首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The release of atrial natriuretic peptide (ANP) in response to the application of neurohumoral agonists (neuromimetics) is directly demonstrated and quantified at the cellular level, using an ultrastructural assay developed to quantify secretion. The assay uses an in situ tannic acid perfusion technique to arrest the exocytosis of atrial secretory granules in the anesthetized rat. The animal is perfused with the neuromimetic, and secretory granules, which retain the capacity to undergo exocytosis throughout the subsequent 30 min tannic acid perfusion, accumulate at the cell surface in a state of fusion with the plasma membrane. Quantification of arrested granules thus provides a measure of the rate of granule release and allows the responses to different agents to be assessed. The actions of three different agents were investigated: isoproterenol, phenylephrine, and acetylcholine. In previously published studies, investigations of the actions of these agents on ANP release has produced unclear and sometimes contradictory results. Using our ultrastructural assay, it was found that during the 30 min perfusion period neither isoprenaline nor phenylephrine caused a significant change in the rate of secretory granule release, whereas acetylcholine significantly decreased the rate of granule release. A new model of secretion is proposed to integrate these findings with previous results and help clarify the complex picture of atrial natriuretic peptide release. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Using an ultrastructural assay developed to quantify the secretion of atrial natriuretic peptide-containing granules, release of the hormone, in response to different degrees of atrial distension, is directly demonstrated at the cellular level. The ultrastructural assay developed uses an in situ tannic acid perfusion technique to arrest the exocytosis of atrial granules in the anesthetized rat. Secretory granules, which retain the capacity to undergo exocytosis throughout a 30-minute tannic acid perfusion, accumulate at the cell surface in a state of fusion with the plasma membrane, with the core contents retained. Quantification of arrested granules thus provides a measure of the rate of granule release and allows the responses to different stimuli to be assessed. By altering the height of the perfusate, perfusion pressure and hence the degree of distension of the right atrium can be increased, and this causes a proportional rise in the release of secretory granules from individual myocytes. An anesthetic regime incorporating fentanyl citrate was found to increase significantly the rate of granule release, and this was further augmented by atrial distension. Quantification of the numbers of cytoplasmic granules under the same conditions did not reveal a reduction in granules. This is thought to be because only a small pool of granules is recruited for exocytosis, and granule production may continue during the perfusion period. Our assay of atrial secretory granule release allows the effect of a variety of stimulatory and inhibitory agents to be assessed directly at the cellular level and provides an independent comparison with previous biochemical data from whole animal and isolated organ studies. © 1993 Wiley-Liss, Inc.  相似文献   

3.
The formation of mature secretory granules is essential for proper storage and regulated release of hormones and neuropeptides. In pancreatic β cells, cholesterol accumulation causes defects in insulin secretion and may participate in the pathogenesis of type 2 diabetes. Using a novel cholesterol analog, we show for the first time that insulin granules are the major sites of intracellular cholesterol accumulation in live β cells. This is distinct from other, non‐secretory cell types, in which cholesterol is concentrated in the recycling endosomes and the trans‐Golgi network. Excess cholesterol was delivered specifically to insulin granules, which caused granule enlargement and retention of syntaxin 6 and VAMP4 in granule membranes, with concurrent depletion of these proteins from the trans‐Golgi network. Clathrin also accumulated in the granules of cholesterol‐overloaded cells, consistent with a possible defect in the last stage of granule maturation, during which clathrin‐coated vesicles bud from the immature granules. Excess cholesterol also reduced the docking and fusion of insulin granules at the plasma membrane. Together, the data support a model in which cholesterol accumulation in insulin secretory granules impairs the ability of these vesicles to respond to stimuli, and thus reduces insulin secretion.  相似文献   

4.
Summary Exocytotic release of the secretory granules of the endocrine cells in the midgut of a cockroach, Periplaneta americana, was studied by means of fixation with tannic acid in combination with glutaraldehyde and osmium tetroxide. A sequence of images indicative of exocytosis suggests the following steps in this process: (1) A delicate connection appears between the granule-limiting membrane and the plasma membrane. (2) The plasma membrane approaches the granule, forming a concave indentation. (3) The granule-limiting membrane fuses with the plasma membrane and opens to give rise to an omega profile. (4) The granule content is voided into extracellular space. Exocytosis occurs not only at the base of the cell but occasionally at its side facing adjacent cells. (5) The exocytotic invagination after release becomes smaller and narrower; sometimes a coated pit with bristles appears. Multiple exocytosis, and exocytosis in the endocrine cells of the nidus, i.e., the regenerative cell mass, are also described.  相似文献   

5.
The ultrastructure of the apical zone of lactating rat mammary epithelial cells was studied with emphasis on vesicle coat structures. Typical 40-60 nm ID "coated vesicles" were abundant, frequently associated with the internal filamentous plasma membrane coat or in direct continuity with secretory vesicles (SV) or plasma membrane proper. Bristle coats partially or totally covered membranes of secretory vesicles identified by their casein micelle content. This coat survived SV isolation. Exocytotic fusion of SV membranes and release of the casein micelles was observed. Frequently, regularly arranged bristle coat structures were identified in those regions of the plasma membrane that were involved in exocytotic processes. Both coated and uncoated surfaces of the casein-containing vesicles, as well as typical "coated vesicles", were frequently associated with microtubules and/or microfilaments. We suggest that coat materials of vesicles are related or identical to components of the internal coat of the surface membrane and that new plasma membrane and associated internal coat is produced concomitantly by fusion and integration of bristle coat moieties. Postexocytotic association of secreted casein micelles with the cell surface, mediated by finely filamentous extensions, provided a marker for the integrated vesicle membrane. An arrangement of SV with the inner surface of the plasma membrane is described which is characterized by regularly spaced, heabily stained membrane to membrane cross-bridges (pre-exocytotic attachment plaques). Such membrane-interconnecting elements may represent a form of coat structure important to recognition and interaction of membrane surfaces.  相似文献   

6.
Cytotoxic T lymphocytes (CTLs) eliminate infected and neoplastic cells through directed release of cytotoxic granule contents. Although multiple SNARE proteins have been implicated in cytotoxic granule exocytosis, the role of vesicular SNARE proteins, i.e., vesicle-associated membrane proteins (VAMPs), remains enigmatic. VAMP8 was posited to represent the cytotoxic granule vesicular SNARE protein mediating exocytosis in mice. In primary human CTLs, however, VAMP8 colocalized with Rab11a-positive recycling endosomes. Upon stimulation, these endosomes rapidly trafficked to and fused with the plasma membrane, preceding fusion of cytotoxic granules. Knockdown of VAMP8 blocked both recycling endosome and cytotoxic granule fusion at immune synapses, without affecting activating signaling. Mechanistically, VAMP8-dependent recycling endosomes deposited syntaxin-11 at immune synapses, facilitating assembly of plasma membrane SNARE complexes for cytotoxic granule fusion. Hence, cytotoxic granule exocytosis is a sequential, multivesicle fusion process requiring VAMP8-mediated recycling endosome fusion before cytotoxic granule fusion. Our findings imply that secretory granule exocytosis pathways in other cell types may also be more complex than previously appreciated.  相似文献   

7.
Stimulation of primary bovine adrenal chromaffin cells by carbachol produced a 6-fold increase in cell surface coated pits within 30 s. This coat appeared not to be recruited from a preformed pool at the plasma membrane, but from some pool transparent to electron microscopy. The number of coated pits appeared to decrease rapidly after 1 to 2 min stimulation, but processing for electron microscopy using tannic acid to enhance contrast indicated that both coated pits and closed coated vesicles were increased relative to unstimulated cells for up to 30 min. Analyses of purified adrenal medulla coated vesicles showed a lipid composition close to that expected for cell surface membrane, but there were only trace levels of plasma membrane marker enzymes. Coated vesicles contained significant amounts of both membrane and content proteins characteristic of the chromaffin granule, suggesting that medulla coated vesicles preferentially carry secretion granule proteins. The kinetics of stimulus-dependent formation of coated membrane in the cortical zone of chromaffin cells is closely similar to that observed for secretion granule membrane retrieval.  相似文献   

8.
Central nerve terminals have been examined for ultrastructural signs of release of neurochemical mediators in the annelids Nereis diversicolor, Harmothoe imbricata and Lumbricus terrestris. Two categories of presumptive secretory inclusions are readily distinguished. Exocytosis of ‘storage granules’ is widespread in the neuropile, and involves probable peptidergic terminals as well as more conventional terminals. Plasma membranes at such sites of release are apparently unmodified. In contrast, ‘synaptic vesicles’ are aggregated adjacent to membrane thickenings and specialized clefts, and signs of their fusion with the presynaptic membranes have been observed rarely. The presence of coated pits surmounting omega profiles involving storage granules may indicate that membrane is retrieved in the form of microvesicles from the site of exocytosis. Coated pits associated with synapses have only been observed in areas of membrane adjacent to presumed sites of vesicle exocytosis. The incidence of dual sites of release, often relating to individual terminals, may be indicative of the segregated storage and independent secretion of distinct active principles. Materials released by granule exocytosis may have the role of neuromodulators.  相似文献   

9.
In the region of the base of the intestinal crypts undifferentiated goblet cells display a configuration and constellation of organelles and membrane structures that are indicative of their importance for function. These images at this stage of development deliver a scenario of the mechanism of secretory granule production: aggregates of protein vesicles from the "transitional elements" (PALADE) of the granular endoplasmic reticulum are, so to speak, rolled up on the trans side of the Golgi apparatus by inversion of peripheral membrane segments of the innermost Golgi lamellae, thereby forming corpuscles. The origin of the capsulated vacuoles, which contain vesicles as single elements or as conglomerates, is well established. Their capsule consists of a trilaminar external and external and internal membrane; between them lies condensed material of the Golgi apparatus. In the opinion of the present author, the development of the ensheathed vacuoles represents a basic, more general mechanism. In contrast, the further steps of synthesis, for the formation of secretory granules, are more heterogeneous. Condensation of the vesicles and the inner capsular membrane results in the formation of a prosecretory granule, which in the basic element in the process of secretory granule production. The prosecretory granules develop singly or by fusion with other granules to give primary secretory granules. The complexity of this mechanism of secretory granule formation, however, becomes evident when considering the apposition of capsulated vacuoles and prosecretory--primary--secondary secretory granules, of prosecretory and primary secretory granules as well as prosecretory granules and secondary secretory granules. Generally, primary granules show a tendency to become secondary secretory granules or to fuse with them. During maturation of the goblet cells the secretory granules fuse to form larger mucous bodies in the theca by fusion of the laminae of the membranes; a final product, there is a homogeneous mucous mass devoid of membranes.  相似文献   

10.
We have studied by electron microscopy and immunocytochemistry the formation of secretory granules containing adrenocorticotropic hormone (ACTH) in murine pituitary cells of the AtT20 line. The first compartment in which condensed secretory protein appears is a complex reticular network at the extreme trans side of the Golgi stacks beyond the TPPase-positive cisternae. Condensed secretory protein accumulates in dilated regions of this trans Golgi network. Examination of en face and serial sections revealed that "condensing vacuoles" are in fact dilations of the trans Golgi network and not detached vacuoles. Only after presumptive secretory granules have reached an advanced stage of morphological maturation do they detach from the trans Golgi network. Frequently both the dilations of the trans Golgi network containing condensing secretory protein and the detached immature granules in the peri-Golgi region have surface coats which were identified as clathrin by immunocytochemistry. Moreover both are the site of budding (or fusion) of coated vesicles, some of which contain condensed secretory protein. The mature granules below the plasma membrane do not, however, have surface coats. Immunoperoxidase labeling with an antiserum specific for ACTH and its precursor polypeptide confirmed that many of the coated vesicles associated with the trans Golgi network contain ACTH. The involvement of the trans Golgi network and coated vesicles in the formation of secretory granules is discussed.  相似文献   

11.
The localization of calcium and its functional properties in anterior pituitary cells were studied using a potassium pyroantimonate technique. In all kinds of secretory cells, the precipitates of the calcium-pyroantimonate complex were distributed on the limiting membrane of the secretory granule. They were present also in the cytoplasmic matrix, the mitochondrial matrix, small smooth vesicles, coated vesicles, and in the nuclear euchromatin area. The precipitates were usually seen at the contact region between the limiting membranes of two adjacent secretory granules, or between the granule limiting membrane and the plasma membrane. When the tissues were incubated in the medium containing A23187 (10 microM) for 5 min, the deposits on the granule limiting membrane were increased in number and those on the mitochondrial matrix were decreased; the reaction products almost disappeared on the limiting membranes of the secretory granules after membrane fusion following single or multigranular exocytosis induced by A23187-treatment. In addition, small vesicles in the capillary endothelium contained reaction precipitates. Based on these results we propose a hypothetical model for the relationship between the localization of calcium and secretory activity.  相似文献   

12.
Somatotrophs from male rat anterior pituitary were used to investigate the formation of secretory granules. When enzymatically dispersed cells were incubated with cationized ferritin (CF) for 15 min, CF labeled immature secretory granules, but not mature granules of somatotrophs. Most immature granules labeled by CF transformed to the mature types within 120 min. This indicates that the fusion of endocytic vesicles with the immature granules occurs during the maturation process of secretory granules. The internalized CF was distributed not only in the immature secretory granules, but also in the peripheral region of trans Golgi cisternae or GERL. Enzyme cytochemistry revealed that acid phosphatase-positive cisternae (GERL) were the main site for secretory granule formation, and was devoid of thiamine pyrophosphatase (TPPase) activity. A small number of secretory granules were also present in the peripheral regions of TPPase-positive Golgi cisternae. The granule-forming sites, however, lacked TPPase activity, while the remaining region of the same cisterna showed the positive enzyme activity. This indicates that the granule-forming region at the periphery of Golgi cisterna is different from the remaining part of the same cisterna in terms of cytochemical properties. This probably results from the insertion of endocytic vesicle membrane, since the same granule-forming sites preferentially fused with CF-labeled small vesicles which lacked cytochemical TPPase activity. Taken together. Our results suggest that the membrane of secretory granules is modified during the granule formation, at least partly by the fusion of endocytic small vesicles with Golgi cisternae (or GERL), and with immature secretory granules.  相似文献   

13.
The recycling of secretory granule membrane proteins that reach the plasma membrane following exocytosis is poorly understood. As a model, peptidylglycine α‐amidating monooxygenase (PAM), a granule membrane protein that catalyzes a final step in peptide processing was examined. Ultrastructural analysis of antibody internalized by PAM and surface biotinylation showed efficient return of plasma membrane PAM to secretory granules. Electron microscopy revealed the rapid movement of PAM from early endosomes to the limiting membranes of multivesicular bodies and then into intralumenal vesicles. Wheat germ agglutinin and PAM antibody internalized simultaneously were largely segregated when they reached multivesicular bodies. Mutation of basally phosphorylated residues (Thr946, Ser949) in the cytoplasmic domain of PAM to Asp (TS/DD) substantially slowed its entry into intralumenal vesicles. Mutation of the same sites to Ala (TS/AA) facilitated the entry of internalized PAM into intralumenal vesicles and its subsequent return to secretory granules. Entry of PAM into intralumenal vesicles is also associated with a juxtamembrane endoproteolytic cleavage that releases a 100‐kDa soluble PAM fragment that can be returned to secretory granules. Controlled entry into the intralumenal vesicles of multivesicular bodies plays a key role in the recycling of secretory granule membrane proteins.  相似文献   

14.
Exocytosis and membrane recycling   总被引:9,自引:0,他引:9  
Exocytosis implies the fusion of the membrane of secretion granules with, and the insertion into, the plasmalemma. In non-growing systems such an insertion is temporary in that the inserted membrane is eventually removed. Turnover results indicate that the removed membrane is not destroyed but recycled within the cell and reused. In some systems exocytosis occurs over the entire plasmalemma, while in others it is restricted to discrete regions, characterized by peculiar morphology and composition. Thus the fusion of the two membranes is probably preceded by a recognition step. Structural specializations were detected in interacting granule and plasma membranes by freeze-fracture and surface labelling techniques: arrays of intramembrane particles in protozoans and nerve terminals; clearing of particles and surface antigens in other systems. Direct evidence, obtained in some secretory systems, indicates that after exocytosis the granules and plasma membranes do not intermix, but remain segregated. The subsequent recapture of membrane patches of the granule type (in many systems by means of coated pits and vesicles) could then account for the striking specificity of the recycling process, documented by both composition and structural studies. In different systems the recycling of granule membranes is carried out at greatly different rates. Recent results in the parotid gland and neuromuscular junction indicate that this process is Ca2+-dependent.  相似文献   

15.
The events in the biogenesis of secretory granules after the budding of a dense-cored vesicle from the trans-Golgi network (TGN) were investigated in the neuroendocrine cell line PC12, using sulfate-labeled secretogranin II as a marker. The TGN-derived dense-cored vesicles, which we refer to as immature secretory granules, were found to be obligatory organellar intermediates in the biogenesis of the mature secretory granules which accumulate in the cell. Immature secretory granules were converted to mature secretory granules with a half-time of approximately 45 min. This conversion entailed an increase in their size, implying that the maturation of secretory granules includes a fusion event involving immature secretory granules. Pulse-chase labelling of PC12 cells followed by stimulation with high K+, which causes the release of secretogranin II, showed that not only mature, but also immature secretory granules were capable of undergoing regulated exocytosis. The kinetics of secretion of secretogranin II, as well as those of a constitutively secreted heparan sulfate proteoglycan, were reduced by treatment of PC12 cells with nocodazole, suggesting that both secretory granules and constitutive secretory vesicles are transported to the plasma membrane along microtubules. Our results imply that certain membrane proteins, e.g., those involved in the fusion of post-TGN vesicles with the plasma membrane, are sorted upon exit from the TGN, whereas other membrane proteins, e.g., those involved in the interaction of post-TGN vesicles with the cytoskeleton, may not be sorted.  相似文献   

16.
The formation of dense core secretory granules is a multistage process beginning in the trans Golgi network and continuing during a period of granule maturation. Direct interactions between proteins in the membrane and those in the forming dense core may be important for sorting during this process, as well as for organizing membrane proteins in mature granules. We have isolated two mutants in dense core granule formation in the ciliate Tetrahymena thermophila, an organism in which this pathway is genetically accessible. The mutants lie in two distinct genes but have similar phenotypes, marked by accumulation of a set of granule cargo markers in intracellular vesicles resembling immature secretory granules. Sorting to these vesicles appears specific, since they do not contain detectable levels of an extraneous secretory marker. The mutants were initially identified on the basis of aberrant proprotein processing, but also showed defects in the docking of the immature granules. These defects, in core assembly and docking, were similarly conditional with respect to growth conditions, and therefore are likely to be tightly linked. In starved cells, the processing defect was less severe, and the immature granules could dock but still did not undergo stimulated exocytosis. We identified a lumenal protein that localizes to the docking-competent end of wildtype granules, but which is delocalized in the mutants. Our results suggest that dense cores have functionally distinct domains that may be important for organizing membrane proteins involved in docking and fusion.  相似文献   

17.
The cortical reaction is a calcium-dependent exocytotic process in which the content of secretory granules is released into the perivitellin space immediately after fertilization, which serves to prevent polyspermic fertilization. In this study, we investigated the involvement and the organization of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins in the docking and fusion of the cortical granule membrane with the oolemma in porcine oocytes. During meiotic maturation, secretory vesicles that were labeled with a granule-specific binding lectin, peanut agglutinin (PNA), migrated toward the oocyte's surface. This surface-orientated redistribution behavior was also observed for the oocyte-specific SNARE proteins SNAP23 and VAMP1 that colocalized with the PNA-labeled structures in the cortex area just under the oolemma and with the exclusive localization area of complexin (a trans-SNARE complex-stabilizing protein). The coming together of these proteins serves to prevent the spontaneous secretion of the docked cortical granules and to prepare the oocyte's surface for the cortical reaction, which should probably be immediately compensated for by a clathrin-mediated endocytosis. In vitro fertilization resulted in the secretion of the cortical granule content and the concomitant release of complexin and clathrin into the oocyte's cytosol, and this is considered to stimulate the observed endocytosis of SNARE-containing membrane vesicles.  相似文献   

18.
Summary The localization of calcium and its functional properties in anterior pituitary cells were studied using a potassium pyroantimonate technique. In all kinds of secretory cells, the precipitates of the calcium-pyroantimonate complex were distributed on the limiting membrane of the secretory granule. They were present also in the cytoplasmic matrix, the mitochondrial matrix, small smooth vesicles, coated vesicles, and in the nuclear euchromatin area. The precipitates were usually seen at the contact region between the limiting membranes of two adjacent secretory granules, or between the granule limiting membrane and the plasma membrane. When the tissues were incubated in the medium containing A23187 (10 M) for 5 min, the deposits on the granule limiting membrane were increased in number and those on the mitochondrial matrix were decreased; the reaction products almost disappeared on the limiting membranes of the secretory granules after membrane fusion following single or multigranular exocytosis induced by A23187-treatment. In addition, small vesicles in the capillary endothelium contained reaction precipitates. Based on these results we propose a hypothetical model for the relationship between the localization of calcium and secretory activity.This study was supported by grants from the Japan Ministry of Education  相似文献   

19.
Clathrin provides an external scaffold to form small 50-100-nm transport vesicles. In contrast, formation of much larger dense-cored secretory granules is driven by selective aggregation of internal cargo at the trans-Golgi network; the only known role of clathrin in dense-cored secretory granules formation is to remove missorted proteins by small, coated vesicles during maturation of these spherical organelles. The formation of Weibel-Palade bodies (WPBs) is also cargo driven, but these are cigar-shaped organelles up to 5 mum long. We hypothesized that a cytoplasmic coat might be required to make these very different structures, and we found that new and forming WPBs are extensively, sometimes completely, coated. Overexpression of an AP-180 truncation mutant that prevents clathrin coat formation or reduced AP-1 expression by small interfering RNA both block WPB formation. We propose that, in contrast to other secretory granules, cargo aggregation alone is not sufficient to form immature WPBs and that an external scaffold that contains AP-1 and clathrin is essential.  相似文献   

20.
58–62 kDa heat-shock proteins (hsp60) are molecular chaperonins involved in the process of protein folding, transmembrane translocation and assembly of oligomeric protein complexes. In eukaryotic cells hsp60 proteins have been found in mitochondria and chloroplasts. However, we have recently documented that, in addition to mitochondria, a hsp60-like protein is present in secretory granules of insulin-secreting beta cells. The pathway by which hsp60 is targeted to secretory granules was unknown. Here we report the existence of microvesicles involved in the transport of hsp60 protein. Immunoelectron microscopy of serial thin-sections of beta cells directly visualized stages associated with hsp60 delivery: attachment of microvesicles to a secretory granule, fusion with the secretory granule membrane and release of hsp60 molecules. Further biochemical and immunological analysis of microvesicles revealed the presence in their membrane of synaptophysin, a major component of synaptic-like microvesicles (SLMV) of neuroendocrine cells. Double immunogold labelling with antibodies to synaptophysin and hsp60 demonstrated co-localization of both proteins in the same microvesicles. Moreover, fusion of synaptophysin-positive microvesicles leaves synaptophysin incorporated, at least transiently, to secretory granule membranes. These findings suggest that, in beta cells, synaptic-like vesicles are involved in the transport and delivery of hsp60 and represent a novel pathway for protein transport and secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号