首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite their relevance for neuronal Ca2+-induced Ca2+ release (CICR), activation by Ca2+ of ryanodine receptor (RyR) channels of brain endoplasmic reticulum at the [ATP], [Mg2+], and redox conditions present in neurons has not been reported. Here, we studied the effects of varying cis-(cytoplasmic) free ATP concentration ([ATP]), [Mg2+], and RyR redox state on the Ca2+ dependence of endoplasmic reticulum RyR channels from rat brain cortex. At pCa 4.9 and 0.5 mM adenylylimidodiphosphate (AMP-PNP), increasing free [Mg2+] up to 1 mM inhibited vesicular [3H]ryanodine binding; incubation with thimerosal or dithiothreitol decreased or enhanced Mg2+ inhibition, respectively. Single RyR channels incorporated into lipid bilayers displayed three different Ca2+ dependencies, defined by low, moderate, or high maximal fractional open time (Po), that depend on RyR redox state, as we have previously reported. In all cases, cis-ATP addition (3 mM) decreased threshold [Ca2+] for activation, increased maximal Po, and shifted channel inhibition to higher [Ca2+]. Conversely, at pCa 4.5 and 3 mM ATP, increasing cis-[Mg2+] up to 1 mM inhibited low activity channels more than moderate activity channels but barely modified high activity channels. Addition of 0.5 mM free [ATP] plus 0.8 mM free [Mg2+] induced a right shift in Ca2+ dependence for all channels so that [Ca2+] <30 µM activated only high activity channels. These results strongly suggest that channel redox state determines RyR activation by Ca2+ at physiological [ATP] and [Mg2+]. If RyR behave similarly in living neurons, cellular redox state should affect RyR-mediated CICR. Ca2+-induced Ca2+ release; Ca2+ release channels; endoplasmic reticulum; thimerosal; 2,4-dithiothreitol; ryanodine receptor  相似文献   

2.
Ryanodine receptor (RyR) type 1 (RyR1) exhibits a markedly lower gain of Ca2+-induced Ca2+ release (CICR) activity than RyR type 3 (RyR3) in the sarcoplasmic reticulum (SR) of mammalian skeletal muscle (selective stabilization of the RyR1 channel), and this reduction in the gain is largely eliminated using 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). We have investigated whether the hypothesized interdomain interactions within RyR1 are involved in the selective stabilization of the channel using [3H]ryanodine binding, single-channel recordings, and Ca2+ release from the SR vesicles. Like CHAPS, domain peptide 4 (DP4, a synthetic peptide corresponding to the Leu2442-Pro2477 region of RyR1), which seems to destabilize the interdomain interactions, markedly stimulated RyR1 but not RyR3. Their activating effects were saturable and nonadditive. Dantrolene, a potent inhibitor of RyR1 used to treat malignant hyperthermia, reversed the effects of DP4 or CHAPS in an identical manner. These findings indicate that RyR1 is activated by DP4 and CHAPS through a common mechanism that is probably mediated by the interdomain interactions. DP4 greatly increased [3H]ryanodine binding to RyR1 with only minor alterations in the sensitivity to endogenous CICR modulators (Ca2+, Mg2+, and adenine nucleotide). However, DP4 sensitized RyR1 four- to six-fold to caffeine in the caffeine-induced Ca2+ release. Thus the gain of CICR activity critically determines the magnitude and threshold of Ca2+ release by drugs such as caffeine. These findings suggest that the low CICR gain of RyR1 is important in normal Ca2+ handling in skeletal muscle and that perturbation of this state may result in muscle diseases such as malignant hyperthermia. malignant hyperthermia; 3-[(3-cholamidopropyl)dimethylammonio]propane sulfonic acid; domain peptide 4  相似文献   

3.
Calmodulin (CaM) activates the skeletal muscle ryanodine receptorCa2+ release channel (RyR1) in the presence of nanomolarCa2+ concentrations. However, the role of CaM activation inthe mechanisms that control Ca2+ release from thesarcoplasmic reticulum (SR) in skeletal muscle and in the heart remainsunclear. In media that contained 100 nM Ca2+, the rate of45Ca2+ release from porcine skeletal muscle SRvesicles was increased approximately threefold in the presence of CaM(1 µM). In contrast, cardiac SR vesicle45Ca2+ release was unaffected by CaM,suggesting that CaM activated the skeletal RyR1 but not the cardiacRyR2 channel isoform. The activation of RyR1 by CaM was associated withan approximately sixfold increase in the Ca2+ sensitivityof [3H]ryanodine binding to skeletal muscle SR, whereasthe Ca2+ sensitivity of cardiac SR[3H]ryanodine binding was similar in the absence andpresence of CaM. Cross-linking experiments identified both RyR1 andRyR2 as predominant CaM binding proteins in skeletal and cardiac SR,respectively, and [35S]CaM binding determinations furtherindicated comparable CaM binding to the two isoforms in the presence ofmicromolar Ca2+. In nanomolar Ca2+, however,the affinity and stoichiometry of RyR2 [35S]CaM bindingwas reduced compared with that of RyR1. Together, our results indicatethat CaM activates RyR1 by increasing the Ca2+ sensitivityof the channel, and further suggest differences in CaM's functionalinteractions with the RyR1 and RyR2 isoforms that may potentiallycontribute to differences in the Ca2+ dependence of channelactivation in skeletal and cardiac muscle.

  相似文献   

4.
We showed that frog -ryanodine receptor (-RyR) had a lower gain of Ca2+-induced Ca2+ release (CICR) activity than -RyR in sarcoplasmic reticulum (SR) vesicles, indicating selective "stabilization" of the former isoform (Murayama T and Ogawa Y. J Biol Chem 276: 2953–2960, 2001). To know whether this is also the case with mammalian RyR1, we determined [3H]ryanodine binding of RyR1 and RyR3 in bovine diaphragm SR vesicles. The value of [3H]ryanodine binding (B) was normalized by the number of maximal binding sites (Bmax), whereby the specific activity of each isoform was expressed. This B/Bmax expression demonstrated that ryanodine binding of individual channels for RyR1 was <15% that for RyR3. Responses to Ca2+, Mg2+, adenine nucleotides, and caffeine were not substantially different between in situ and purified isoforms. These results suggest that the gain of CICR activity of RyR1 is markedly lower than that of RyR3 in mammalian skeletal muscle, indicating selective stabilization of RyR1 as is true of frog -RyR. The stabilization was partly eliminated by FK506 and partly by solubilization of the vesicles with CHAPS, each of which was additive to the other. In contrast, high salt, which greatly enhances [3H]ryanodine binding, caused only a minor effect on the stabilization of RyR1. None of the T-tubule components, coexisting RyR3, or calmodulin was the cause. The CHAPS-sensitive intra- and intermolecular interactions that are common between mammalian and frog skeletal muscles and the isoform-specific inhibition by FKBP12, which is characteristic of mammals, are likely to be the underlying mechanisms. excitation-contraction coupling; ryanodine binding; ryanodine receptor  相似文献   

5.
Favero, Terence G., Anthony C. Zable, David Colter, andJonathan J. Abramson. Lactate inhibits Ca2+-activatedCa2+-channel activity from skeletal muscle sarcoplasmicreticulum. J. Appl. Physiol. 82(2): 447-452, 1997.Sarcoplasmic reticulum (SR) Ca2+-release channelfunction is modified by ligands that are generated during about ofexercise. We have examined the effects of lactate on Ca2+-and caffeine-stimulated Ca2+ release,[3H]ryanodine binding, and singleCa2+-release channel activity of SR isolated from rabbitwhite skeletal muscle. Lactate, at concentrations from 10 to 30 mM,inhibited Ca2+- and caffeine-stimulated[3H]ryanodine binding to and inhibited Ca2+-and caffeine-stimulated Ca2+ release from SR vesicles.Lactate also inhibited caffeine activation of single-channel activityin bilayer reconstitution experiments. These findings suggest thatintense muscle activity, which generates high concentrations oflactate, will disrupt excitation-contraction coupling. This may lead todecreases in Ca2+ transients promoting a decline in tensiondevelopment and contribute to muscle fatigue.

  相似文献   

6.
Ca+-induced Ca2+ release (CICR) in the heart involves local Ca2+ signaling between sarcolemmal L-type Ca2+ channels (dihydropyridine receptors, DHPRs) and type 2 ryanodine receptors (RyR2s) in the sarcoplasmic reticulum (SR). We reconstituted cardiac-like CICR by expressing a cardiac dihydropyridine-insensitive (T1066Y/Q1070M) 1-subunit (1CYM) and RyR2 in myotubes derived from RyR1-knockout (dyspedic) mice. Myotubes expressing 1CYM and RyR2 were vesiculated and exhibited spontaneous Ca2+ oscillations that resulted in chaotic and uncontrolled contractions. Coexpression of FKBP12.6 (but not FKBP12.0) with 1CYM and RyR2 eliminated vesiculations and reduced the percentage of myotubes exhibiting uncontrolled global Ca2+ oscillations (63% and 13% of cells exhibited oscillations in the absence and presence of FKBP12.6, respectively). 1CYM/RyR2/FKBP12.6-expressing myotubes exhibited robust and rapid electrically evoked Ca2+ transients that required extracellular Ca2+. Depolarization-induced Ca2+ release in 1CYM/RyR2/FKBP12.6-expressing myotubes exhibited a bell-shaped voltage dependence that was fourfold larger than that of myotubes expressing 1CYM alone (maximal fluorescence change was 2.10 ± 0.39 and 0.54 ± 0.07, respectively), despite similar Ca2+ current densities. In addition, the gain of CICR in 1CYM/RyR2/FKBP12.6-expressing myotubes exhibited a nonlinear voltage dependence, being considerably larger at threshold potentials. We used this molecular model of local 1C-RyR2 signaling to assess the ability of FKBP12.6 to inhibit spontaneous Ca2+ release via a phosphomimetic mutation in RyR2 (S2808D). Electrically evoked Ca2+ release and the incidence of spontaneous Ca2+ oscillations did not differ in wild-type RyR2- and S2808D-expressing myotubes over a wide range of FKBP12.6 expression. Thus a negative charge at S2808 does not alter in situ regulation of RyR2 by FKBP12.6. heart failure; dihydropyridine receptor; excitation-contraction coupling  相似文献   

7.
The factors responsible for the regulation of regenerative calcium-induced calcium release (CICR) during Ca2+ spark evolution remain unclear. Cardiac ryanodine receptor (RyR) gating in rats and sheep was recorded at physiological Ca2+, Mg2+, and ATP levels and incorporated into a 3D model of the cardiac dyad, which reproduced the time course of Ca2+ sparks, Ca2+ blinks, and Ca2+ spark restitution. The termination of CICR by induction decay in the model principally arose from the steep Ca2+ dependence of RyR closed time, with the measured sarcoplasmic reticulum (SR) lumen Ca2+ dependence of RyR gating making almost no contribution. The start of CICR termination was strongly dependent on the extent of local depletion of junctional SR Ca2+, as well as the time course of local Ca2+ gradients within the junctional space. Reducing the dimensions of the dyad junction reduced Ca2+ spark amplitude by reducing the strength of regenerative feedback within CICR. A refractory period for Ca2+ spark initiation and subsequent Ca2+ spark amplitude restitution arose from 1), the extent to which the regenerative phase of CICR can be supported by the partially depleted junctional SR, and 2), the availability of releasable Ca2+ in the junctional SR. The physical organization of RyRs within the junctional space had minimal effects on Ca2+ spark amplitude when more than nine RyRs were present. Spark amplitude had a nonlinear dependence on RyR single-channel Ca2+ flux, and was approximately halved by reducing the flux from 0.6 to 0.2 pA. Although rat and sheep RyRs had quite different Ca2+ sensitivities, Ca2+ spark amplitude was hardly affected. This suggests that moderate changes in RyR gating by second-messenger systems will principally alter the spatiotemporal properties of SR release, with smaller effects on the amount released.  相似文献   

8.
Mg2+, an important constituent of the intracellular milieu in cardiac myocytes, is known to inhibit ryanodine receptor (RyR) Ca2+ release channels by competing with Ca2+ at the cytosolic activation sites of the channel. However, the significance of this competition for local, dynamic Ca2+-signaling processes thought to govern cardiac excitation-contraction (EC) coupling remains largely unknown. In the present study, Ca2+ stimuli of different waveforms (i.e., sustained and brief) were generated by photolysis of the caged Ca2+ compound nitrophenyl (NP)-EGTA. The evoked RyR activity was measured in planar lipid bilayers in the presence of 0.6-1.3 mM free Mg2+ at the background of 3 mM total ATP in the presence or absence of 1 mM luminal Ca2+. Mg2+ dramatically slowed the rate of activation of RyRs in response to sustained (=" BORDER="0">10-ms) elevations in Ca2+ concentration. Paradoxically, Mg2+ had no measurable impact on the kinetics of the RyR response induced by physiologically relevant, brief (<1-ms) Ca2+ stimuli. Instead, the changes in activation rate observed with sustained stimuli were translated into a drastic reduction in the probability of responses. Luminal Ca2+ did not affect the peak open probability or the probability of responses to brief Ca2+ signals; however, it slowed the transition to steady state and increased the steady-state open probability of the channel. Our results indicate that Mg2+ is a critical physiological determinant of the dynamic behavior of the RyR channel, which is expected to profoundly influence the fidelity of coupling between L-type Ca2+ channels and RyRs in heart cells. excitation-contraction coupling; cardiac myocytes; magnesium; calcium signaling  相似文献   

9.
During the cardiac action potential, Ca2+ entry through dyhidropyridine receptor L-type Ca2+ channels (DHPRs) activates ryanodine receptors (RyRs) Ca2+-release channels, resulting in massive Ca2+ mobilization from the sarcoplasmic reticulum (SR). This global Ca2+ release arises from spatiotemporal summation of many localized elementary Ca2+-release events, Ca2+ sparks. We tested whether DHPRs modulate Ca2+sparks in a Ca2+ entry-independent manner. Negative modulation by DHPR of RyRs via physical interactions is accepted in resting skeletal muscle but remains controversial in the heart. Ca2+ sparks were studied in cat cardiac myocytes permeabilized with saponin or internally perfused via a patch pipette. Bathing and pipette solutions contained low Ca2+ (100 nM). Under these conditions, Ca2+ sparks were detected with a stable frequency of 3–5 sparks·s–1·100 µm–1. The DHPR blockers nifedipine, nimodipine, FS-2, and calciseptine decreased spark frequency, whereas the DHPR agonists Bay-K8644 and FPL-64176 increased it. None of these agents altered the spatiotemporal characteristics of Ca2+ sparks. The DHPR modulators were also without effect on SR Ca2+ load (caffeine-induced Ca2+ transients) or sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity (Ca2+ loading rates of isolated SR microsomes) and did not change cardiac RyR channel gating (planar lipid bilayer experiments). In summary, DHPR modulators affected spark frequency in the absence of DHPR-mediated Ca2+ entry. This action could not be attributed to a direct action of DHPR modulators on SERCA or RyRs. Our results suggest that the activity of RyR Ca2+-release units in ventricular myocytes is modulated by Ca2+ entry-independent conformational changes in neighboring DHPRs. exitation-contraction coupling; ryanodine receptor; sarco(endo)plasmic reticulum Ca2+-ATPase; dihydropyridine receptor; sarcoplasmic reticulum  相似文献   

10.
Four ryanodine receptor type 1 and 2 chimeras (R4, R9, R10, and R16) and their respective wild-type ryanodine receptors (type 1 and 2; wtRyR1 and wtRyR2) were expressed in dyspedic 1B5 to identify possible negative regulatory modules of the Ca2+ release channel that are under the influence of the dihydropyridine receptor (DHPR). Responses of intact 1B5 myotubes expressing each construct to caffeine in the absence or presence of either La3+ and Cd2+ or the organic DHPR blocker nifedipine were determined by imaging single 1B5 myotubes loaded with fluo 4. The presence of La3+ and Cd2+ or nifedipine in the external medium at concentrations known to block Ca2+ entry through the DHPRs significantly decreased the caffeine EC50 of wtRyR1 (2.80 ± 0.12 to 0.83 ± 0.09 mM; P < 0.05). On the other hand, DHPR blockade did not significantly alter the caffeine EC50 values of wtRyR2, chimeras R10 and R16, whereas the caffeine EC50 values of chimeras R4 and R9 were significantly increased (1.27 ± 0.05 to 2.60 ± 0.16 mM, and 1.15 ± 0.03 to 2.11 ± 0.32 mM, respectively; P < 0.05). Despite the fact that all the chimeras form fully functional Ca2+ release channels in situ, sarcoplasmic reticulum (SR) containing R4, R10, and R16 did not possess high-affinity binding of [3H]ryanodine regardless of Ca2+ concentration. These results suggest the presence of an interaction between RyR1 and the DHPR, which is not present in RyR2, that contributes negative control of SR Ca2+ release induced by direct agonists such as caffeine. Although we were unable to define the negative module using RyR1-RyR2 chimeras, they further demonstrated that the RyR is very sensitive to long-range allosterism. ryanodine receptor type 1; dihydropyridine receptor; excitation-contraction coupling; negative module  相似文献   

11.
Mutations in the central domain of the skeletal muscle ryanodinereceptor (RyR) cause malignant hyperthermia (MH). A synthetic peptide(DP4) in this domain (Leu-2442-Pro-2477) produces enhanced ryanodine binding and sensitized Ca2+ release in isolatedsarcoplasmic reticulum, similar to the properties in MH, possiblybecause the peptide disrupts the normal interdomain interactions thatstabilize the closed state of the RyR (Yamamoto T, El-Hayek R, andIkemoto N. J Biol Chem 275: 11618-11625, 2000). Here, DP4 was applied to mechanically skinned fibers of rat muscle thathad the normal excitation-contraction coupling mechanism stillfunctional to determine whether muscle fiber responsiveness wasenhanced. DP4 (100 µM) substantially potentiated the Ca2+release and force response to caffeine (8 mM) and to low[Mg2+] (0.2 mM) in every fiber examined, with nosignificant effect on the properties of the contractile apparatus. DP4also potentiated the response to submaximal depolarization of thetransverse tubular system by ionic substitution. Importantly, DP4 didnot significantly alter the size of the twitch response elicited byaction potential stimulation. These results support the proposal thatDP4 causes an MH-like aberration in RyR function and are consistentwith the voltage sensor triggering Ca2+ release bydestabilizing the closed state of the RyRs.

  相似文献   

12.
Type-2 ryanodine receptors (RyR2s) play a pivotal role in cardiac excitation-contraction coupling by releasing Ca2+ from sarcoplasmic reticulum (SR) via a Ca2+ -induced Ca2+ release (CICR) mechanism. Two strategies have been used to study the structure-function characteristics of RyR2 and its disease associated mutations: (1) heterologous cell expression of the recombinant mutant RyR2s, and (2) knock-in mouse models harboring RyR2 point mutations. Here, we establish an alternative approach where Ca2+ signaling aberrancy caused by the RyR2 mutation is studied in human cardiomyocytes with robust CICR mechanism. Specifically, we introduce point mutations in wild-type RYR2 of human induced pluripotent stem cells (hiPSCs) by CRISPR/Cas9 gene editing, and then differentiate them into cardiomyocytes. To verify the reliability of this approach, we introduced the same disease-associated RyR2 mutation, F2483I, which was studied by us in hiPSC-derived cardiomyocytes (hiPSC-CMs) from a patient biopsy. The gene-edited F2483I hiPSC-CMs exhibited longer and wandering Ca2+ sparks, elevated diastolic Ca2+ leaks, and smaller SR Ca2+ stores, like those of patient-derived cells. Our CRISPR/Cas9 gene editing approach validated the feasibility of creating myocytes expressing the various RyR2 mutants, making comparative mechanistic analysis and pharmacotherapeutic approaches for RyR2 pathologies possible.  相似文献   

13.
To better understand the role of the transient expression of ryanodine receptor (RyR) type 3 (RyR3) on Ca2+ homeostasis during the development of skeletal muscle, we have analyzed the effect of expression levels of RyR3 and RyR1 on the overall physiology of cultured myotubes and muscle fibers. Dyspedic myotubes were infected with RyR1 or RyR3 containing virions at 0.2, 0.4, 1.0, and 4.0 moieties of infection (MOI), and analysis of their pattern of expression, caffeine sensitivity, and resting free Ca2+ concentration ([Ca2+]r) was performed. Although increased MOI resulted in increased expression of each receptor isoform, it did not significantly affect the immunopattern of RyRs or the expression levels of calsequestrin, triadin, or FKBP-12. Interestingly, myotubes expressing RyR3 always had significantly higher [Ca2+]r and lower caffeine EC50 than did cells expressing RyR1. Although some of the increased sensitivity of RyR3 to caffeine could be attributed to the higher [Ca2+]r in RyR3-expressing cells, studies of [3H]ryanodine binding demonstrated intrinsic differences in caffeine sensitivity between RyR1 and RyR3. Tibialis anterior (TA) muscle fibers at different stages of postnatal development exhibited a transient increase in [Ca2+]r coordinately with their level of RyR3 expression. Similarly, adult soleus fibers, which also express RyR3, had higher [Ca2+]r than did adult TA fibers, which exclusively express RyR1. These data show that in skeletal muscle, RyR3 increases [Ca2+]r more than RyR1 does at any expression level. These data suggest that the coexpression of RyR1 and RyR3 at different levels may constitute a novel mechanism by which to regulate [Ca2+]r in skeletal muscle. ryanodine receptor; calcium release; ryanodine binding; muscle fibers  相似文献   

14.
In the heart, excitation-contraction (E-C) coupling is mediated by Ca2+ release from sarcoplasmic reticulum (SR) through the interactions of proteins forming the Ca2+ release unit (CRU). Among them, calsequestrin (CSQ) and histidine-rich Ca2+ binding protein (HRC) are known to bind the charged luminal region of triadin (TRN) and thus directly or indirectly regulate ryanodine receptor 2 (RyR2) activity. However, the mechanisms of CSQ and HRC mediated regulation of RyR2 activity through TRN have remained unclear. We first examined the minimal KEKE motif of TRN involved in the interactions with CSQ2, HRC and RyR2 using TRN deletion mutants and in vitro binding assays. The results showed that CSQ2, HRC and RyR2 share the same KEKE motif region on the distal part of TRN (aa 202–231). Second, in vitro binding assays were conducted to examine the Ca2+ dependence of protein-protein interactions (PPI). The results showed that TRN-HRC interaction had a bell-shaped Ca2+ dependence, which peaked at pCa4, whereas TRN-CSQ2 or TRN-RyR2 interaction did not show such Ca2+ dependence pattern. Third, competitive binding was conducted to examine whether CSQ2, HRC, or RyR2 affects the TRN-HRC or TRN-CSQ2 binding at pCa4. Among them, only CSQ2 or RyR2 competitively inhibited TRN-HRC binding, suggesting that HRC can confer functional refractoriness to CRU, which could be beneficial for reloading of Ca2+ into SR at intermediate Ca2+ concentrations.  相似文献   

15.
Imaizumi  Yuji  Ohi  Yoshiaki  Yamamura  Hisao  Morimura  Kozo  Muraki  Katsuhiko 《Neurophysiology》2003,35(3-4):169-174
The contribution of the Ca2+-induced Ca2+ release (CICR) mechanism in excitation-contraction (E-C) coupling and the tightness of the coupling between Ca2+ influx and Ca2+ release are still controversial in smooth muscle cells (SMC). In SMC isolated from the guinea-pig vas deferens or urinary bladder, a depolarizing stimulus initially induced spot-like increases in the intracellular Ca2+ concentration ([Ca2+] i ), called “Ca2+ hot spots,” at several superficial areas in the cell. When a weak stimulus (a small or a short depolarizing step) was applied, only a few Ca2+ hot spots appeared transiently in the superficial area but did not spread into other regions, to trigger global [Ca2+] i rise. Such depolarization-evoked local Ca2+ transients were distinctive from spontaneous Ca2+ sparks, since the former were susceptible to Ca2+ blockers, ryanodine, and inhibitors of the Ca2+ pump in the sarcoplasmic reticulum (SR), suggesting pivotal roles of Ca2+ influx through voltage-dependent Ca2+ channels (VDCC) and Ca2+ release from the SR through ryanodine receptors (RyR) for the activation of Ca2+ spots. Frequently discharging Ca2+ spark sites (FDS) under resting conditions were located exactly in the same areas as Ca2+ hot spots evoked by depolarization, indicating the existence of distinct local junction sites for tight coupling between VDCC in the plasmalemma and RyR in the SR. Co-localization of clusters of RyR and large-conductance Ca2+-activated K+ (BK) channels was also suggested. The fast and tight coupling for CICR in these junctional sites was triggered also by an action potential, whereas a slower spread of Ca2+ wave to the whole-cell areas suggests the loose coupling in propagating CICR to other cell areas. It can therefore be postulated that CICR may occur in two steps upon depolarization; the initial CICR in distinct junctional sites shows tight coupling between Ca2+ influx and release, and the following CICR may propagate slow Ca2+ waves to other areas. Ryanodine receptors form a multiprotein complex with molecules such as calsequestrin, junctin, triadin, junctophilins, and FK506-binding proteins, which directly or indirectly regulate the RyR activity and the tight coupling. Moreover, an evoked Ca2+ spot may enhance Ca2+ uptake by neighboring mitochondria and their ATP production to increase energy supply to the Ca2+ pump of the SR in the microdomain.  相似文献   

16.
To activate skeletal muscle contraction, action potentials must be sensed by dihydropyridine receptors (DHPRs) in the T tubule, which signal the Ca2+ release channels or ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) to open. We demonstrate here an inhibitory effect of the T tubule on the production of sparks of Ca2+ release. Murine primary cultures were confocally imaged for Ca2+ detection and T tubule visualization. After 72 h of differentiation, T tubules extended from the periphery for less than one-third of the myotube radius. Spontaneous Ca2+ sparks were found away from the region of cells where tubules were found. Immunostaining showed RyR1 and RyR3 isoforms in all areas, implying inhibition of both isoforms by a T tubule component. To test for a role of DHPRs in this inhibition, we imaged myotubes from dysgenic mice (mdg) that lack DHPRs. These exhibited T tubule development similar to that of normal myotubes, but produced few sparks, even in regions where tubules were absent. To increase spark frequency, a high-Ca2+ saline with 1 mM caffeine was used. Wild-type cells in this saline plus 50 µM nifedipine retained the topographic suppression pattern of sparks, but dysgenic cells in high-Ca2+ saline did not. Shifted excitation and emission ratios of indo-1 in the cytosol or mag-indo-1 in the SR were used to image [Ca2+] in these compartments. Under the conditions of interest, wild-type and mdg cells had similar levels of free [Ca2+] in cytosol and SR. These data suggest that DHPRs play a critical role in reducing the rate of spontaneous opening of Ca2+ release channels and/or their susceptibility to Ca2+-induced activation, thereby suppressing the production of Ca2+ sparks. excitation-contraction coupling; sarcoplasmic reticulum; ryanodine receptors; Ca2+ imaging  相似文献   

17.
The effects of mono- and divalent ions onCa2+-gated cardiac muscleCa2+-release channel (ryanodinereceptor) activity were examined in [3H]ryanodine-bindingmeasurements. Ca2+ bound with thehighest apparent affinity to Ca2+activation sites in choline chloride medium, followed by KCl, CsCl,NaCl, and LiCl media. The apparentCa2+ binding affinities ofCa2+ inactivation sites were lowerin choline chloride and CsCl media than in LiCl, NaCl, and KCl media.Sr2+ activated the ryanodinereceptor with a lower efficacy thanCa2+. Competition studiesindicated that Li+,K+,Mg2+, andBa2+ compete withCa2+ forCa2+ activation sites. In 0.125 MKCl medium, the Ca2+ dependence of[3H]ryanodine bindingwas modified by 5 mM Mg2+ and 5 mM,-methyleneadenosine 5'-triphosphate (a nonhydrolyzable ATPanalog). The addition of 5 mM glutathione was without appreciable effect. Substitution of Clby 2-(N-morpholino)ethanesulfonic acid ion caused anincrease in the apparent Ca2+affinity of the Ca2+ inactivationsites, whereas an increase in KCl concentration had the oppositeeffect. These results suggest that cardiac muscle ryanodine receptoractivity may be regulated by 1)competitive binding of mono- and divalent cations toCa2+ activation sites,2) binding of monovalent cations toCa2+ inactivation sites, and3) binding of anions to anionregulatory sites.

  相似文献   

18.
Chloride intracellular channel 2 (CLIC2), a newly discovered small protein distantly related to the glutathione transferase (GST) structural family, is highly expressed in cardiac and skeletal muscle, although its physiological function in these tissues has not been established. In the present study, [3H]ryanodine binding, Ca2+ efflux from skeletal sarcoplasmic reticulum (SR) vesicles, single channel recording, and cryo-electron microscopy were employed to investigate whether CLIC2 can interact with skeletal ryanodine receptor (RyR1) and modulate its channel activity. We found that: (1) CLIC2 facilitated [3H]ryanodine binding to skeletal SR and purified RyR1, by increasing the binding affinity of ryanodine for its receptor without significantly changing the apparent maximal binding capacity; (2) CLIC2 reduced the maximal Ca2+ efflux rate from skeletal SR vesicles; (3) CLIC2 decreased the open probability of RyR1 channel, through increasing the mean closed time of the channel; (4) CLIC2 bound to a region between domains 5 and 6 in the clamp-shaped region of RyR1; (5) and in the same clamp region, domains 9 and 10 became separated after CLIC2 binding, indicating CLIC2 induced a conformational change of RyR1. These data suggest that CLIC2 can interact with RyR1 and modulate its channel activity. We propose that CLIC2 functions as an intrinsic stabilizer of the closed state of RyR channels.  相似文献   

19.
Ca(2+)-induced Ca2+ release (CICR) mechanism of cardiac excitation-contraction (e-c) coupling is dependent on the close apposition between the sarcolemmal dihydropyridine receptors (DHPR) and the sarcoplasmic reticulum (SR) ryanodine receptors (RyR). In particular, high RyR/DHPR ratio is considered to reflect strong dependence on SR Ca2+ stores for the intracellular Ca2+ transient. To indirectly evaluate the significance of CICR in fish hearts, densities of cardiac DHPRs and RyRs were compared in ventricular homogenates of three fish species (burbot, rainbow trout, and crucian carp) and adult rat by [3H] PN200-110 and [3H] ryanodine binding. The density of RyRs was significantly (P<0.05) higher in the adult rat (124+/-10 channels/microm3 myocyte volume) than in any of the fish species. Among the fish species, cold-acclimated (4 degrees C) trout had more RyRs than burbot, and crucian carp. The density of DHPRs was highest in the trout heart. RyR/DHPR ratio was significantly (P<0.05) higher in rat (4.1+/-0.5) than in the fish hearts (varying from 0.97+/-0.16 to 1.91+/-0.49) suggesting that "mammalian type" CICR is less important during e-c coupling in fish ventricular myocytes. In rainbow trout, acclimation to cold did not affect the RyR/DHPR ratio, while in crucian carp it was depressed in cold-acclimated animals (4 degrees C; 0.97+/-0.16) when compared to warm-acclimated fish (23 degrees C; 1.91+/-0.49). Although RyR/DHPR ratios were relatively low in fish hearts, there was a close correlation (r2=0.78) between the RyR/DHPR ratio and the magnitude of the Ry-sensitive component of contraction in ventricular muscle among the fish species examined in this study.  相似文献   

20.
We have shown that physiological levels of Ca2+-calmodulin (Ca2+CaM; 50-100 nM) activate cardiac ryanodine receptors (RyR2) incorporated into bilayers and increase the frequency of Ca2+ sparks and waves in cardiac cells. In contrast, it is well known that Ca2+CaM inhibits [3H]ryanodine binding to cardiac sarcoplasmic reticulum. Since the [3H]ryanodine binding technique does not reflect the effects of Ca2+CaM on RyR2 open probability (Po), we have investigated, using the reversible ryanoid, ryanodol, whether Ca2+CaM can directly influence the binding of ryanoids to single RyR2 channels independently of Po. We demonstrate that Ca2+CaM reduces the rate of ryanodol association to RyR2 without affecting the rate of dissociation. We also find that ryanodol-bound channels fluctuate between at least two distinct subconductance states, M1 and M2, in a voltage-dependent manner. Ca2+CaM significantly alters the equilibrium between these two states. The results suggest that Ca2+CaM binding to RyR2 causes a conformation change to regions of the channel that include the ryanoid binding site, thereby leading to a decrease in ryanoid association rate and modulation of gating within the ryanoid/RyR2 bound state. Our data provide a possible explanation for why the effects of Ca2+CaM at the single-channel level are not mirrored by [3H]ryanodine binding studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号