial  oxidation under varying [O2], [Fe(III)] and microbial strain/consortia (two pure strains, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, their consortia, and two enrichments from an acidic environmental system, Moose Lake 2002 and Moose Lake 2003). Results of the batch experiments demonstrate highly active microbial processing of  while abiotic controls under identical experimental conditions remain static with no pH decrease. When abiotic controls were manually titrated with acid to achieve similar pH decreases to those occurring in the microbial treatments, different S pathways were involved. In particular, disproportionation is a substantial component of initial microbial  processing, and is accelerated by the presence of Fe(III), indicating that recycling of S through intermediate oxidation states is likely to be widespread in acidic mine environments where high [Fe(III)] is common. Furthermore, the microbially mediated S reaction pathways were dependent on both environmental conditions and microbial strain/consortia, indicating that microbial community structure also plays a key role. Collectively, these results highlight the importance of microbial activity, their poor representation by abiotic S models, the likelihood that Fe(III), rather than O2, is a key control on microbial S processing in acid environments and the need to identify the microbial community/strain involved.  相似文献   

11.
Pelagophyte species in the genera Aureococcus and Auroumbra form brown tides in coastal bays that cause food‐web disruption and extensive shading of benthic primary producers. Organic nutrients have been suggested as key factors in the origination and persistence of the East Coast (USA) brown‐tide alga Aureococcus anophagefferens Hargraves et Sieburth. To evaluate this finding for the Texas brown‐tide alga Aureoumbra lagunensis D. A. Stockw., DeYoe, Hargraves et P. W. Johnson, we grew strain TBA‐2 with dissolved inorganic nitrogen (DIN; or ) or dissolved organic nitrogen (DON; urea or glutamate) as the nitrogen (N) source under eight light intensities. Maximum growth rates decreased with N source from (1.0 div · d?1) to (0.48 div · d?1). Neither growth rate efficiency (α) nor Ik varied significantly between N treatments. Both inorganic phosphorus (P) and β‐glycerophosphate supported growth. Aureoumbra lagunensis can utilize at least some forms of organic N and P and can use them to persist or grow when inorganic forms become limiting. We found no evidence to support the hypothesis that organic utilization enhances or supplements growth at low light levels.  相似文献   

12.
1. A tracer release study was conducted in a macrophyte‐rich stream, the River Lilleaa in Denmark. The objectives of the study were to compare uptake rates per unit area of by primary producers and consumers in macrophyte and non‐macrophyte habitats, estimate whole‐stream uptake rates of and compare this to other stream types, and identify the pathways and estimate the rate at which enters the food web in macrophyte and non‐macrophyte habitats. 2. Macrophyte habitats had four times higher primary uptake rates and an equal uptake rate by primary consumers per unit habitat area as compared to non‐macrophyte habitats. These rates represent the lower limit of potential macrophyte effects because the rates will be highly dependent on macrophyte bed height and mean bed height in the River Lilleaa was low compared to typical bed heights in many lowland streams. Epiphytes accounted for 30% of primary uptake in macrophyte habitats, illustrating a strong indirect effect of macrophytes as habitat for epiphytes. N flux per unit habitat area from primary uptake compartments to primary consumers was four times lower in macrophyte habitats compared to non‐macrophyte habitats, reflecting much greater biomass accrual in macrophyte habitats. Thus, we did not find higher N flux from macrophyte habitats to primary consumers compared to non‐macrophyte habitats. 3. Whole‐stream uptake rate was 447 mgN m?2 day?1. On a habitat‐weighted basis, fine benthic organic matter (FBOM) accounted for 72% of the whole‐stream uptake rate, and macrophytes and epiphytes accounted for 19 and 8%, respectively. 4. We had expected a priori relatively high whole‐stream N uptake in our study stream compared to other stream types mainly due to generally high biomass and the macrophyte’s role as habitat for autotrophic and heterotrophic organisms, but our results did not confirm this. In comparison with other release study streams, we conclude that nutrient concentration is the overall controlling factor for N uptake rates across streams, mostly as a result of high biomass of primary uptake compartments in streams with high nutrient concentrations in general and not in macrophyte streams in particular. 5. Our results indicate that macrophytes play an important role in the longer‐term retention of N and thus a decrease in net downstream transport during the growing season compared to streams without macrophytes, through direct and indirect effects on the stream reach. Direct effects are high uptake efficiency, low turnover rate (partly due to no direct feeding on macrophytes) and high longevity. An indirect effect is increased sedimentation of FBOM in macrophytes compared to non‐macrophyte habitats and streams which possibly also increase denitrification. Increased retention with macrophyte presence would decrease downstream transport during the growing season and thus the N loading on downstream ecosystems.  相似文献   

13.
Turgor and osmotic relations of the desert shrub Larrea tridentata   总被引:3,自引:3,他引:0  
Abstract Leaf water relations characteristics of creosote bush, Larrea tridentata, were studied in view of previous reports that its leaves commonly experience zero or negative turgor under dry conditions. Leaf turgor loss point () was determined by a pressure-volume method for samples subjected to a hydration procedure and for untreated samples. Hydration caused to increase by as much as 3 M Pa. Hydration of samples also caused changes in other leaf water relations characteristics such as symplastic solute content, tissue elasticity and symplasmic water fraction, but total leaf solute content was unchanged. Comparison of our field plant water potential data with values of obtained by the two methods resulted in predictions of turgor loss during part or all of a diurnal cycle based on hydrated samples, and turgor maintenance (at least 0.3 MPa) based on untreated samples. Pooled data for obtained from both partially hydrated and untreated samples showed that L. tridentata maintains fairly constant levels of turgor over a wide range of leaf water potential. Dilution of cell contents by apoplastic water introduced significant errors in psychrometric determinations of osmotic potential in both frozen and thawed leaf tissue and expressed cell sap. Use of these values of osmotic potential resulted in predictions of zero turgor at all plant water potentials measured in the field.  相似文献   

14.
Oxygen uptake () and critical oxygen tension (Pcrit) were measured in resting perch Perca fluviatilis that were either fasting or digesting. Digestion caused to double (from 61 to 117 mg O2 kg?1h?1) and was associated with a rise in Pcrit (from 3·4 to 4·9 kPa), showing that the animal's digestive state must be considered when assessing the effect of hypoxia in natural conditions, and when defining optimal oxygen conditions in aquaculture.  相似文献   

15.
Uptake and assimilation kinetics of nitrate and ammonium were investigated along with inhibition of nitrate uptake by ammonium in the harmful dinoflagellate Alexandrium minutum Halim at different nitrogen (N)–limited growth rates. Alexandrium minutum had a strong affinity for nitrate and ammonium (Ks=0.26±0.03 and 0.31±0.04 μmol·L?1, respectively) whatever the degree of N deficiency of the cells. Ammonium was always the preferred form of nitrogen taken up (=0.42–0.50). In the presence of both forms, nitrate uptake was inhibited by ammonium, and inhibition was particularly marked in N‐sufficient cells (Imax~0.9 and Ki=0.31–0.56 μmol·L?1). In the case of N assimilation, ammonium was also the preferred form in N‐deficient cells (=0.54–0.72), whereas in N‐sufficient cells, both N sources were equally preferred (=0.90–1.00). The comparison of uptake and assimilation rates highlighted the ability of A. minutum to significantly store in 1 h nitrate and ammonium in amounts sufficient to supply twice the daily N requirements of the slowest‐growing N‐deficient cells. Nitrogen uptake kinetic parameters of A. minutum and their ecological implications are discussed.  相似文献   

16.
1. Irradiance strongly affects the abundance of stream periphyton communities that in turn influence patterns of instream nutrient uptake. We examined relationships between irradiance and periphyton nutrient uptake taking into account diel and seasonal variation in ambient irradiance. 2. Uptake of dissolved N, P and C by periphyton as areal uptake (U) and demand (Vf) was determined under 11 irradiance levels (0–100% of ambient conditions) using shallow stream‐side experimental channels. Experiments were conducted once per season over one annual cycle with both day and night uptake rates assessed, together with periphyton biomass and autotrophic production rates. 3. No consistent diel variation in areal uptake or demand was detected for the predominant inorganic or total dissolved nutrients even at the highest irradiances. Lack of variation may indicate nutrient limitation, with photosynthetic sequestration and storage of C during the day for subsequent utilisation at night. Alternatively, oxygen consumption by photoautotrophs at night may stimulate compensatory heterotrophic uptake (e.g. denitrification). 4. In all seasons, release of dissolved organic N was detected during the day but to a lesser extent at night. This was not directly related to irradiance levels, indicating that heterotrophic metabolism (e.g. microbial decomposition) contributes to this phenomenon. 5. Areal uptake and demand for the predominant inorganic and total dissolved nutrients increased in response to increasing irradiance in some or all seasons, but rates were typically higher during the spring and summer. Saturation of areal uptake and demand at elevated irradiances was evident during the spring. demand was also saturated at higher irradiances in the summer and autumn. Maximum demand was comparable during spring and summer, but saturation occurred at lower irradiance in summer (24 h average 135–145 μmol m?2 s?1) relative to spring (312–424 μmol m?2 s?1), indicating more efficient nutrient uptake in summer. Higher total periphyton biomass in summer, but comparable autotrophic biomass (chlorophyll a), implies that heterotrophic metabolism may contribute to this greater efficiency. In spring, autotrophic biomass peaked at an irradiance level of 225 μmol m?2 s?1, also suggesting a role for heterotrophic metabolism in demand at higher irradiances. 6. The results of this study show that irradiance levels exert a strong influence on the nature and quantity of instream nutrient uptake with N demand saturated at elevated irradiance levels during the spring, summer and autumn. Our results also suggest that heterotrophic metabolism makes a measurable contribution to instream nutrient uptake even under higher irradiances that favour autotrophic activity.  相似文献   

17.
Diazotrophic cyanobacteria can take up combined nitrogen (nitrate, ammonium, amino acids, dissolved organic nitrogen) from solution, but the interaction between N2 fixation and uptake of combined nitrogen is not well understood. We studied the effects of combined nitrogen ) additions on N2 fixation rates in the cyanobacterium Trichodesmium erythraeum (IMS‐101) maintained in continuous culture in an N‐free medium (YBCII) and a 12:12‐h light:dark cycle. We measured acetylene reduction rates, nutrient concentrations, and biomass throughout the 12 h of illumination after the addition of nitrate (0.5–20 μM) at the start of the light period. Compared with unamended controls, Trichodesmium showed strong inhibition of acetylene reduction (up to 70%) in the presence of , with apparent saturation of the inhibition effect at an initial concentration of approximately 10 μM. The inhibition of acetylene reduction persisted through much of the light period as concentration in the culture vessel decreased. Recovery of N2 fixation was observed late in the light period in cultures amended with low concentrations of (<5 μM) when ambient concentrations had decreased to 0.3–0.4 μM in the culture vessel. Nitrate uptake accounted for as much as 86% of total N uptake and, at the higher treatment concentrations, more than made up for the observed decrease in N2 fixation rates. We conclude that Trichodesmium can obtain significant quantities of N through uptake of nitrate and does so in preference to N2 fixation when sufficient is available.  相似文献   

18.
Photosynthetic capacity and its relationship to leaf nitrogen content are two of the most sensitive parameters of terrestrial biosphere models (TBM) whose representation in global‐scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Here, we use data of qualitative traits, climate and soil to subdivide the terrestrial vegetation into functional types (PFT), and then assimilate observations of carboxylation capacity, Vmax (723 data points), and maximum photosynthesis rates, Amax (776 data points), into the C3 photosynthesis model proposed by Farquhar et al. to constrain the relationship of (Vmax normalised to 25 °C) to leaf nitrogen content per unit leaf area for each PFT. In a second step, the resulting functions are used to predict per PFT from easily measurable values of leaf nitrogen content in natural vegetation (1966 data points). Mean values of thus obtained are implemented into a TBM (BETHY within the coupled climate–vegetation model ECHAM5/JSBACH) and modelled gross primary production (GPP) is compared with independent observations on stand scale. Apart from providing parameter ranges per PFT constrained from much more comprehensive data, the results of this analysis enable several major improvements on previous parameterisations. (1) The range of mean between PFTs is dominated by differences of photosynthetic nitrogen use efficiency (NUE, defined as divided by leaf nitrogen content), while within each PFT, the scatter of values is dominated by the high variability of leaf nitrogen content. (2) We find a systematic depression of NUE on certain tropical soils that are known to be deficient in phosphorous. (3) of tropical trees derived by this study is substantially lower than earlier estimates currently used in TBMs, with an obvious effect on modelled GPP and surface temperature. (4) The root‐mean‐squared difference between modelled and observed GPP is substantially reduced.  相似文献   

19.
We consider the effects of parameter perturbations on a density‐dependent population at equilibrium. Such perturbations change the dominant eigenvalue λ of the projection matrix evaluated at the equilibrium as well as the equilibrium itself. We show that, regardless of the functional form of density dependence, the sensitivity of λ is equal to the sensitivity of an effective equilibrium density , which is a weighted combination of the equilibrium stage densities. The weights measure the contributions of each stage to density dependence and their effects on demography. Thus, is in general more relevant than total density, which simply adds all stages regardless of their ecological properties. As log λ is the invasion exponent, our results show that successful invasion will increase , and that an evolutionary stable strategy will maximize . Our results imply that eigenvalue sensitivity analysis of a population projection matrix that is evaluated near equilibrium can give useful information about the sensitivity of the equilibrium population, even if no data on density dependence are available.  相似文献   

20.
Increasing concentrations of organic matter (OM) in surface waters have been noted over large parts of the boreal/nemoral zone in Europe and North America. This has raised questions about the causes and the likelihood of further increases. A number of drivers have been proposed, including temperature, hydrology, as well as ‐ and Cl? deposition. The data reported so far, however, have been insufficient to define the relative importance of different drivers in landscapes where they interact. Thirty‐five years of monthly measurements of absorbance and chemical oxygen demand (COD), two common proxies for OM, from 28 large Scandinavian catchments provide an unprecedented opportunity to resolve the importance of hypothesized drivers. For 21 of the catchments, there are 18 years of total organic carbon (TOC) measurements as well. Despite the heterogeneity of the catchments with regards to climate, size and land use, there is a high degree of synchronicity in OM across the entire region. Rivers go from widespread trends of decreasing OM to increasing trends and back again three times in the 35‐year record. This synchronicity in decadal scale oscillations and long‐term trends suggest a common set of dominant OM drivers in these landscapes. Here, we use regression models to test the importance of different potential drivers. We show that flow and together can predict most of the interannual variability in OM proxies, up to 88% for absorbance, up to 78% for COD. Two other candidate drivers, air temperature and Cl?, add little explanatory value. Declines in anthropogenic since the mid‐1970s are thus related to the observed OM increases in Scandinavia, but, in contrast to many recent studies, flow emerges as an even more important driver of OM variability. Stabilizing levels also mean that hydrology is likely to be the major driver of future variability and trends in OM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号