首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Previous studies investigating the impact of circadian rhythms on physiological variables during exercise have yielded conflicting results. The purpose of the present investigation was to examine maximal aerobic exercise performance, as well as the physiological and psychophysiological responses to exercise, at four different intervals (0800 hours, 1200 hours, 1600 hours, and 2000 hours) within the segment of the 24-h day in which strenuous physical activity is typically performed. Ten physically fit, but untrained, male university students served as subjects. The results revealed that exercise performance was unaffected by chronobiological effects. Similarly, oxygen uptake, minute ventilation and heart rate showed no time of day influences under pre-, submaximal, and maximal exercise conditions. Ratings of perceived exertion were unaffected by time of day effects during submaximal and maximal exercise. In contrast, rectal temperature exhibited a significant chronobiological rhythm under all three conditions. Under pre- and submaximal exercise conditions, significant time of day effects were noted for respiratory exchange ratio, while a significant rhythmicity of blood pressure was evident during maximal exercise. However, none of these physiological variables exhibited significant differential responses (percent change from pre-exercise values) to the exercise stimulus at any of the four time points selected for study. Conversely, resting plasma lactate levels and lactate responses to maximal exercise were found to be significantly sensitive to chronobiological influences. Absolute post-exercise plasma norepinephrine values, and norepinephrine responses to exercise (percent change from pre-exercise values), also fluctuated significantly among the time points studied. In summary, these data suggest that aerobic exercise performance does not vary during the time frame within which exercise is normally conducted, despite the fact that some important physiological responses to exercise do fluctuate within that time period. Accepted: 18 August 1997  相似文献   

2.
The purpose of this study was to determine the potential effects on progressive aerobic work while breathing through a new military type chemical and biological (CB) respirator loaded with three different types of purifying canisters. Twelve healthy well-motivated male subjects (mean age 23 +/- 3 years) participated in the study. Results indicated that mean maximal oxygen uptake (VO2max), time to exhaustion, respiratory exchange ratio, rate of perceived exertion, respiratory rate and tidal volume at exhaustion, maximal lactate and the 2-min post-exercise lactate were not significantly influenced when breathing with the respirator and the canisters in comparison to a laboratory valve. Mean pulmonary ventilation, however, was reduced by 21% while oxygen and carbon dioxide ventilatory equivalents were significantly lower by 9% and 8% respectively. Review of the stage-by-stage responses to the treadmill test between the laboratory valve and respirator/canister conditions indicated no significant differences (NS) in oxygen uptake but slightly lower heart rates (NS). Ventilation was not influenced by the canisters until 80% of VO2max at which time the mean oxygen ventilatory equivalent became significantly lower. Blood lactate was significantly depressed between 60% and 90% VO2max under the respirator/canister conditions. It was concluded that, although physiological adaptation occurred, breathing with the new CB respirator and each of the three purifying canisters had no detrimental effect on progressive aerobic work to exhaustion. However, prolonged work at intensities greater than 80-85% of VO2max would in all probability be impaired when breathing with the CB mask and the canisters.  相似文献   

3.
Intermittent hypoxic exposure (IHE) has been shown to induce aspects of altitude acclimatization which affect ventilatory, cardiovascular and metabolic responses during exercise in normoxia and hypoxia. However, knowledge on altitude-dependent effects and possible interactions remains scarce. Therefore, we determined the effects of IHE on cardiorespiratory and metabolic responses at different simulated altitudes in the same healthy subjects. Eight healthy male volunteers participated in the study and were tested before and 1 to 2 days after IHE (7×1 hour at 4500 m). The participants cycled at 2 submaximal workloads (corresponding to 40% and 60% of peak oxygen uptake at low altitude) at simulated altitudes of 2000 m, 3000 m, and 4000 m in a randomized order. Gas analysis was performed and arterial oxygen saturation, blood lactate concentrations, and blood gases were determined during exercise. Additionally baroreflex sensitivity, hypoxic and hypercapnic ventilatory response were determined before and after IHE. Hypoxic ventilatory response was increased after IHE (p<0.05). There were no altitude-dependent changes by IHE in any of the determined parameters. However, blood lactate concentrations and carbon dioxide output were reduced; minute ventilation and arterial oxygen saturation were unchanged, and ventilatory equivalent for carbon dioxide was increased after IHE irrespective of altitude. Changes in hypoxic ventilatory response were associated with changes in blood lactate (r = −0.72, p<0.05). Changes in blood lactate correlated with changes in carbon dioxide output (r = 0.61, p<0.01) and minute ventilation (r = 0.54, p<0.01). Based on the present results it seems that the reductions in blood lactate and carbon dioxide output have counteracted the increased hypoxic ventilatory response. As a result minute ventilation and arterial oxygen saturation did not increase during submaximal exercise at simulated altitudes between 2000 m and 4000 m.  相似文献   

4.
The purpose of this study was to test the hypothesis that oxygen pulse typically reaches a maximum before maximal oxygen consumption by observing the time course of oxygen pulse throughout exercise to maximal stress and to discern those physiologic variables which might predispose an individual to reach a peak in oxygen pulse before achieving maximal oxygen consumption. Thirty male volunteers ranging in age from 18-25 (X = 20.5) years were recruited for this study. Maximal oxygen uptake was assessed on both bicycle ergometer and treadmill. Based upon the results of the exercise tests, subjects were classified into subgroups as a consequence of whether or not a maximal oxygen pulse or a plateau in oxygen pulse was demonstrated during submaximal exercise. The results indicate that submaximal peaking or at least the achieving of plateau values of oxygen pulse does in fact occur in some but not all indivuals. It was observed that this phenomenon occurs at a relatively high percentage of maximal heart rate and maximal oxygen consumption. It appeared that individuals who demonstrate low heart rates at low-work intensities, high maximal heart rates, and a disproportionate increase in R for a given ventilation are most likely to reach a submaximal peak in oxygen pulse. Oxygen pulse during submaximal exercise appears to provide a good indication of cardiorespiratory fitness.  相似文献   

5.
In order to determine the effect of short-term training on central adaptations, gas exchange and cardiac function were measured during a prolonged submaximal exercise challenge prior to and following 10-12 consecutive days of exercise. In addition, vascular volumes and selected haematological properties were also examined. The subjects, healthy males between the ages of 19 and 30 years of age, cycled for 2 h per day at approximately 59% of pre-training peak oxygen consumption (VO2) i.e., maximal oxygen consumption (VO2max). Following the training, VO2max (l.min-1) increased (P less than 0.05) by 4.3% (3.94, 0.11 vs 4.11, 0.11; mean, SE) whereas maximal exercise ventilation (VE,max) and maximal heart rate (fc,max) were unchanged. During submaximal exercise, VO2 was unaltered by the training whereas carbon dioxide production (VE) and respiratory exchange ratio were all reduced (P less than 0.05). The altered activity pattern failed to elicit adaptations in either submaximal exercise cardiac output or arteriovenous O2 difference. fc was reduced (P less than 0.05). Plasma volume (PV) as measured by 125I human serum albumin increased by 365 ml or 11.8%, while red cell volume (RCV) as measured by 51chromium-labelled red blood cells (RBC) was unaltered. The increase in PV was accompanied by reductions (P less than 0.05) in haematocrit, haemoglobin concentration (g.100 ml-1), and RBCs (10(6) mm-3). Collectively these changes suggest only minimal adaptations in maximal oxygen transport during the early period of prolonged exercise training. However, as evidenced by the changes during submaximal exercise, both the ventilatory and the cardiodynamic response were altered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This study examined the effects of aerobic conditioning during the second and third trimesters of human pregnancy on ventilatory responses to graded cycling. Previously sedentary pregnant women were assigned randomly to an exercise group (n = 14) or a nonexercising control group (n = 14). Data were collected at 15-17 weeks, 25-27 weeks and 34-36 weeks of pregnancy. Testing involved 20 W.min-1 increases in work rate to a heart rate of 170 beats.min-1 and (or) volitional fatigue. Breath-by-breath ventilatory and alveolar gas exchange measurements were compared at rest, a standard submaximal .VO2 and peak exercise. Within both groups, resting .V(E), .V(A), and V(T)/T(I) increased significantly with advancing gestation. Peak work rate, O2 pulse (.VO2/HR), .V(E), .V(A) respiratory rate, V(T)/T(I), .VO2, .VCO2, and the ventilatory threshold (T(vent)) were increased after physical conditioning. Chronic maternal exercise has no significant effect on pregnancy-induced changes in ventilation and (or) alveolar gas exchange at rest or during standard submaximal exercise. Training-induced increases in T(vent) and peak oxygen pulse support the efficacy of prenatal fitness programs to improve maternal work capacity.  相似文献   

7.
The purpose of the study was to examine the influence of oxygen-breathing on maximal oxygen uptake (VO2max) and submaximal endurance performance. Six young women and five men rode a cycle-ergometer while breathing compressed air (normoxia, NOX) or a 55% O2 in N2 mixture (hyperoxia, HOX). The VO2max increased significantly by 12% (P less than 0.01) with HOX in the women but not in the men (+4%; nonsignificant). Maximal heart rate was also increased with HOX in the women but not in the men. Endurance time during work to exhaustion at 80% of normoxic VO2max was 41% longer in HOX than in NOX (P less than 0.025) with no significant difference between the men and the women. The variation among individuals was large. The oxygen uptake and respiratory quotient were not different in the two endurance tests, but pulmonary ventilation (VE) and blood lactate concentration were lower in HOX than in NOX, especially during the latter part of the task. Plasma base deficit (BDpl) increased initially by 3.5 mmol.l-1 during HOX and then stabilized. In NOX, a continuous increase was seen and the change was more than twice as large. Relative to BDpl, VE was higher in HOX than in NOX indicating a more efficient ventilatory compensation of the metabolic acidosis. The reduced ventilatory demand and lower metabolic acidosis in HOX in combination with lower relative exercise intensity may have contributed to the longer time to exhaustion. However, the pattern of individual variation suggested that other mechanisms were also involved.  相似文献   

8.
To examine the effect of acute plasma volume expansion (PVE) on substrate selection during exercise, seven untrained men cycled for 40 min at 72 +/- 2% peak oxygen uptake (VO(2 peak)) on two occasions. On one occasion, subjects had their plasma volume expanded by 12 +/- 2% via an intravenous infusion of the plasma substitute Haemaccel, whereas on the other occasion no such infusion took place. Muscle samples were obtained before and immediately after exercise. In addition, heart rate and pulmonary gas and venous blood samples were obtained throughout exercise. No differences in oxygen uptake or heart rate during exercise were observed between trials, whereas respiratory exchange ratio, blood glucose, and lactate were unaffected by PVE. Muscle glycogen and lactate concentrations were not different either before or after exercise. In addition, there was no difference in total carbohydrate oxidation between trials (control: 108 +/- 2 g; PVE group: 105 +/- 2 g). Plasma catecholamine levels were not affected by PVE. These data indicate that substrate metabolism during submaximal exercise in untrained men is unaltered by acute hypervolemia.  相似文献   

9.
Seven male subjects performed progressive exercises with a light work load on an upper limb or bicycle ergometer in the sitting position. At any comparable work load above zero, arm exercise induced higher oxygen uptake, ventilation, heart rate, oxygen pulse, respiratory rate and tidal volume than leg exercise. At similar levels of VO2 above 0.45 1 X min-1, heart rate and ventilation were higher during arm exercise. A close linear relationship between carbon dioxide output and oxygen uptake was observed during both arm and leg exercises, the slope for arm work being steeper. The ventilatory equivalent for VCO2 (VE/VCO2) gradually decreased during both types of exercise. The ventilatory equivalent for VO2(VE/VO2) remained constant (arm) while it rose (leg) to a peak at 9.8 W and then gradually decreased. Ventilation in relation to tidal volume had a linear relationship with leg exercise, but became curvilinear with arm exercise after tidal volume exceeded 1100 ml. The observed differences in response between arm and leg exercises at a given work load appear to be influenced by differences in sympathetic outflow due to the greater level of static contraction of the relatively small muscle groups required by arm exercise.  相似文献   

10.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

11.
Immature foxhounds underwent 55% lung resection by right pneumonectomy (n = 5) or thoracotomy without pneumonectomy (Sham, n = 6) at 2 mo of age. Cardiopulmonary function was measured during treadmill exercise on reaching maturity 1 yr later. In pneumonectomized animals compared with Sham animals, maximal oxygen uptake, ventilatory response, and cardiac output during exercise were normal. Arterial and mixed venous blood gases and arteriovenous oxygen extraction during exercise were also normal. Mean pulmonary arterial pressure and resistance were elevated at a given cardiac output. Dynamic ventilatory power requirement was also significantly elevated at a given minute ventilation. These long-term hemodynamic and mechanical abnormalities are in direct contrast to the normal pulmonary gas exchange during exercise in these same pneumonectomized animals reported elsewhere (S. Takeda, C. C. W. Hsia, E. Wagner, M. Ramanathan, A. S. Estrera, and E. R. Weibel. J. Appl. Physiol. 86: 1301-1310, 1999). Functional compensation was superior in animals pneumonectomized as puppies than as adults. These data indicate a limited structural response of conducting airways and extra-alveolar pulmonary blood vessels to pneumonectomy and suggest the development of other sources of adaptation such as those involving the heart and respiratory muscles.  相似文献   

12.
This study describes responses of 21 wheelchair users to a continuous, increasing work rate test to exhaustion on a wheelchair ergometer. Heart rate, ventilation, O2 uptake, respiratory exchange ratio, ventilation equivalent for O2, and O2 pulse were determined for each minute. Subjects were divided into tetraplegic (n = 8), high-lesion paraplegic (n = 6), and low-lesion paraplegic (n = 7) groups. Linear regression analyses, with O2 uptake as the independent variable, were used to determine the strength of relationships within each group and differences between groups in slopes and intercepts of regression equations. All variables were significantly (P less than 0.05) related to O2 uptake (r = 0.42-0.94). The only significant difference between the high- and low-lesion paraplegic groups was for heart rate intercept, as the heart rate for the low-lesion group tended to be lower at any given O2 uptake. Tetraplegics had a higher intercept and/or slope for ventilation equivalent, ventilation, and respiratory exchange ratio and lower intercepts for heart rate and O2 pulse. These differences in responses to a progressive exercise task are logically related to the differences in maximal O2 uptake, functional muscle mass, and vasomotor and cardiac control of the groups.  相似文献   

13.
Mechanical efficiency, heart rate, blood lactate, and some other variables were studied in six children with cerebral palsy who walked on a treadmill before and after corrective surgery. During each test, conducted at each child's naturally selected speed, two situations were studied: steady state level walking for 9 min, and then walking at an increasing inclination up to 20% for another 10 min. During the test the subjects were allowed to hold on to a handrail to eliminate the risk of falling off the treadmill. The corrective surgery resulted in a 5% reduction in oxygen consumption per kg body mass during level walking. The subjects' levels of physical fitness, as estimated from oxygen pulse, however, were unchanged. These results are indicative of a biomechanical improvement due to the corrective surgery. While walking at a 20% inclination the subjects off loaded themselves to different degrees on the handrail which influenced the results. Their feeling of exhaustion at this load was probably due to local factors, since heart rate was well below maximal values, and blood lactate, respiratory exchange ratio and ventilatory equivalent also indicated that they were below their anaerobic thresholds (50-60% of maximal oxygen uptake).  相似文献   

14.
The intention of this study was to determine the metabolic consequences of reduced frequency breathing (RFB) at total lung capacity (TLC) in competitive cyclists during submaximal exercise at moderate altitude (1520 m; barometric pressure, PB = 84.6 kPa; 635 mm Hg). Nine trained males performed an RFB exercise test (10 breaths.min-1) and a normal breathing exercise test at 75-85% of the ventilatory threshold intensity for 6 min on separate days. RFB exercise induced significant (P less than 0.05) decreases in ventilation (VE), carbon dioxide production (VCO2), respiratory exchange ratio (RER), ventilatory equivalent for O2 consumption (VE/VO2), arterial O2 saturation and increases in heart rate and venous lactate concentration, while maintaining a similar O2 consumption (VO2). During recovery from RFB exercise (spontaneous breathing) a significant (P less than 0.05) decreases in blood pH was detected along with increases in VE, VO2, VCO2, RER, and venous partial pressure of carbon dioxide. The results indicate that voluntary hypoventilation at TLC, during submaximal cycling exercise at moderate altitude, elicits systemic hypercapnia, arterial hypoxemia, tissue hypoxia and acidosis. These data suggest that RFB exercise at moderate altitude causes an increase in energy production from glycolytic pathways above that which occurs with normal breathing.  相似文献   

15.
The prevalence of activity-related breathlessness increases with age, particularly in women, but the specific underlying mechanisms have not been studied. This novel cross-sectional study was undertaken to examine the effects of age and sex, and their interaction, on the perceptual and ventilatory responses to incremental treadmill exercise in 73 healthy participants (age range 40-80 yr old) with normal pulmonary function. Age-related changes at a standardized oxygen uptake (Vo(2)) during exercise included significant increases in breathlessness ratings (Borg scale), ventilation (Ve), ventilatory equivalent for carbon dioxide, and the ratio of tidal volume (Vt) to dynamic inspiratory capacity (IC) (all P < 0.05). These changes were quantitatively similar in women (n = 39) and in men (n = 34). For the group as a whole, exertional breathlessness ratings increased as resting static inspiratory muscle strength diminished (P = 0.05), as exercise ventilation increased relative to capacity (P = 0.013) and as the Vt/IC ratio increased (P = 0.003) during exercise. Older women (60-80 yr old, n = 23) reported greater (P < 0.05) intensity of exertional breathlessness at a standardized Vo(2) and Ve than age-matched men (n = 16), despite similar age-related changes in ventilatory demand and dynamic ventilatory mechanics. These increases in breathlessness ratings in older women disappeared when sex differences in baseline maximal ventilatory capacity were accounted for. In conclusion, although increased exertional breathlessness with advancing age is multifactorial, contributory factors included higher ventilatory requirements during exercise, progressive inspiratory muscle weakness, and restrictive mechanical constraints on Vt expansion related to reduced IC. The sensory consequences of this age-related respiratory impairment were more pronounced in women, who, by nature, have relatively reduced maximal ventilatory reserve.  相似文献   

16.
Some recent studies of competitive athletes have shown exercise-induced hypoxemia to begin in submaximal exercise. We examined the role of ventilatory factors in the submaximal exercise gas exchange disturbance (GED) of healthy men involved in regular work-related exercise but not in competitive activities. From the 38 national mountain rescue workers evaluated (36 +/- 1 yr), 14 were classified as GED and were compared with 14 subjects matched for age, height, weight, and maximal oxygen uptake (VO2 max; 3.61 +/- 0.12 l/min) and showing a normal response (N). Mean arterial PO2 was already lower than N (P = 0.05) at 40% VO2 max and continued to fall until VO2 max (GED: 80.2 +/- 1.6 vs. N: 91.7 +/- 1.3 Torr). A parallel upward shift in the alveolar-arterial oxygen difference vs. %VO2 max relationship was observed in GED compared with N from the onset throughout the incremental protocol. At submaximal intensities, ideal alveolar PO2, tidal volume, respiratory frequency, and dead space-to-tidal volume ratio were identical between groups. As per the higher arterial PCO2 of GED at VO2 max, subjects with an exaggerated submaximal alveolar-arterial oxygen difference also showed a relative maximal hypoventilation. Results thus suggest the existence of a common denominator that contributes to the GED of submaximal exercise and affects the maximal ventilatory response.  相似文献   

17.
Ozone (O3) toxicity is potentiated by exercise-induced expired minute ventilation (VE) for a given exposure, which may also impair endurance performance. Ten healthy, well-trained long-distance runners were exposed on six occasions for 1 h to O3 concentrations of 0, 0.20, or 0.35 parts per million (ppm), during exercise simulating either training or competition, with mean VE = 77.5 1 X min -1. Standard pulmonary function tests, subjective symptoms, and periodic observations of exercise ventilatory response and respiratory metabolism were obtained. Statistical analyses revealed no significant exercise mode effect for pulmonary function, but a significant O3 effect for forced vital capacity and expiratory volume at 1 s was observed. Altered exercise ventilatory pattern response was noted, but there was no significant O3 effect on exercise oxygen uptake, heart rate, VE, or alveolar ventilation. Subjective symptoms increased with O3 concentration. Statistically significant pulmonary function impairment observed at 0.20 ppm O3 suggests that endurance athletes may be more susceptible to the effects of a given O3 concentration than normal young adult males as a result of sustained high mean VE incurred during training and competition. Three subjects were unable to complete both the training and competitive simulations at 0.35 ppm O3. Performance decrements appeared to be the result of physiologically induced respiratory discomfort rather than decrements in pulmonary gas exchange and/or oxygen transport and delivery.  相似文献   

18.
Previous studies have reported respiratory, cardiac and muscle changes at rest in triathletes 24 h after completion of the event. To examine the effects of these changes on metabolic and cardioventilatory variables during exercise, eight male triathletes of mean age 21.1 (SD 2.5) years (range 17-26 years) performed an incremental cycle exercise test (IET) before (pre) and the day after (post) an official classic triathlon (1.5-km swimming, 40-km cycling and 10-km running). The IET was performed using an electromagnetic cycle ergometer. Ventilatory data were collected every minute using a breath-by-breath automated system and included minute ventilation (V(E)), oxygen uptake (VO2), carbon dioxide production (VCO2), respiratory exchange ratio, ventilatory equivalent for oxygen (V(E)/VO2) and for carbon dioxide (V(E)/VCO2), breathing frequency and tidal volume. Heart rate (HR) was monitored using an electrocardiogram. The oxygen pulse was calculated as VO2/HR. Arterialized blood was collected every 2 min throughout IET and the recovery period, and lactate concentration was measured using an enzymatic method. Maximal oxygen uptake (VO2max) was determined using conventional criteria. Ventilatory threshold (VT) was determined using the V-slope method formulated earlier. Cardioventilatory variables were studied during the test, at the point when the subject felt exhausted and during recovery. Results indicated no significant differences (P > 0.05) in VO2max [62.6 (SD 5.9) vs 64.6 (SD 4.8) ml x kg(-1) x min(-1)], VT [2368 (SD 258) vs 2477 (SD 352) ml x min(-1)] and time courses of VO2 between the pre- versus post-triathlon sessions. In contrast, the time courses of HR and blood lactate concentration reached significantly higher values (P < 0.05) in the pre-triathlon session. We concluded that these triathletes when tested 24 h after a classic triathlon displayed their pre-event aerobic exercise capacity, bud did not recover pretriathlon time courses in HR or blood lactate concentration.  相似文献   

19.
The purpose of this study was 1) to test the hypothesis that ventilation and arterial oxygen saturation (Sa(O2)) during acute hypoxia may increase during intermittent hypoxia and remain elevated for a week without hypoxic exposure and 2) to clarify whether the changes in ventilation and Sa(O2) during hypoxic exercise are correlated with the change in hypoxic chemosensitivity. Six subjects were exposed to a simulated altitude of 4,500 m altitude for 7 days (1 h/day). Oxygen uptake (VO2), expired minute ventilation (VE), and Sa(O2) were measured during maximal and submaximal exercise at 432 Torr before (Pre), after intermittent hypoxia (Post), and again after a week at sea level (De). Hypoxic ventilatory response (HVR) was also determined. At both Post and De, significant increases from Pre were found in HVR at rest and in ventilatory equivalent for O2 (VE/VO2) and Sa(O2) during submaximal exercise. There were significant correlations among the changes in HVR at rest and in VE/VO2 and Sa(O2) during hypoxic exercise during intermittent hypoxia. We conclude that 1 wk of daily exposure to 1 h of hypoxia significantly improved oxygenation in exercise during subsequent acute hypoxic exposures up to 1 wk after the conditioning, presumably caused by the enhanced hypoxic ventilatory chemosensitivity.  相似文献   

20.
Seven men and four women (age 63 +/- 2 yr, mean +/- SD, range 61-67 yr) participated in a 12-mo endurance training program to determine the effects of low-intensity (LI) and high-intensity (HI) training on the blood lactate response to submaximal exercise in older individuals. Maximal oxygen uptake (VO2max), blood lactate, O2 uptake (VO2), heart rate (HR), ventilation (VE), and respiratory exchange ratio (R) during three submaximal exercise bouts (65-90% VO2max) were determined before training, after 6 mo of LI training, and after an additional 6 mo of HI training. VO2max (ml X kg-1 X min-1) was increased 12% after LI training (P less than 0.05), while HI training induced a further increase of 18% (P less than 0.01). Lactate, HR, VE, and R were significantly lower (P less than 0.05) at the same absolute work rates after LI training, while HI training induced further but smaller reductions in these parameters (P greater than 0.05). In general, at the same relative work rates (ie., % of VO2max) after training, lactate was lower or unchanged, HR and R were unchanged, and VO2 and VE were higher. These findings indicate that LI training in older individuals results in adaptations in the response to submaximal exercise that are similar to those observed in younger populations and that additional higher intensity training results in further but less-marked changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号