首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA interference (RNAi) mediates gene silencing in many eukaryotes and has been widely used to investigate gene functions. A common method to induce sustained RNAi is introducing plasmids that synthesize short hairpin RNAs (shRNAs) using Pol III promoters. While these promoters synthesize shRNAs and elicit RNAi efficiently, they lack cell specificity. Monitoring shRNA expression levels in individual cells by Pol III promoters is also difficult. An alternative way to deliver RNAi is to use Pol II-directed synthesis of shRNA. Previous efforts in developing a Pol II system have been sparse and the results were conflicting, and the usefulness of those Pol II vectors has been limited due to low efficacy. Here we demonstrate a new Pol II system that directs efficient shRNA synthesis and mediates strong RNAi at levels that are comparable with the commonly used Pol III systems. In addition, this system synthesizes a marker protein under control of the same promoter as the shRNA, thus providing an unequivocal indicator, not only to the cells that express the shRNA, but also to the levels of the shRNA expression. This system may be adapted for in vivo shRNA expression and gene silencing.  相似文献   

2.
Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long‐term culture and colony formation of several LV‐labeled mouse melanoma cells showed that promoters derived from mammalian house‐keeping genes, especially those encoding RNA polymerase II (Pol2) and ferritin (FerH), provided the highest consistency for reporter expression. For in vivo studies, primary B16BL6 mouse melanoma were infected with LVs whose luciferase–green fluorescence protein fusion gene (Luc/GFP) was driven by either Pol2 or FerH promoters. When transplanted into syngeneic C57BL/6 mice, Luc/GFP‐labeled B16BL6 mouse melanoma cells can be monitored by bioluminescence imaging in vivo, and GFP‐positive cells can be isolated from the tumors by fluorescence‐activated cell sorter. Pol2‐Luc/GFP labeling, while lower in activity, was more sustainable than FerH‐Luc/GFP labeling in B16BL6 over consecutive passages into mice. We conclude that Pol‐2‐Luc/GFP labeling allows long‐term in vivo monitoring and tumor cell isolation in immunocompetent mouse melanoma models.  相似文献   

3.
Vector systems to deliver, integrate and express therapeutic genes in host cells are essential for gene therapy. In the present study, we investigated a novel vector system for integration and expression of a transgene. In this system, the transgene expression was driven by an endogenous RNA polymerase I (Pol I) promoter after being integrated into the ribosomal DNA (rDNA) locus. Human coagulation factor IX coding sequence (FIX), with an internal ribosome entry sites element at its leader region, was targeted into the 18S rDNA locus via homologous recombination. FIX protein expression, which was under the control of the endogenous Pol I promoter, was found to be similar to that of a moderate Pol II promoter. The average FIX expression level of the rDNA recombinants was additionally enhanced to that from a strong Pol II promoter as a result of elimination of position effects. Our data suggest the possibility of applying this system in gene therapy for hereditary diseases.  相似文献   

4.
RNA interference (RNAi) has been used increasingly for reverse genetics in invertebrates and mammalian cells, and has the potential to become an alternative to gene knockout technology in mammals. Thus far, only RNA polymerase III (Pol III)-expressed short hairpin RNA (shRNA) has been used to make shRNA-expressing transgenic mice. However, widespread knockdown and induction of phenotypes of gene knockout in postnatal mice have not been demonstrated. Previous studies have shown that Pol II synthesizes micro RNAs (miRNAs)-the endogenous shRNAs that carry out gene silencing function. To achieve efficient gene knockdown in mammals and to generate phenotypes of gene knockout, we designed a construct in which a Pol II (ubiquitin C) promoter drove the expression of an shRNA with a structure that mimics human miRNA miR-30a. Two transgenic lines showed widespread and sustained shRNA expression, and efficient knockdown of the target gene Sod2. These mice were viable but with phenotypes of SOD2 deficiency. Bigenic heterozygous mice generated by crossing these two lines showed nearly undetectable target gene expression and phenotypes consistent with the target gene knockout, including slow growth, fatty liver, dilated cardiomyopathy, and premature death. This approach opens the door of RNAi to a wide array of well-established Pol II transgenic strategies and offers a technically simpler, cheaper, and quicker alternative to gene knockout by homologous recombination for reverse genetics in mice and other mammalian species.  相似文献   

5.
RNA interference (RNAi) has been used increasingly for reverse genetics in invertebrates and mammalian cells, and has the potential to become an alternative to gene knockout technology in mammals. Thus far, only RNA polymerase III (Pol III)–expressed short hairpin RNA (shRNA) has been used to make shRNA-expressing transgenic mice. However, widespread knockdown and induction of phenotypes of gene knockout in postnatal mice have not been demonstrated. Previous studies have shown that Pol II synthesizes micro RNAs (miRNAs)—the endogenous shRNAs that carry out gene silencing function. To achieve efficient gene knockdown in mammals and to generate phenotypes of gene knockout, we designed a construct in which a Pol II (ubiquitin C) promoter drove the expression of an shRNA with a structure that mimics human miRNA miR-30a. Two transgenic lines showed widespread and sustained shRNA expression, and efficient knockdown of the target gene Sod2. These mice were viable but with phenotypes of SOD2 deficiency. Bigenic heterozygous mice generated by crossing these two lines showed nearly undetectable target gene expression and phenotypes consistent with the target gene knockout, including slow growth, fatty liver, dilated cardiomyopathy, and premature death. This approach opens the door of RNAi to a wide array of well-established Pol II transgenic strategies and offers a technically simpler, cheaper, and quicker alternative to gene knockout by homologous recombination for reverse genetics in mice and other mammalian species.  相似文献   

6.

Background

Conditional expression vectors have become a valuable research tool to avoid artefacts that may result from traditional gene expression studies. However, most systems require multiple plasmids that must be independently engineered into the target system, resulting in experimental delay and an increased potential for selection of a cell subpopulation that differs significantly from the parental line. We have therefore developed pHUSH, an inducible expression system that allows regulated expression of shRNA, miRNA or cDNA cassettes on a single viral vector.

Results

Both Pol II and Pol III promoters have been successfully combined with a second expression cassette containing a codon-optimized tetracycline repressor and selectable marker. We provide examples of how pHUSH has been successfully employed to study the function of target genes in a number of cell types within in vitro and in vivo assays, including conditional gene knockdown in a murine model of brain cancer.

Conclusion

We have successfully developed and employed a single vector system that enables Doxycycline regulated RNAi or transgene expression in a variety of in vitro and in vivo model systems. These studies demonstrate the broad application potential of pHUSH for conditional genetic engineering in mammalian cells.  相似文献   

7.
Kidane D  Dalal S  Keh A  Liu Y  Zelterman D  Sweasy JB 《DNA Repair》2011,10(4):390-397
Maintaining genome integrity in germ cells is important, given that the germ cells produce the next generation of offspring. Base excision repair is a DNA repair pathway that is responsible for the repair of most endogenous DNA damage. A key enzyme that functions in this repair pathway is DNA polymerase beta (Pol β). We previously used conditional gene targeting to engineer mice with sperm deleted of the Pol B gene, which encodes Pol β. We characterized mutagenesis in the sperm of these mice and compared it to wild-type and mice heterozygous for the Pol B gene. We found that sperm obtained that were heterozygously or homozygously deleted of the Pol B gene exhibited increased mutation frequencies compared to wild-type sperm. We identified an increase in transition mutations in both heterozygously and homozygously deleted sperm, and the types of mutations induced suggest that a polymerase other than Pol β functions in its absence. Interestingly, most of the transversions we observed were induced only in heterozygous, compared with wild-type sperm. Our results suggest that haploinsufficiency of Pol β leads to increased frequencies and varieties of mutations. Our study also shows that Pol β is critical for genome stability in the germline.  相似文献   

8.
9.
RNA silencing in plants by the expression of siRNA duplexes   总被引:4,自引:0,他引:4  
  相似文献   

10.
启动子是转录水平上一个重要的调控元件,其决定着基因的表达模式和表达强度。Ⅰ型启动子具有高转录活性和种属间特异性等特点。如将其应用于植物RNA病毒载体表达系统,有利于提高表达系统的表达效率和生物安全性。本氏烟(Nicotiana benthaminana)是一种被广泛地应用于植物生物反应器和植物病理学的模式生物,但是现有核酸数据库中尚没有其Ⅰ型启动子的相关信息。因此,克隆本氏烟Ⅰ型启动子并分析其转录起始位点就具有重要的应用价值。通过半巢式PCR获得了514 bp的本氏烟Ⅰ型启动子序列(KC352713);生物信息学分析初步预测其转录起始位点位于其核心序列TATA(G)TA(N)GGGGG中的第3位A处;通过植物RNA病毒表达载体和5'RACE技术在体内验证本氏烟Ⅰ型启动子转录起始位点与生物信息学预测结果一致。研究结果为深入研究Ⅰ型启动子和构建Ⅰ型启动子介导转录的植物RNA病毒载体表达系统奠定了基础。  相似文献   

11.
DNA polymerase (Pol) is an error-prone repair DNA polymerase that has been shown to create genetic instability and tumorigenesis when overexpressed by only 2-fold in cells, suggesting that a rigorous regulation of its expression may be essential in vivo. To address this question, we have generated mice which express a transgene (Tg) bearing the Pol cDNA under the control of the ubiquitous promoter of the mouse H-2K gene from the major histocompatibility complex. These mice express the Tg only in thymus, an organ which normally contains the most abundant endogenous Pol mRNA and protein, supporting the idea of a tight regulation of Pol in vivo. Furthermore, we found no tumor incidence, suggesting that the single Pol overexpression event is not sufficient to initiate tumorigenesis in vivo.  相似文献   

12.
13.
DNA polymerase iota (Pol iota) of mammals is a member of the Y family of DNA polymerases. Among many other genome caretakers, these enzymes are responsible for maintaining genome stability. The members of the Y-family DNA polymerases take part in translesion DNA synthesis, bypassing some DNA lesions, and are characterized by low fidelity of DNA synthesis. A unique ability of Pol iota to predominantly incorporate G opposite T allowed us to identify the product of this enzyme among those synthesized by other DNA polymerases. This product can be called a "false note" of Pol iota. We measured the enzyme activity of Pol iota in crude extracts of cells from different organs of five inbred strains of mice (N3H/Sn, 101/H, C57BL/6, BALB/c, 129/J) that differed in a number of parameters. The "false note" of Pol iota was clearly sounding only in the extracts of testis and brain cells from four analyzed strains: N3H/Sn, 101/H, C57BL/6, BALB/c. In mice of 129/J strain that had a nonsense mutation in the second exon of the pol iota gene, the Pol iota activity was reliably detectable only in the extracts of brain. The data show that the active enzyme can be formed in some cell types even if they carry a nonsense mutation in the pol iota gene. This supports tissue-specific regulation of pol iota gene expression through alternative splicing. A semiquantitative determination of pol iota activity in mice strains different in their radiosensitivity suggests a reciprocal correlation between the enzyme activity of pol iota in testis and the resistance of mice to radiation.  相似文献   

14.
15.
16.
Gene expression in endosperm—a seed tissue that mediates transfer of maternal resources to offspring—is under complex epigenetic control. We show here that plant-specific RNA polymerase IV (Pol IV) mediates parental control of endosperm gene expression. Pol IV is required for the production of small interfering RNAs that typically direct DNA methylation. We compared small RNAs (sRNAs), DNA methylation, and mRNAs in Arabidopsis thaliana endosperm from heterozygotes produced by reciprocally crossing wild-type (WT) plants to Pol IV mutants. We find that maternally and paternally acting Pol IV induce distinct effects on endosperm. Loss of maternal or paternal Pol IV impacts sRNAs and DNA methylation at different genomic sites. Strikingly, maternally and paternally acting Pol IV have antagonistic impacts on gene expression at some loci, divergently promoting or repressing endosperm gene expression. Antagonistic parent-of-origin effects have only rarely been described and are consistent with a gene regulatory system evolving under parental conflict.

Parents can have antagonistic effects on offspring development, but few molecular players involved in these antagonistic effects have been identified. This study shows that in Arabidopsis antagonistic parental effects on offspring gene expression are mediated by a small RNA pathway.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号