首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In order to get insight into the origin of apparent negative cooperativity observed for F1-ATPase, we compared ATPase activity and ATPMg binding of mutant subcomplexes of thermophilic F1-ATPase, α(W463F)3β(Y341W)3γ and α(K175A/T176A/W463F)3β(Y341W)3γ. For α(W463F)3β(Y341W)3γ, apparent Km's of ATPase kinetics (4.0 and 233 μM) did not agree with apparent Km's deduced from fluorescence quenching of the introduced tryptophan residue (on the order of nM, 0.016 and 13 μM). On the other hand, in case of α(K175A/T176A/W463F)3β(Y341W)3γ, which lacks noncatalytic nucleotide binding sites, the apparent Km of ATPase activity (10 μM) roughly agreed with the highest Km of fluorescence measurements (27 μM). The results indicate that in case of α(W463F)3β(Y341W)3γ, the activating effect of ATP binding to noncatalytic sites dominates overall ATPase kinetics and the highest apparent Km of ATPase activity does not represent the ATP binding to a catalytic site. In case of α(K175A/T176A/W463F)3β(Y341W)3γ, the Km of ATPase activity reflects the ATP binding to a catalytic site due to the lack of noncatalytic sites. The Eadie-Hofstee plot of ATPase reaction by α(K175A/T176A/W463F)3β(Y341W)3γ was rather linear compared with that of α(W463F)3β(Y341W)3γ, if not perfectly straight, indicating that the apparent negative cooperativity observed for wild-type F1-ATPase is due to the ATP binding to catalytic sites and noncatalytic sites. Thus, the frequently observed Km's of 100-300 μM and 1-30 μM range for wild-type F1-ATPase correspond to ATP binding to a noncatalytic site and catalytic site, respectively.  相似文献   

2.
F1-ATPase is inactivated by entrapment of MgADP in catalytic sites and reactivated by MgATP or P(i). Here, using a mutant alpha(3)beta(3)gamma complex of thermophilic F(1)-ATPase (alpha W463F/beta Y341W) and monitoring nucleotide binding by fluorescence quenching of an introduced tryptophan, we found that P(i) interfered with the binding of MgATP to F(1)-ATPase, but binding of MgADP was interfered with to a lesser extent. Hydrolysis of MgATP by F(1)-ATPase during the experiments did not obscure the interpretation because another mutant, which was able to bind nucleotide but not hydrolyse ATP (alpha W463F/beta E190Q/beta Y341W), also gave the same results. The half-maximal concentrations of P(i) that suppressed the MgADP-inhibited form and interfered with MgATP binding were both approximately 20 mm. It is likely that the presence of P(i) at a catalytic site shifts the equilibrium from the MgADP-inhibited form to the enzyme-MgADP-P(i) complex, an active intermediate in the catalytic cycle.  相似文献   

3.
In the crystal structure of bovine mitochondrial F(1)-ATPase (MF(1)) (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), the side chain oxygen of betaThr(163) interacts directly with Mg(2+) coordinated to 5'-adenylyl beta, gamma-imidodiphosphate or ADP bound to catalytic sites of beta subunits present in closed conformations. In the unliganded beta subunit present in an open conformation, the hydroxyl of betaThr(163) is hydrogen-bonded to the carboxylate of betaGlu(199). Substitution of betaGlu(201) (equivalent to betaGlu(199) in MF(1)) in the alpha(3)beta(3)gamma subcomplex of the F(1)-ATPase from the thermophilic Bacillus PS3 with cysteine or valine increases the propensity to entrap inhibitory MgADP in a catalytic site during hydrolysis of 50 microM ATP. These substitutions lower K(m3) (the Michaelis constant for trisite ATP hydrolysis) relative to that of the wild type by 25- and 10-fold, respectively. Fluorescence quenching of alpha(3)(betaE201C/Y341W)(3)gamma and alpha(3)(betaY341W)(3)gamma mutant subcomplexes showed that MgATP and MgADP bind to the third catalytic site of the double mutant with 8.4- and 4.4-fold higher affinity, respectively, than to the single mutant. These comparisons support the hypothesis that the hydrogen bond observed between the side chains of betaThr(163) and betaGlu(199) in the unliganded catalytic site in the crystal structure of MF(1) stabilizes the open conformation of the catalytic site during ATP hydrolysis.  相似文献   

4.
In crystal structures of bovine MF(1), the side chains of alpha F(357) and beta R(372) are near the adenines of nucleotides bound to noncatalytic sites. To determine if during catalysis these side chains must pass through the different arrangements in which they are present in crystal structures, the catalytic properties of the (alpha F(357)C)(3)(beta R(372)C)(3)gamma subcomplex of the TF(1)-ATPase were characterized before and after cross-linking the introduced cysteines with CuCl(2). The unmodified mutant enzyme hydrolyzes MgATP at 50% the rate exhibited by wild type. Detailed comparison of the catalytic properties of the double mutant enzyme before and after cross-linking with those of the wild-type subcomplex revealed the following. Before cross-linking, the (alpha F(357)C)(3)(beta R(372)C)(3)gamma subcomplex has less tendency than wild type to release inhibitory MgADP entrapped in a catalytic site during turnover when MgATP binds to noncatalytic sites. Following cross-linking, ATPase activity is reduced 5-fold, and inhibitory MgADP entrapped in a catalytic site during turnover does not release under conditions wherein binding of ATP to noncatalytic sites of the wild-type enzyme promotes release of MgADP from the affected catalytic site. When assayed in the presence of lauryldimethylamine oxide, which prevents turnover-dependent entrapment of inhibitory MgADP in a catalytic site, ATPase activity of the cross-linked form is 47% that of the unmodified mutant enzyme. These results suggest that, during catalysis, the side chains of alpha F(357) and beta R(372) do not pass through the extremely different relative positions in which they exist at the three noncatalytic site interfaces in crystal structures.  相似文献   

5.
We investigated ATP hydrolysis by a mutant (DeltaNC) alpha3beta3gamma subcomplex of F0F1-ATP synthase from the thermophilic Bacillus PS3 that is defective in the noncatalytic nucleotide binding sites. This mutant subcomplex was activated by inorganic phosphate ions (Pi) and did not show continuous ATP hydrolysis activity in the absence of Pi. Pi also activated the wild-type alpha3beta3gamma subcomplex in a similar manner. Sulphate activated wild-type alpha3beta3gamma but not DeltaNC alpha3beta3gamma, indicating that Pi activation did not involve noncatalytic sites but that sulphate activation did. Pi also activated ATP hydrolysis and coupled proton translocation by the wild-type and DeltaNC F0F1-ATP synthases reconstituted into vesicle membranes.  相似文献   

6.
The F1-ATPase from chloroplasts (CF1) lacks catalytic capacity for ATP hydrolysis if ATP is not bound at noncatalytic sites. CF1 heat activated in the presence of ADP, with less than one ADP and no ATP at non-catalytic sites, shows a pronounced lag in the onset of ATP hydrolysis after exposure to 5-20 microM ATP. The onset of activity correlates well with the binding of ATP at the last two of the three noncatalytic sites. The dependence of activity on the presence of ATP at non-catalytic sites is shown at relatively low or high free Mg2+ concentrations, with or without bicarbonate as an activating anion, and when the binding of ATP at noncatalytic sites is slowed 3-4-fold by sulfate. The latent CF1 activated by dithiothreitol also requires ATP at noncatalytic sites for ATPase activity. A similar requirement by other F1-ATPases and by ATP synthases seems plausible.  相似文献   

7.
Using site-directed mutagenesis, Tyr-307, Tyr-341, or Tyr-364, supposedly located at the adenine nucleotide binding site(s) of the beta subunits of F1-ATPase from the thermophilic bacterium PS3, was replaced with Phe or Cys. The alpha 3 beta 3 complexes reconstituted from the alpha subunits and individual mutant beta subunits hydrolyzed ATP. Thus, neither the hydroxyl groups nor the aromatic rings in these positions are required for ATPase activity of F1-ATPase.  相似文献   

8.
The recent finding that the presence of ATP at non-catalytic sites of chloroplast F1-ATPase (CF1) is necessary for ATPase activity (Milgrom, Y. M., Ehler, L. L., and Boyer, P. D. (1990) J. Biol. Chem. 265,18725-18728) prompted more detailed studies of the effect of noncatalytic site nucleotides on catalysis. CF1 containing at noncatalytic sites less than one ADP or about two ATP was prepared by heat activation in the absence of Mg2+ and in the presence of ADP or ATP, respectively. After removal of medium nucleotides, the CF1 preparations were used for measurement of the time course of nucleotide binding from 10 to 100 microM concentrations of 3H-labeled ADP, ATP, or GTP. The presence of Mg2+ strongly promotes the tight binding of ADP and ATP at noncatalytic sites. For example, the ADP-heat-activated enzyme in presence of 1 mM Mg2+ binds ADP with a rate constant of 0.5 x 10(6) M-1 min-1 to give an enzyme with two ADP at noncatalytic sites with a Kd of about 0.1 microM. Upon exposure to Mg2+ and ATP the vacant noncatalytic site binds an ATP rapidly and, as an ADP slowly dissociates, a second ATP binds. The binding correlates with an increase in the ATPase activity. In contrast the tight binding of [3H]GTP to noncatalytic sites gives an enzyme with no ATPase activity. The three noncatalytic sites differ in their binding properties. The noncatalytic site that remains vacant after the ADP-heat-activated CF1 is exposed to Mg2+ and ADP and that can bind ATP rapidly is designated as site A; the site that fills with ATP as ADP dissociates when this enzyme is exposed to Mg2+ and ATP is called site B, and the site to which ADP remains bound is called site C. Procedures are given for attaining CF1 with ADP at sites B and C, with GTP at sites A and/or B, and with ATP at sites A, B, and/or C, and catalytic activities of such preparations are measured. For example, little or no ATPase activity is found unless ATP is at site A, but ADP can remain at site C with no effect on ATPase. Maximal GTPase activity requires ATP at site A but about one-fifth of maximal GTPase is attained when GTP is at sites A and B and ATP at site C. Noncatalytic site occupancy can thus have profound effects on the ATPase and GTPase activities of CF1.  相似文献   

9.
Mitochondrial F1-ATPase was purified from the mycelium of Phycomyces blakesleeanus NRRL 1555(-) and its kinetic characteristics were studied. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme reveals five bands (alpha, beta, gamma, delta, and epsilon) characteristic of the F1 portion with apparent molecular weights of 60,000, 53,000, 31,000, 25,000, and 21,000, respectively. The molecular weight of the native F1-ATPase from Phycomyces blakesleeanus was in agreement with the stoichiometry alpha 3 beta 3 gamma delta epsilon. The MgATP complex is the true substrate for ATPase activity which has a Km value of 0.15 mM. High concentrations of free ATP or free Mg2+ ions inhibit the ATPase activity. ADP appears to act as a negative allosteric effector with regard to MgATP hydrolysis, with the apparent Vmax remaining unchanged.  相似文献   

10.
A sequence of 10 amino acids (I-C-S-D-K-T-G-T-L-T) of ion motive ATPases such as Na+/K+-ATPase is similar to the sequence of the beta subunit of H+-ATPases, including that of Escherichia coli (I-T-S-T-K-T-G-S-I-T) (residues 282-291). The Asp (D) residue phosphorylated in ion motive ATPase corresponds to Thr (T) of the beta subunit. This substitution may be reasonable because there is no phosphoenzyme intermediate in the catalytic cycle of F1-ATPase. We replaced Thr-285 of the beta subunit by an Asp residue by in vitro mutagenesis and reconstituted the alpha beta gamma complex from the mutant (or wild-type) beta and wild-type alpha and gamma subunits. The uni- and multisite ATPase activities of the alpha beta gamma complex with mutant beta subunits were about 20 and 30% of those with the wild-type subunit. The rate of ATP binding (k1) of the mutant complex under uni-site conditions was about 10-fold less than that of the wild-type complex. These results suggest that Thr-285, or the region in its vicinity, is essential for normal catalysis of the H+-ATPase. The mutant complex could not form a phosphoenzyme under the conditions where the H+/K+-ATPase is phosphorylated, suggesting that another residue(s) may also be involved in formation of the intermediate in ion motive ATPase. The wild-type alpha beta gamma complex had slightly different kinetic properties from the wild-type F1, possibly because it did not contain the epsilon subunit.  相似文献   

11.
A mutant F(1)-ATPase alpha(3)beta(3)gamma subcomplex from the thermophilic Bacillus PS3 was constructed, in which 111 amino acid residues (Val(92) to Phe(202)) from the central region of the gamma subunit were replaced by the 148 amino acid residues of the homologous region from spinach chloroplast F(1)-ATPase gamma subunit, including the regulatory stretch, and were designated as alpha(3)beta(3)gamma((TCT)) (Thermophilic-Chloroplast-Thermophilic). By the insertion of this regulatory region into the gamma subunit of thermophilic F(1), we could confer the thiol modulation property to the thermophilic alpha(3)beta(3)gamma subcomplex. The overexpressed alpha(3)beta(3)gamma((TCT)) was easily purified in large scale, and the ATP hydrolyzing activity of the obtained complex was shown to increase up to 3-fold upon treatment with chloroplast thioredoxin-f and dithiothreitol. No loss of thermostability compared with the wild type subcomplex was found, and activation by dithiothreitol was functional at temperatures up to 80 degrees C. alpha(3)beta(3)gamma((TCT)) was inhibited by the epsilon subunit from chloroplast F(1)-ATPase but not by the one from the thermophilic F(1)-ATPase, indicating that the introduced amino acid residues from chloroplast F(1)-gamma subunit are important for functional interaction with the epsilon subunit.  相似文献   

12.
ATPase was purified 51-fold from a chemoautotrophic, obligately acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. The purified ATPase showed the typical subunit pattern of the F1-ATPase on a polyacrylamide gel containing sodium dodecyl sulfate, with 5 subunits of apparent molecular masses of 55, 50, 33, 20, and 18 kDa. The enzyme hydrolyzed ATP, GTP, and ITP, but neither UTP nor ADP. The K(m) value for ATP was 1.8 mM. ATPase activity was optimum at pH 8.5 at 45 degrees C, and was activated by sulfite. Azide strongly inhibited the enzyme activity, whereas the enzyme was relatively resistant to vanadate, nitrate, and N,N'-dicyclohexylcarbodiimide. The genes encoding the subunits for the F1F(O)-ATPase from A. ferrooxidans NASF-1 were cloned as three overlapping fragments by PCR cloning and sequenced. The molecular masses of the alpha, beta, gamma, delta, and epsilon subunits of the F1 portion were deduced from the amino acid sequences to be 55.5, 50.5, 33.1, 19.2, and 15.1 kDa, respectively.  相似文献   

13.
We performed kinetic studies on the reactions of a fluorescent ATP analog, 2'-(5-dimethyl-aminonaphthalene-1-sulfonyl) amino-2'-deoxyATP (DNS-ATP), with E. coli F1-ATPase (EF1) and its subunits, to clarify the role of each subunit in the ATPase reaction. The following results were obtained. 1. One mol of EF1, which contains nonexchangeable 2 mol ATP and 0.5 mol ADP, binds 3 mol of DNS-ATP. The apparent dissociation constant, in the presence of Mg2+, was 0.23 microM. Upon binding, the fluorescence intensity of DNS-ATP at 520 nm increased exponentially with t1/2 of 35 s, and reached 3.5 times the original fluorescence level. Following the fluorescence increase, DNS-ATP was hydrolyzed, and the fluorescence intensity maintained its enhanced level. 2. The addition of an excess of ATP over the EF1-DNS-nucleotide complex, in the presence of Mg2+, decreased the fluorescence intensity rapidly, indicating the acceleration of DNS-nucleotide release from EF1. ADP and GTP also decreased the fluorescence intensity. 3. DCCD markedly inhibited the accelerating effect of ATP on DNS-nucleotide release from EF1 and the EF1-DNS-ATPase or -ATPase activity in a steady state. On the other hand, DCCD only slightly inhibited the fluorescence increase of DNS-ATP, due to its binding to EF1, and the rate of single cleavage of 1 mol of DNS-ATP per mol of alpha subunit of EF1. 4. In the presence of Mg2+, 0.65-0.82 mol of DNS-ATP binds to 1 mol of the isolated alpha subunit of EF1 with an apparent dissociation constant of 0.06-0.07 microM. Upon binding, the fluorescence intensity of DNS-ATP at 520 nm increased 1.55 fold very rapidly (t1/2 less than 1 s). No hydrolysis of DNS-ATP was observed upon the addition of the isolated alpha subunit. The fluorescence intensity of DNS-ATP was unaffected by the addition of the isolated beta subunit. DNS-ATP was also unhydrolyzed by the isolated beta subunit. 5. EF1-ATPase was reconstituted from alpha, beta, and gamma subunits in the presence of Mg2+ and ATP. The kinetic properties of the fluorescence change of DNS-ATP in the reaction with the reconstituted EF1-ATPase were quite similar to those of native EF1. Most of our findings are consistent with a simple mechanism that the high affinity catalytic site and low affinity regulatory site exist in the alpha subunit and beta subunit, respectively. However, the findings mentioned in (4) suggest that the binding of the alpha and beta subunit, which is mediated by the gamma subunit, induces conformational change(s) in the ATP binding site located probably in the alpha subunit, and that the conformational change(s) is essential to exert the full hydrolyzing activity.  相似文献   

14.
Modification of Tyr-345 at a catalytic site in a single beta subunit of the bovine heart mitochondrial F1-ATPase (MF1) by 5'-p-fluorosulfonylbenzoylinosine did not affect subsequent labeling of noncatalytic sites at Tyr-368 and His-427 in three copies of the beta subunit by 5'-p-fluorosulfonylbenzoyladenosine (FSBA). These results clearly show that the beta subunit contains at least parts of the catalytic and noncatalytic nucleotide binding sites. Inactivation of MF1 by 96% with FSBA was accompanied by a decrease in the endogenous ADP content from 1.86 to 0.10 mol per mol of MF1. Decrease in the endogenous ADP content during the inactivation of the enzyme with FSBA paralleled loss in activity in a manner which suggests that the reaction of FSBA with an open noncatalytic site promoted release of ADP from another noncatalytic site until the third site reacted with FSBA. Two pKa values of about 5.9 and 7.6 were observed on the acid side of the pH optimum in the pH-rate profile for ATP hydrolysis catalyzed by MF1 in neutral acid buffers. In contrast, a single pKa of 5.9 was present in the pH-rate profile for ITP hydrolysis catalyzed by the enzyme in the same buffers. The augmented rate observed for ATP hydrolysis at pH 8.0, over that observed at pH 6.5, was lost as the enzyme was inactivated by FSBA in a manner suggesting that modulation is lost as the third noncatalytic site is modified. This suggests that ATP hydrolysis by MF1 is modulated in a pH-dependent manner by ATP binding to an open noncatalytic site. Two other modulations associated with binding of adenine nucleotides to noncatalytic sites, ADP-induced hysteretic inhibition and apparent negative cooperativity reflected by the Hill coefficient for the hydrolysis of 50-3000 microM ATP at pH 8.0, also disappeared as the third noncatalytic site reacted with FSBA.  相似文献   

15.
Previously we reported that ATPase activity was recovered when the subunit alpha + beta + gamma or alpha + beta + delta of the F1-ATPase from the thermophilic bacterium PS3 were combined under appropriate conditions. Unlike that of holoenzyme (TF1) and the alpha + beta + gamma mixture, ATPase activity of the alpha + beta + delta mixture was heat labile and insensitive to azide inhibition (Yoshida, M., Sone, N., Hirata, H., and Kagawa, Y. (1977) J. Biol. Chem. 252, 3480-3485). Here, the properties of purified subunit complexes were compared in detail with those of native TF1. The subunit stoichiometries of the complexes were determined to be alpha 3 beta 3 gamma 1 and alpha 3 beta 3 delta 1. In general, the properties of the alpha 3 beta 3 gamma complex are very similar to those of TF1, whereas those of the alpha 3 beta 3 delta complex are significantly different. ATPase activity of the alpha 3 beta 3 delta complex is cold labile. The alpha 3 beta 3 delta complex showed a less stringent specificity for substrate and divalent cation than TF1 and the alpha 3 beta 3 gamma complex. Two Km values for ATP were exhibited by the alpha 3 beta 3 delta complex with the lower one being in the range of 0.1 microM. Equilibrium dialysis experiments revealed that the alpha 3 beta 3 delta complex cannot specifically bind ADP in the absence of Mg2+, while TF1 and the alpha 3 beta 3 gamma complex bind about 1 and 3 mol of ADP/mol of enzyme, respectively. ADP-dependent inactivation of the alpha 3 beta 3 delta complex by dicyclohexylcarbodiimide was not observed. The alpha 3 beta 3 gamma complex was readily formed when the gamma subunit was added to the alpha 3 beta 3 delta complex, suggesting that the alpha 3 beta 3 delta complex is not a "dead-end" complex. The cause of thermolability of the alpha 3 beta 3 delta complex appears to be the low stability of the complex itself at high temperature and not due to an unusually low thermostability of the delta subunit.  相似文献   

16.
Only beta-beta cross-links form when the alpha(3)(betaE(395)C)(3)gammaK(36)C (MF(1) residue numbers) double mutant subcomplex of TF(1), the F(1)-ATPase from the thermophilic Bacillus PS3, is slowly inactivated with CuCl(2) in the presence or absence of MgATP. The same slow rate of inactivation and extent of beta-beta cross-linking occur upon treatment of the alpha(3)(betaE(395)C)(3)gamma single mutant subcomplex with CuCl(2) under the same conditions. In contrast, the alpha(3)(betaE(395)C)(3)gammaR(33)C and alpha(3)(betaE(395)C)(3)gammaR(75)C double mutant subcomplexes of TF(1) are rapidly inactivated by CuCl(2) under the same conditions that is accompanied by complete beta-gamma cross-linking. The ATPase activity of each mutant enzyme containing the betaE(395)C substitution is stimulated to a much greater extent by the nonionic detergent lauryldimethylamine oxide (LDAO) than wild-type enzyme, whereas the ATPase activities of the gammaR(33)C, gammaK(36)C, and gammaR(75)C single mutants are stimulated to about the same extent as wild-type enzyme by LDAO. This indicates that the E(395)C substitution in the (394)DELSEED(400) segment of beta subunits increases propensity of the enzyme to entrap inhibitory MgADP in a catalytic site during turnover. These results are discussed in perspective with (i) the ionic track predicted from molecular dynamics simulations to operate during energy-driven ATP synthesis by MF(1), the F(1)-ATPase from bovine heart mitochondria [Ma, J., Flynn, T. C., Cui, Q., Leslie, A. G. W., Walker, J. E., and Karplus, M. (2002) Structure 10, 921-931]; and (ii) the possibility that the betaE(395)C substitution might induce a global effect that alters affinity of noncatalytic sites for nucleotides or alters communication between noncatalytic sites and catalytic sites during ATP hydrolysis.  相似文献   

17.
The mechanism of inhibition of yeast mitochondrial F(1)-ATPase by its natural regulatory peptide, IF1, was investigated by correlating the rate of inhibition by IF1 with the nucleotide occupancy of the catalytic sites. Nucleotide occupancy of the catalytic sites was probed by fluorescence quenching of a tryptophan, which was engineered in the catalytic site (beta-Y345W). Fluorescence quenching of a beta-Trp(345) indicates that the binding of MgADP to F(1) can be described as 3 binding sites with dissociation constants of K(d)(1) = 10 +/- 2 nm, K(d2) = 0.22 +/- 0.03 microm, and K(d3) = 16.3 +/- 0.2 microm. In addition, the ATPase activity of the beta-Trp(345) enzyme followed simple Michaelis-Menten kinetics with a corresponding K(m) of 55 microm. Values for the K(d) for MgATP were estimated and indicate that the K(m) (55 microm) for ATP hydrolysis corresponds to filling the third catalytic site on F(1). IF1 binds very slowly to F(1)-ATPase depleted of nucleotides and under unisite conditions. The rate of inhibition by IF1 increased with increasing concentration of MgATP to about 50 mum, but decreased thereafter. The rate of inhibition was half-maximal at 5 microm MgATP, which is 10-fold lower than the K(m) for ATPase. The variations of the rate of IF1 binding are related to changes in the conformation of the IF1 binding site during the catalytic reaction cycle of ATP hydrolysis. A model is proposed that suggests that IF1 binds rapidly, but loosely to F(1) with two or three catalytic sites filled, and is then locked in the enzyme during catalytic hydrolysis of ATP.  相似文献   

18.
The epsilon subunit of F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) has been shown to bind ATP. The precise nature of the regulatory role of ATP binding to the epsilon subunit remains to be determined. To address this question, 11 mutants of the epsilon subunit were prepared, in which one of the basic or acidic residues was substituted with alanine. ATP binding to these mutants was tested by gel-filtration chromatography. Among them, four mutants that showed no ATP binding were selected and reconstituted with the alpha(3)beta(3)gamma complex of TF(1). The ATPase activity of the resulting alpha(3)beta(3)gammaepsilon complexes was measured, and the extent of inhibition by the mutant epsilon subunits was compared in each case. With one exception, weaker binding of ATP correlated with greater inhibition of ATPase activity. These results clearly indicate that ATP binding to the epsilon subunit plays a regulatory role and that ATP binding may stabilize the ATPase-active form of TF(1) by fixing the epsilon subunit into the folded conformation.  相似文献   

19.
Ren H  Bandyopadhyay S  Allison WS 《Biochemistry》2006,45(19):6222-6230
The alpha(3)(betaM(222)S/Y(345)W)(3)gamma double-mutant subcomplex of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)), free of endogenous nucleotides, does not entrap inhibitory MgADP in a catalytic site during turnover. It hydrolyzes 100 nM-2 mM ATP with a K(m) of 31 microM and a k(cat) of 220 s(-)(1). Fluorescence titrations of the introduced tryptophans with MgADP or MgATP revealed that both Mg-nucleotide complexes bind to the catalytic site of the highest affinity with K(d)()1 values of less than 1 nM and bind to the site of intermediate affinity with a common K(d)2 value of about 12 nM. The K(d)3 values obtained for the catalytic site of the lowest affinity from titrations with MgADP and MgATP are 25 and 37 microM, respectively. The double mutant hydrolyzes 200 nM ATP with a first-order rate of 1.5 s(-)(1), which is 0.7% of k(cat). Hence, it does not hydrolyze ATP at a significant rate when the catalytic site of intermediate affinity is saturated and the catalytic site of the lowest affinity is minimally occupied. After the addition of stoichiometric MgATP to the alpha(3)(betaM(222)S/Y(345)W)(3)gamma subcomplex, one-third of the tryptophan fluorescence remains quenched after 10 min. The product [(3)H]ADP remains bound when the wild-type and double-mutant subcomplexes hydrolyze substoichiometric [(3)H]ATP. In contrast, (32)P(i) is not retained when the wild-type subcomplex hydrolyzes substoichiometric [gamma-(32)P]ATP. This precludes assessment of the equilibrium at the high-affinity catalytic site when the wild-type TF(1) subcomplex hydrolyzes substoichiometric ATP.  相似文献   

20.
J Pagan  A E Senior 《FEBS letters》1990,273(1-2):147-149
It is shown that ATP dissociates very slowly (koff less than 6.4 x 10(5) s-1, t1/2 greater than 3 h) from the three noncatalytic sites of E. coli F1-ATPase and that ADP dissociates from these three sites in a homogeneous fashion with koff = 1.5 x 10(-4) s-1 (t1/2 = 1.35 h). Mutagenesis of alpha-subunit residues R171 and Q172 in the 'glycine-rich loop' (Homology A) consensus region of the noncatalytic sites was carried out to test the hypothesis that unusually bulky residues at these positions are responsible wholly or partly for the observed tight binding of adenine nucleotides. The mutations alpha Q172G or alpha R171S,Q172G had no effects on ATP or ADP binding to or rates of dissociation from F1 noncatalytic sites. KdATP and KdADP of isolated alpha-subunit were weakened by approximately 1 order of magnitude in both mutants. The results suggest that neither residue alpha R171 nor alpha Q172 interacts directly with bound nucleotide, and show that the presence of bulky residues per se in the glycine-rich loop region of F1-alpha-subunit is not responsible for tight binding in the noncatalytic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号