首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-linking of the neutrophil-beta 2- or beta 3-related leukocyte response integrins by extracellular matrix (ECM) proteins or monoclonal antibodies (mAb) stimulates cytoskeletal rearrangement leading to cell spreading and respiratory burst. Tyrosin phosphorylation of a variety of proteins and activation of the Src family kinases within polymorphonuclear leukocytes (PMN) have recently been implicated in the intracellular signaling pathways generated by leukocyte integrins (Yan, S.R., L. Fumagalli, and G Berton. 1995. J. Inflammation. 45:217-311.) To directly test whether these functional responses are dependent on the Src family kinases p59/61hck and p58c-fgr, we examined adhesion- dependent respiratory burst in PMNs isolated from hck -/-, fgr -/-, and hck -/- fgr -/- knockout mice. Purified bone marrow PMNS from wild-type mice released significant amounts of O2- when adherent to fibrinogen-, fibronectin-, or collagen-coated surfaces, in the presence of activating agents such as tumor necrosis factor (TNF) or formyl- methionyl-leucyl-phenylalanine, as described for human PMNs. PMNs from hck-/-fgr-/- double-mutant mic, however, failed to respond. This defect was specific for integrin signaling, since respiratory burst was normal in hck-/-fgr-/-PMNs stimulated by immune complexes or PMA. Stimulation of respiratory burst was observed in TNF-primed wild-type PMN plated on surfaces coated with murine intracellular adhesion molecule-1 (ICAM-1), while hck-/-fgr-/- PMNs, failed to respond. Direct cross-linking of the subunits of beta 2 and beta 2 integrins by surface-bound mAbs was elicited O2- production by wild-type PMNs, while the double-mutant hck- /-fgr-/- cells failed to respond. Photomicroscopy and cell adhesion assays revealed that the impaired functional responses of hck-/-fgr-/- PMNs were caused by defective spreading and tight adhesion on either ECM protein- or mAb-coated surfaces. In contrast, hck-/-or fgr-/-single mutant cells produced O2- at levels equivalent to wild-type cells on ECM protein, murine ICAM-1, and antiintegrin mAb-coated surfaces. Hence, either p59/61 hck and p 58c-fgr is required for signaling through leukocyte beta 2 and beta 3 integrins leading to PMN spreading and respiratory burst. This is the first direct genetic evidence of the importance of Src family kinases in integrin signaling within leukocytes, and it is also the best example of overlapping function between members of this gene family within a defined signal transduction pathway.  相似文献   

2.
The appropriate regulation of neutrophil activation is critical for maintaining host defense and limiting inflammation. Polymorphonuclear neutrophils (PMNs) express a number of cytoplasmic tyrosine kinases that regulate signaling pathways leading to activation. One of the most highly expressed, but least studied, kinases in PMNs is proline rich kinase 2 (Pyk2). By analogy to the related focal adhesion kinase, Pyk2 has been implicated in regulating PMN adhesion and migration; however, its physiologic function has yet to be described. Using pyk2(-/-) mice, we found that this kinase was required for integrin-mediated degranulation responses, but was not involved in adhesion-induced cell spreading or activation of superoxide production. Pyk2-deficient PMNs also manifested reduced migration on fibrinogen-coated surfaces. The absence of Pyk2 resulted in a severe reduction in paxillin and Vav phosphorylation following integrin ligation, which likely accounts for the poor degranulation and cell migration. Pyk2(-/-) mice were unable to efficiently clear infection with Staphylococcus aureus in a skin abscess model, owing in part to the poor release of granule contents at the site of infection. However, Pyk2-deficient PMNs responded normally to soluble agonists, demonstrating that this kinase functions mainly in the integrin pathway. These data demonstrate the unrealized physiologic role of this kinase in regulating the adhesion-mediated release of PMN granule contents.  相似文献   

3.
The chemotactic peptide formyl-methionyl-leucyl-phenilalanine (fMLP) triggers intracellular protein tyrosine phosphorylation leading to neutrophil activation. Deficiency of the Src family kinases Hck and Fgr have previously been found to regulate fMLP-induced degranulation. In this study, we further investigate fMLP signaling in hck-/-fgr-/- neutrophils and find that they fail to activate a respiratory burst and display reduced F-actin polymerization in response to fMLP. Additionally, albeit migration of both hck-/-fgr-/-mouse neutrophils and human neutrophils incubated with the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) through 3-microm pore size Transwells was normal, deficiency, or inhibition, of Src kinases resulted in a failure of neutrophils to migrate through 1-microm pore size Transwells. Among MAPKs, phosphorylation of ERK1/2 was not different, phosphorylation of p38 was only partially affected, and phosphorylation of JNK was markedly decreased in fMLP-stimulated hck-/-fgr-/- neutrophils and in human neutrophils incubated with PP2. An increase in intracellular Ca(2+) concentration and phosphorylation of Akt/PKB occurred normally in fMLP-stimulated hck-/-fgr-/- neutrophils, indicating that activation of both phosphoinositide-specific phospholipase C and PI3K is independent of Hck and Fgr. In contrast, phosphorylation of the Rho/Rac guanine nucleotide exchange factor Vav1 and the Rac target p21-activated kinases were markedly reduced in both hck-/-fgr-/- neutrophils and human neutrophils incubated with a PP2. Consistent with these findings, PP2 inhibited Rac2 activation in human neutrophils. We suggest that Hck and Fgr act within a signaling pathway triggered by fMLP receptors that involves Vav1 and p21-activated kinases, leading to respiratory burst and F-actin polymerization.  相似文献   

4.
Engagement of very late Ag-4 (integrin alpha(4)beta(1)) by ligands such as VCAM-1 markedly stimulates leukocyte migration mediated by LFA-1 (integrin alpha(L)beta(2)). This form of integrin trans-regulation in T cells requires the binding of paxillin to the alpha(4) integrin cytoplasmic domain. This conclusion is based on the abolition of trans-regulation in Jurkat T cells by an alpha(4) mutation (alpha(4)(Y991A)) that disrupts paxillin binding. Furthermore, cellular expression of an alpha(4)-binding fragment of paxillin that blocks the alpha(4)-paxillin interaction, selectively blocked VCAM-1 stimulation of alpha(L)beta(2)-dependent cell migration. The alpha(4)-paxillin association mediates trans-regulation by enhancing the activation of tyrosine kinases, focal adhesion kinase (FAK) and/or proline-rich tyrosine kinase-2 (Pyk2), based on two lines of evidence. First, disruption of the paxillin-binding site in the alpha(4) tail resulted in much less alpha(4)beta(1)-mediated phosphorylation of Pyk2 and FAK. Second, transfection with cDNAs encoding C-terminal fragments of Pyk2 and FAK, which block the function of the intact kinases, blocked alpha(4)beta(1) stimulation of alpha(L)beta(2)-dependent migration. These results define a proximal protein-protein interaction of an integrin cytoplasmic domain required for trans-regulation between integrins, and establish that augmented activation of Pyk2 and/or FAK is an immediate signaling event required for the trans-regulation of integrin alpha(L)beta(2) by alpha(4)beta(1).  相似文献   

5.
S R Yan  M J Novak 《FEBS letters》1999,451(1):33-38
Tumor necrosis factor alpha and fMLP can activate a broad range of cellular functions in neutrophils adherent to biological surfaces. These functions are mediated by integrins and involve the activation of tyrosine kinases. Here, we report that Pyk2, a member of the focal adhesion kinase family, was present in human neutrophils and was rapidly phosphorylated and activated following tumor necrosis factor alpha and fMLP stimulation in an adhesion-dependent manner. Tyrosine phosphorylation of Pyk2 was attenuated by beta2 integrin blocking with specific antibodies. The tyrosine phosphorylation of Pyk2 was downstream of protein kinases Lyn, Syk and protein kinase C and cytoskeletal organization. The activation of Pyk2 may play a role in adhesion/cytoskeleton-associated neutrophils function.  相似文献   

6.
Pyk2 is a member of the focal adhesion kinase (FAK) family, highly expressed in the central nervous system and haemopoietic cells. Although Pyk2 is homologous to FAK, its role in signaling pathways was shown to be distinct from that of FAK. We show here that Pyk2 is highly expressed in peritoneal IC-21 macrophage and is tyrosine phosphorylated in response to cell attachment to fibronectin and fibrinogen. Upon IC-21 cell adhesion, Pyk2 tyrosine phosphorylation is inhibited by blocking antibodies to the integrin subunits alpha(M) and beta(2). Furthermore, Pyk2 is rapidly tyrosine phosphorylated in response to ligation of beta(2) integrins by antibodies. In migrating macrophages, Pyk2 localizes to perinuclear regions and to podosomes, where it is clustered with tyrosine phosphorylated proteins. Furthermore, in the podosomal ring structure, which surrounds the central actin core, Pyk2 co-localizes with vinculin, talin, and paxillin. In the podosomes, Pyk2 also co-localizes with the integrin alpha(M)beta(2). Lastly, reduction of Pyk2 expression in macrophages leads to inhibition of cell migration. We propose that Pyk2 is functionally linked to the formation of podosomes where it mediates the integrin-cytoskeleton interface and regulates cell spreading and migration.  相似文献   

7.
We previously showed that stimulation of muscarinic acetylcholine receptors (mAChR) by carbachol (Cch) caused a time- and dose-dependent increase of mitogen-activated protein kinase/extracellular signal-regulated kinases (MAPK/ERK) phosphorylation in thyroid epithelial cells. In this study, we demonstrated that mAChR stimulation also induced a time-dependent increase in the tyrosine phosphorylation of proline-rich tyrosine kinase 2 (Pyk2), which was prevented by pretreatment of thyroid epithelial cells with the specific Src-family tyrosine kinase inhibitor PP2. Besides, phosphorylation of Pyk2 was attenuated by chelation of extracellular Ca(2+) or inhibition of phospholipase C (PLC), and was evoked by thapsigargin, a specific microsomal Ca(2+)-ATPase inhibitor. Incorporation of Pyk2 antisense oligonucleotides in thyroid epithelial cells to down-regulated Pyk2 expression or pretreatment of cells with the Ca(2+)/calmodulin protein kinase II (CaM kinase II) inhibitor KN-62 significantly reduced Cch-induced MAPK/ERK phosphorylation. In addition, Cch-induced MAPK/ERK phosphorylation was partially inhibited by LY294002 and wortmannin, two selective inhibitors of phosphatidylinositol 3-kinase (PI3K), tyrphostin AG1478, a specific inhibitor of epidermal growth factor receptor (EGFR) kinase, and (-)-perillic acid, a post-translational inhibitor of small G-proteins isoprenylation. Taken together, our data suggest that Pyk2, CaM kinase II and Src-family tyrosine kinases are key molecules for the activation of MAPK/ERK cascade through the EGFR/Ras/Raf pathway in thyroid epithelial cells in response to mAChR stimulation.  相似文献   

8.
The focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) links transmembrane integrin receptors to intracellular signaling pathways. We show that expression of the FAK-related PTK, Pyk2, is elevated in fibroblasts isolated from murine fak-/- embryos (FAK-) compared with cells from fak+/+ embryos (FAK+). Pyk2 was localized to perinuclear regions in both FAK+ and FAK- cells. Pyk2 tyrosine phosphorylation was enhanced by fibronectin (FN) stimulation of FAK- but not FAK+ cells. Increased Pyk2 tyrosine phosphorylation paralleled the time-course of Grb2 binding to Shc and activation of ERK2 in FAK- cells. Pyk2 in vitro autophosphorylation activity was not enhanced by FN plating of FAK- cells. However, Pyk2 associated with active Src-family PTKs after FN but not poly-L-lysine replating of the FAK- cells. Overexpression of both wild-type (WT) and kinase-inactive (Ala457), but not the autophosphorylation site mutant (Phe402) Pyk2, enhanced endogenous FN-stimulated c-Src in vitro kinase activity in FAK- cells, but only WT Pyk2 overexpression enhanced FN-stimulated activation of co-transfected ERK2. Interestingly, Pyk2 overexpression only weakly augmented FAK- cell migration to FN whereas transient FAK expression promoted FAK- cell migration to FN efficiently compared with FAK+ cells. Significantly, repression of endogenous Src-family PTK activity by p50(csk) overexpression inhibited FN-stimulated cell spreading, Pyk2 tyrosine phosphorylation, Grb2 binding to Shc, and ERK2 activation in the FAK- but not in FAK+ cells. These studies show that Pyk2 and Src-family PTKs combine to promote FN-stimulated signaling events to ERK2 in the absence of FAK, but that these signaling events are not sufficient to overcome the FAK- cell migration defects.  相似文献   

9.
Fibronectin fragments (FN-f), including the 110-kDa fragment that binds the alpha5beta1 integrin, stimulate collagenase-3 (MMP-13) production and cartilage destruction. In the present study, treatment of chondrocytes with the 110-kDa FN-f or an activating antibody to the alpha5beta1 integrin was found to increase tyrosine autophosphorylation (Tyr-402) of the proline-rich tyrosine kinase-2 (PYK2) without significant change in autophosphorylation (Tyr-397) of focal adhesion kinase (FAK). The tyrosine kinase inhibitor tyrphostin A9, shown previously to block a PYK2-dependent pathway, blocked the FN-f-stimulated increase in MMP-13, whereas tyrphostin A25 did not. FN-f-stimulated PYK2 phosphorylation and MMP-13 production was also blocked by reducing intracellular calcium levels. Adenovirally mediated overexpression of wild type but not mutant PYK2 resulted in increased MMP-13 production. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate stimulated PYK2 phosphorylation and MMP-13 production. MMP-13 expression stimulated by either phorbol 12-myristate 13-acetate or FN-f was blocked by PKC inhibitors including the PKCdelta inhibitor rottlerin. Furthermore, PKCdelta translocation from cytosol to membrane was noted within 5 min of stimulation with FN-f. Immortalized human chondrocytes, transiently transfected with MMP-13 promoter-luciferase reporter constructs, showed increased promoter activity after FN-f treatment that was inhibited by co-transfection with either of two dominant negative mutants of PYK2 (Y402F and K457A). No inhibition was seen after cotransfection with wild type PYK2, a dominant negative of FAK (FRNK) or empty vector plasmid. FN-f-stimulated MMP-13 promoter activity was also inhibited by chemical inhibitors of ERK, JNK, and p38 mitogen-activated protein (MAP) kinases or by co-transfection of dominant negative MAP kinase mutant constructs. These studies have identified a novel pathway for the MAP kinase regulation of MMP-13 production which involves FN-f stimulation of the alpha5beta1 integrin and activation of the nonreceptor tyrosine kinase PYK2 by PKC, most likely PKCdelta  相似文献   

10.
Focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) are non-receptor protein tyrosine kinases that are involved in cell proliferation, migration and survival. Current research of FAK and Pyk2 is greatly focused in cancer biology and several small molecule inhibitors are being tested under clinical development. Like cancer, certain chronic diseases such as cardiovascular disease, bone disease, fibrosis, rheumatoid arthritis, and neurological disorders, share malignant characteristics of cancer. Accumulating evidence has demonstrated that FAK and Pyk2 contribute to other proliferative and degenerative diseases. Thus, the goal of this review is to briefly highlight studies that have implicated FAK and Pyk2 as players in disease progression.  相似文献   

11.
Integrins in resting leukocytes are poorly adhesive, and cell activation is required to induce integrin-mediated adhesion. We recently demonstrated a close correlation between phosphorylation of Ser(5) in L-plastin (LPL), a leukocyte-specific 67-kDa actin bundling protein, and activation of alpha(M)beta(2)-mediated adhesion in polymorphonuclear neutrophils (PMN) (Jones, S. L., Wang, J., Turck, C. W., and Brown, E. J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 9331-9336). However, the kinase that phosphorylates LPL Ser(5) has not been identified. We found that cAMP-dependent protein kinase (PKA), but not a variety of other serine kinases, can specifically phosphorylate LPL and LPL-derived peptides on Ser(5) in vitro. The cell-permeable cAMP analog 8-bromo-cAMP and the adenylate cyclase activator forskolin both induce LPL phosphorylation in cells. Two PKA inhibitors, H89 and KT5720, inhibited immune complex (IC)-stimulated LPL phosphorylation as well as IC-induced activation of alpha(M)beta(2)-mediated adhesion in PMN. The dose response of H89 inhibition of PMN adhesion correlated with its inhibition of LPL phosphorylation in response to IC. IC stimulation also transiently increased intracellular cAMP concentration in PMN. Thus, PKA functions in an integrin activation pathway initiated by IC binding to Fcgamma receptors in addition to its better known role as a negative regulator of cell activation by G protein-coupled receptors. In contrast, LPL Ser(5) phosphorylation and PMN adhesion induced by formylmethionyl-leucylphenylalanine or phorbol myristate acetate were not affected by PKA inhibitors, suggesting that a different kinase(s) is responsible for LPL phosphorylation in response to these agonists. Phosphoinositidyl 3-kinase also is required for FcgammaR but not formylmethionyl-leucylphenylalanine- or phorbol myristate acetate-induced LPL phosphorylation and activation of alpha(M)beta(2). Two phosphoinositidyl 3-kinase inhibitors blocked FcgammaR-induced cAMP accumulation, demonstrating that this kinase acts upstream of PKA. These data demonstrate a necessary role for PKA in IC-induced integrin activation and LPL phosphorylation.  相似文献   

12.
RAFTK/Pyk2-mediated cellular signalling   总被引:1,自引:0,他引:1  
Intracellular signal transduction following extracellular ligation by a wide variety of surface molecules involves the activation and tyrosine phosphorylation of protein tyrosine kinases (PTKs). Tyrosine phosphorylation, controlled by the coordinated actions of protein tyrosine phosphatases (PTPs) and tyrosine kinases, is a critical regulatory mechanism for various physiological processes, including cell growth, differentiation, metabolism, cell cycle regulation and cytoskeleton function. The focal adhesion PTK family consists of the focal adhesion kinase (FAK) and the RAFTK/Pyk2 kinase (also known as CAK-beta and CADTK). RAFTK/Pyk2 can be activated by a variety of extracellular signals that elevate intracellular calcium concentration, and by stress signals. RAFTK/Pyk2 is expressed mainly in the central nervous system and in cells derived from hematopoietic lineages, while FAK is widely expressed in various tissues and links transmembrane integrin receptors to intracellular pathways. This review describes the role of RAFTK/Pyk2 in various signalling cascades and details the differential signalling by FAK and RAFTK/Pyk2.  相似文献   

13.
Pyk2 (proline-rich tyrosine kinase 2) and FAK (focal adhesion kinase) are highly related tyrosine kinases. One distinguishing feature is the differential regulation of the two enzymes in response to elevation of cytoplasmic calcium. In the latest issue of the Biochemical Journal, Sasaki and co-workers have provided insight into the calcium-dependent regulation of Pyk2. The findings suggest that calmodulin may bind the FERM (4.1/ezrin/radixin/moesin) domain to promote Pyk2 activation in response to calcium signals triggered by vasopressin. While the molecular details of the protein-protein interaction and mechanism of activation remain to be firmly established, this study is the first to provide mechanistic insight into the regulation of Pyk2 by calcium.  相似文献   

14.
Integrin class adhesion proteins are concentrated at adult brain synapses. Whether synaptic integrins engage kinase signaling cascades has not been determined, but is a question of importance to ideas about integrin involvement in functional synaptic plasticity. Accordingly, synaptoneurosomes from adult rat brain were used to test if matrix ligands activate integrin-associated tyrosine kinases, and if integrin signaling targets include NMDA-class glutamate neurotransmitter receptors. The integrin ligand peptide Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) induced rapid (within 5 min) and robust increases in tyrosine phosphorylation of focal adhesion kinase, proline-rich tyrosine kinase 2 and Src family kinases. Increases were similarly induced by the native ligand fibronectin, blocked with neutralizing antibodies to beta1 integrin, and not obtained with control peptides, indicating that kinase activation was integrin-mediated. Both GRGDSP and fibronectin caused rapid Src kinase-dependent increases in tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in synaptoneurosomes and acute hippocampal slices. Tests of the physiological significance of the latter result showed that ligand treatment caused a rapid and beta1 integrin-dependent increase in NMDA receptor-mediated synaptic responses. These results provide the first evidence that, in adult brain, synaptic integrins activate local kinase cascades with potent effects on the operation of nearby neurotransmitter receptors implicated in synaptic plasticity.  相似文献   

15.
Focal adhesion kinase (FAK) is phosphorylated on tyrosine and serine residues after cell activation. In the present work, we investigated the relationship between tyrosine and serine phosphorylation of FAK in promoting endothelial cell migration in response to vascular endothelial growth factor (VEGF). We found that VEGF induces the activation of the Rho-dependent kinase (ROCK) downstream from vascular endothelial growth factor receptor (VEGFR) 2. In turn, activated ROCK directly phosphorylates FAK on Ser732. Proline-rich tyrosine kinase-2 (Pyk2) is also activated in response to VEGF. Its activation requires the clustering of integrin alphavbeta3 and triggers directly the phosphorylation of Tyr407 within FAK, an event necessary for cell migration. Interestingly, ROCK-mediated phosphorylation of Ser732 is essential for Pyk2-dependent phosphorylation of Tyr407, because the latter is abrogated in cells expressing a FAK mutant that is nonphosphorylatable on Ser732. We suggest that VEGF elicits the activation of the VEGFR2-ROCK pathway, leading to phosphorylation of Ser732 within FAK. In turn, phosphorylation of Ser732 would change the conformation of FAK, making it accessible to Pyk2 activated in response to its association with integrin beta3. Then, activated Pyk2 triggers the phosphorylation of FAK on Tyr407, promoting cell migration.  相似文献   

16.
The signaling events downstream of integrins that regulate cell attachment and motility are only partially understood. Using osteoclasts and transfected 293 cells, we find that a molecular complex comprising Src, Pyk2, and Cbl functions to regulate cell adhesion and motility. The activation of integrin alpha(v)beta(3) induces the [Ca(2+)](i)-dependent phosphorylation of Pyk2 Y402, its association with Src SH2, Src activation, and the Src SH3-dependent recruitment and phosphorylation of c-Cbl. Furthermore, the PTB domain of Cbl is shown to bind to phosphorylated Tyr-416 in the activation loop of Src, the autophosphorylation site of Src, inhibiting Src kinase activity and integrin-mediated adhesion. Finally, we show that deletion of c Src or c-Cbl leads to a decrease in osteoclast migration. Thus, binding of alpha(v)beta(3) integrin induces the formation of a Pyk2/Src/Cbl complex in which Cbl is a key regulator of Src kinase activity and of cell adhesion and migration. These findings may explain the osteopetrotic phenotype in the Src(-/-) mice.  相似文献   

17.
《The Journal of cell biology》1994,127(4):1139-1147
Expression of the leukocyte (beta 2) integrins is required for many functions of activated neutrophils (PMN), even when there is no recognized ligand for any beta 2 integrin. To investigate the hypothesis that beta 2 integrins may be involved in a signal transduction pathway related to cytoskeletal reorganization, we examined whether beta 2 integrins have a role in tyrosine phosphorylation of the cytoskeletal protein paxillin. Treatment of PMN in suspension with phorbol esters, f-Met-Leu-Phe, and TNF-alpha resulted in paxillin tyrosine phosphorylation. However, treatment of beta 2-deficient (LAD) PMN failed to induce paxillin tyrosine phosphorylation. Normal PMN phosphorylated paxillin in response to adhesion to immune complexes, while the LAD PMN did not. Adhesion of phorbol ester activated-LAD PMN to the extracellular matrix proteins fibronectin, laminin, and vitronectin failed to induce paxillin tyrosine phosphorylation. Treatment of activated normal PMN with mAb directed against the beta 2 integrin alpha chains demonstrated that CR3 (alpha M beta 2) was required for paxillin phosphorylation. Transfection of the cell line K562 with CR3 confirmed that CR3 ligation resulted in paxillin tyrosine phosphorylation. As a control, K562 transfected with CR2 (CD21) which bound equally avidly to the same complement C3-derived ligand (C3bi) as the CR3 transfectants, showed no enhanced tyrosine phosphorylation of paxillin upon receptor ligation. While both CR2 and CR3 transfectants showed efficient adhesion to a C3bi-coated surface, only the CR3 transfectants spread during adhesion and phosphorylated paxillin. Together these data demonstrate that CR3 is required for paxillin phosphorylation during activation of both adherent and nonadherent PMN. Even PMN activated in suspension or by adhesion to immune complexes, when no CR3 ligand is apparent, still require CR3 for a signal transduction pathway leading to paxillin tyrosine phosphorylation. This pathway is likely to be important for PMN function in inflammation and host defense.  相似文献   

18.
Forces such as strain modulate intestinal epithelial biology. Shear and pressure influence other cells. The effects of pressure on human colon cancer cells are poorly understood. Increasing ambient pressure for 30 min by 15 mm Hg over atmospheric stimulated adhesion to matrix proteins of four human colon cancer cell lines and primary cells from three human colon cancers, but not bovine aortic smooth-muscle cells. This effect was energy dependent and cation dependent (blocked by azide and chelation), accompanied by tyrosine phosphorylation of intracellular proteins including focal adhesion kinase, and blocked by tyrosine kinase inhibition (genistein, tyrphostin, and erbstatin) and a functional antibody to the beta1 integrin subunit. Although pressure stimulated adhesion even in a balanced salt solution, baseline and pressure-stimulated adhesion were each substantially diminished in the absence of serum. These data suggest that relatively low levels of increased pressure may stimulate malignant colonocyte adhesion by a cation-dependent beta1-integrin-mediated mechanism, perhaps via focal adhesion kinase-related tyrosine phosphorylation. In addition to elucidating another aspect of physical force regulation of colonocyte biology, these findings may be relevant to the effects of increased pressure engendered by colonic peristalsis, surgical manipulation, or laparoscopic surgery on colon cancer cell adhesion.  相似文献   

19.
E-cadherin is a 120-kDa transmembrane glycoprotein expressed mainly on the surface of epithelial cells. The best characterised function of E-cadherin is homotypic, calcium-dependent cell-cell adhesion; however, the observation that E-cadherin is also capable of interacting with the alphaEbeta7 integrin to mediate leukocyte cell-cell adhesion [Nature 372 (1994) 190] suggests that it also participates in heterotypic interactions. To investigate the possibility that E-cadherin may interact with integrins expressed on non-leukocytic cells, cell adhesion and solid-phase receptor-ligand binding experiments were performed using a pentameric E-cadherin construct designed to detect low affinity, high avidity interactions. HT1080 human fibrosarcoma cells specifically adhered to pentameric E-cadherin, and this adhesion was inhibited by anti-functional monoclonal antibodies directed against the integrin alpha2 and beta1 subunits, but not by a series of antibodies recognising other subunits. This suggested that the E-cadherin receptor was alpha2beta1, a previously characterised collagen/laminin receptor. Pentameric E-cadherin, but not monomeric E-cadherin, specifically bound, in a divalent cation-dependent manner, to both purified alpha2beta1 and to a recombinant form of the A-domain of the alpha2 subunit, which has been shown to be a major ligand-binding site within this and other integrins. These findings demonstrate that E-cadherin can interact with alpha2beta1 and suggest that heterotypic interactions between E-cadherin and integrins may be more common than originally thought.  相似文献   

20.
T cells deficient in the Tec kinases Itk or Itk and Rlk exhibit defective TCR-stimulated proliferation, IL-2 production, and activation of phospholipase C-gamma. Evidence also implicates Tec kinases in actin cytoskeleton regulation, which is necessary for cell adhesion and formation of the immune synapse in T lymphocytes. In this study we show that Tec kinases are required for TCR-mediated up-regulation of adhesion via the LFA-1 integrin. We also demonstrate that the defect in adhesion is associated with defective clustering of LFA-1 and talin at the site of interaction of Rlk-/-Itk-/- and Itk-/- T cells with anti-TCR-coated beads. Defective recruitment of Vav1, protein kinase Ctheta, and Pyk2 was also observed in Rlk-/-Itk-/- and Itk-/- T cells. Stimulation with ICAM-2 in conjunction with anti-TCR-coated beads enhanced polarization of Vav1, protein kinase Ctheta, and Pyk2 in wild-type cells, demonstrating a role for integrins in potentiating the recruitment of signaling molecules in T cells. Increased recruitment of signaling molecules was most pronounced under conditions of low TCR stimulation. Under these suboptimal TCR stimulation conditions, ICAM-2 could also enhance the recruitment of signaling molecules in Itk-/-, but not Rlk-/-Itk-/- T cells. Thus, Tec kinases play key roles in regulating TCR-mediated polarization of integrins and signaling molecules to the site of TCR stimulation as well as the up-regulation of integrin adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号