首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A minor fraction of simian immunodeficiency virus (SIV)-infected macaques progress rapidly to AIDS in the absence of SIV-specific immune responses. Common mutations in conserved residues of env in three SIVsmE543-3-infected rapid-progressor (RP) macaques suggest the evolution of a common viral variant in RP macaques. The goal of the present study was to analyze the biological properties of these variants in vitro and in vivo through the derivation of infectious molecular clones. Virus isolated from a SIVsmE543-3-infected RP macaque, H445 was used to inoculate six naive rhesus macaques. Although RP-specific mutations dominated in H445 tissues, they represented only 10% of the population of the virus stock, suggesting a selective disadvantage in vitro. Only one of these macaques (H635) progressed rapidly to AIDS. Plasma virus during primary infection of H635 was similar to the inoculum. However, RP-specific mutations were apparently rapidly reselected by 4 to 9 weeks postinfection. Terminal plasma from H635 was used as a source of viral RNA to generate seven full-length, infectious molecular clones. With the exception of one clone, which was similar to SIVsmE543-3, clones with RP-specific mutations replicated with delayed kinetics in rhesus peripheral blood mononuclear cells and human T-cell lines. None of the clones replicated in monocyte-derived or alveolar macrophages, and all used CCR5 as their major coreceptor. RP variants appear to be well adapted to replicate in vivo in RP macaques but are at a disadvantage in tissue culture compared to their parent, SIVsmE543-3. Therefore, tissue culture may not provide a good surrogate for replication of RP variants in macaques. These infectious clones will provide a valuable reagent to study the roles of specific viral variants in rapid progression in vivo.  相似文献   

2.
Primate lentiviruses are thought to use the chemokine receptor CCR5 as the major coreceptor for entry into cells. Here we show that some variants of simian immunodeficiency virus (SIV) replicate efficiently in peripheral blood mononuclear cells (PBMCs) lacking a functional CCR5. There were differences in the replication patterns of sequential variants that evolved during SIVMne infection; the late-stage pathogenic variants were unable to replicate in PBMCs lacking CCR5, whereas the early- and intermediate-stage viruses replicated as well in PBMCs lacking CCR5 as they did in cells with wild-type CCR5. The coreceptor specificities of these sequential variants were compared using indicator cell lines expressing known SIV coreceptors. Among the known SIV coreceptors, there were none that were functional for the early and intermediate variants but not the late-stage variants, suggesting that the coreceptor used for replication in PBMCs may be a coreceptor that has not yet been described. Because some variants replicate with high efficiency in peripheral blood cells using this as yet uncharacterized cellular receptor, this coreceptor may be important for viral entry of some target cell populations in the host.  相似文献   

3.
The recent identification of coreceptors that mediate efficient entry of human immunodeficiency virus type 1 (HIV-1) suggests new therapeutic and preventive strategies. We analyzed simian immunodeficiency virus (SIV) entry cofactors to investigate whether the macaque SIV model can be used as an experimental model to evaluate these strategies. Similar to primary HIV-1 isolates, a well-characterized molecular clone, SIVmac239, which replicates poorly but efficiently enters into rhesus alveolar macrophages and an envelope variant, SIVmac239/316Env, with an approximately 1,000-fold-higher replicative capacity in macrophages used the beta-chemokine receptor CCR5 for efficient entry. The transmembrane portion of 316Env allowed low-level entry into cells expressing CCR1, CCR2B, and CCR3. A single amino acid substitution in the V3 loop of SIVmac239/316Env, 321P-->S, impaired the ability to enter into the T-B hybrid cell line CEMx174 but had relatively little effect on entry into primary cells and HOS.CD4 cells expressing CCR5. Although CEMx174 cells do not express CCR5, most SIVmac variants entered this hybrid cell line efficiently but did not enter the parental T-cell line CEM. It seems likely that CEMx174 cells express an as-yet-unidentified, perhaps B-cell-derived cofactor which allows efficient entry of SIVmac.  相似文献   

4.
The V3 loop of the simian immunodeficiency virus (SIV) envelope protein (Env) largely determines interactions with viral coreceptors. To define amino acids in V3 that are critical for coreceptor engagement, we functionally characterized Env variants with amino acid substitutions at position 324 in V3, which has previously been shown to impact SIV cell tropism. These changes modulated CCR5 engagement and, in some cases, allowed the efficient usage of CCR5 in the absence of CD4. The tested amino acid substitutions had highly differential effects on viral infectivity. Eleven of sixteen substitutions disrupted entry via CCR5 or the alternative coreceptor GPR15. Nevertheless, most of these variants replicated in the macaque T-cell line 221-89 and some also replicated in rhesus macaque peripheral blood monocytes, suggesting that efficient usage of CCR5 and GPR15 on cell lines is not a prerequisite for SIV replication in primary cells. Four variants showed enhanced entry into the macaque sMagi reporter cell line. However, sMagi cells did not express appreciable amounts of CCR5 and GPR15 mRNA, and entry into these cells was not efficiently blocked by a small-molecule CCR5 antagonist, suggesting that sMagi cells express as-yet-unidentified entry cofactors. In summary, we found that a single amino acid at position 324 in the SIV Env V3 loop can modulate both the efficiency and the types of coreceptors engaged by Env and allow for CD4-independent fusion in some cases.  相似文献   

5.
Infection with attenuated simian immunodeficiency virus (SIV) in rhesus macaques has been shown to raise antibodies capable of neutralizing an animal challenge stock of primary SIVmac251 in CEMx174 cells that correlate with resistance to infection after experimental challenge with this virulent virus (M. S. Wyand, K. H. Manson, M. Garcia-Moll, D. C. Montefiori, and R. C. Desrosiers, J. Virol. 70:3724–3733, 1996). Here we show that these neutralizing antibodies are not detected in human and rhesus peripheral blood mononuclear cells (PBMC). In addition, neutralization of primary SIVmac251 in human and rhesus PBMC was rarely detected with plasma samples from a similar group of animals that had been infected either with SIVmac239Δnef for 1.5 years or with SIVmac239Δ3 for 3.2 years, although low-level neutralization was detected in CEMx174 cells. Potent neutralization was detected in CEMx174 cells when the latter plasma samples were assessed with laboratory-adapted SIVmac251. In contrast to primary SIVmac251, laboratory-adapted SIVmac251 did not replicate in human and rhesus PBMC despite its ability to utilize CCR5, Bonzo/STRL33, and BOB/gpr15 as coreceptors for virus entry. These results illustrate the importance of virus passage history and the choice of indicator cells for making assessments of neutralizing antibodies to lentiviruses such as SIV. They also demonstrate that primary SIVmac251 is less sensitive to neutralization in human and rhesus PBMC than it is in established cell lines. Results obtained in PBMC did not support a role for neutralizing antibodies as a mechanism of protection in animals immunized with attenuated SIV and challenged with primary SIVmac251.  相似文献   

6.
The simian immunodeficiency virus (SIV) Mne envelope undergoes genetic changes that alter tropism, syncytium-inducing capacity, and antigenic properties of the emerging variant virus population during the course of an infection. Here we investigated whether the mutations in envelope of SIVMne also influence coreceptor usage. The data demonstrate that the infecting macrophage-tropic SIVMne clone as well as the envelope variants that are selected during the course of disease progression all recognize both CCR5 and Bob (GPR15) but not Bonzo (STRL33), CXCR4, or CCR3. Although it remains to be determined if there are other coreceptors specific for dualtropic or T-cell-tropic variants of SIVMne that emerge during late stages of infection, these data suggest that such SIV variants that evolve in pathogenic infections do not lose the ability to recognize CCR5 or Bob/GPR15.  相似文献   

7.
Recent recombinant viral vector-based AIDS vaccine trials inducing cellular immune responses have shown control of CXCR4-tropic simian-human immunodeficiency virus (SHIV) replication but difficulty in containment of pathogenic CCR5-tropic simian immunodeficiency virus (SIV) in rhesus macaques. In contrast, controlled infection of live attenuated SIV/SHIV can confer the ability to contain SIV superchallenge in macaques. The specific immune responses responsible for this control may be induced by live virus infection but not consistently by viral vector vaccination, although those responses have not been determined. Here, we have examined in vitro anti-SIV efficacy of CD8+ cells in rhesus macaques that showed prophylactic viral vector vaccine-based control of CXCR4-tropic SHIV89.6PD replication. Analysis of the effect of CD8+ cells obtained at several time points from these macaques on CCR5-tropic SIVmac239 replication in vitro revealed that CD8+ cells in the chronic phase after SHIV challenge suppressed SIV replication more efficiently than those before challenge. SIVmac239 superchallenge of two of these macaques at 3 or 4 years post-SHIV challenge was contained, and the following anti-CD8 antibody administration resulted in transient CD8+ T-cell depletion and appearance of plasma SIVmac239 viremia in both of them. Our results indicate that CD8+ cells acquired the ability to efficiently suppress SIV replication by controlled SHIV infection, suggesting the contribution of CD8+ cell responses induced by controlled live virus infection to containment of HIV/SIV superinfection.  相似文献   

8.
To evaluate how viral variants may affect disease progression in human pediatric AIDS, we studied the potential of three simian immunodeficiency virus (SIV) isolates to induce simian AIDS in newborn rhesus macaques. The three virus isolates were previously shown to range from pathogenic (SIVmac251 and SIVmac239) to nonpathogenic (SIVmac1A11) when inoculated intravenously into juvenile and adult rhesus macaques. Six newborn macaques inoculated with pathogenic, uncloned SIVmac251 developed persistent, high levels of cell-associated and cell-free viremia, had no detectable antiviral antibodies, and had poor weight gain; these animals all exhibited severe clinical disease and pathologic lesions diagnostic for simian AIDS and were euthanatized 10 to 26 weeks after inoculation. Two newborns inoculated with pathogenic, molecularly cloned SIVmac239 developed persistent high virus load in peripheral blood, but both animals had normal weight gain and developed antiviral antibodies. One of the SIVmac239-infected neonates exhibited pathologic lesions diagnostic for SAIDS and was euthanatized at 34 weeks after inoculation; the other SIVmac239-infected neonate remained alive and exhibited no significant clinical disease for more than 1 year after inoculation. In contrast, three newborn rhesus macaques inoculated with the nonpathogenic molecular clone, SIVmac1A11, had transient, low-level viremia, seroconverted by 10 weeks after inoculation, had normal weight gain, and remained healthy for over 1 year. These results indicate that (i) newborn rhesus macaques infected with an uncloned, virulent SIVmac isolate have a more rapid, fulminant disease course than do adults inoculated with the same virus, (ii) the most rapid disease progression is associated with lack of a detectable humoral immune response in SIV-infected infant macaques, (iii) a molecularly cloned, attenuated SIV isolate is nonpathogenic in neonatal macaques, and (iv) SIV-infected neonatal macaques exhibit patterns of infection, virus load, and disease progression similar to those observed in human immunodeficiency virus-infected children. This SIV/neonatal rhesus model of pediatric AIDS provides a rapid, sensitive model with which to compare the virulence of SIV isolates and to study the mechanisms underlying the differences in disease progression in human immunodeficiency virus-infected infants.  相似文献   

9.
An infectious molecular clone of simian immunodeficiency virus SIVsm was derived from a biological isolate obtained late in disease from an immunodeficient rhesus macaque (E543) with SIV-induced encephalitis. The molecularly cloned virus, SIVsmE543-3, replicated well in macaque peripheral blood mononuclear cells and monocyte-derived macrophages and resisted neutralization by heterologous sera which broadly neutralized genetically diverse SIV variants in vitro. SIVsmE543-3 was infectious and induced AIDS when inoculated intravenously into pig-tailed macaques (Macaca nemestrina). Two of four infected macaques developed no measurable SIV-specific antibody and succumbed to a wasting syndrome and SIV-induced meningoencephalitis by 14 and 33 weeks postinfection. The other two macaques developed antibodies reactive in Western blot and virus neutralization assays. One macaque was sacrificed at 1 year postinoculation, and the survivor has evidence of immunodeficiency, characterized by persistently low CD4 lymphocyte subsets in the peripheral blood. Plasma samples from these latter animals neutralized SIVsmE543-3 but with much lower efficiency than neutralization of other related SIV strains, confirming the difficulty by which this molecularly cloned virus is neutralized in vitro. SIVsmE543-3 will provide a valuable reagent for studying SIV-induced encephalitis, mapping determinants of neutralization, and determining the in vivo significance of resistance to neutralization in vitro.  相似文献   

10.
The replicative, cytopathic, and antigenic properties of simian immunodeficiency virus (SIV) variants influence its replication efficiency in vivo. To further define the viral properties and determinants that may be important for high-level replication in vivo and progression to AIDS, we compared a minimally pathogenic SIVmne molecular clone with two highly pathogenic variants cloned from late stages of infection. Both variants had evolved greater infectivity than the parental clone due to mutations in nef. Interestingly, a pol determinant in one of the highly pathogenic variants also contributed to its increased infectivity. Furthermore, because replication in vivo may also be influenced by the ability of a virus to evade the cellular immune response of the host, we examined whether the variants were more capable of downregulating surface expression of class I major histocompatibility complex (MHC). Decreased MHC class I expression was not observed in cells infected with any of the viruses. Furthermore, the Nef proteins of the highly pathogenic variants only slightly reduced surface MHC class I expression in transfected cells, although they efficiently downregulated CD4. Together, these data demonstrate that mutations which can enhance viral infectivity, as well as CD4 downregulation, may be important for efficient replication of SIV in the host. However, Nef-mediated reduction of MHC class I expression does not appear to be critical for the increased in vivo replicative ability of highly pathogenic late variants.  相似文献   

11.
Transfusion of blood from a simian immunodeficiency virus (SIV)- and simian T-cell lymphotropic virus-infected sooty mangabey (designated FGb) to rhesus and pig-tailed macaques resulted in the development of neurologic disease in addition to AIDS. To investigate the role of SIV in neurologic disease, virus was isolated from a lymph node of a pig-tailed macaque (designated PGm) and the cerebrospinal fluid of a rhesus macaque (designated ROn2) and passaged to additional macaques. SIV-related neuropathogenic effects were observed in 100% of the pig-tailed macaques inoculated with either virus. Lesions in these animals included extensive formation of SIV RNA-positive giant cells in the brain parenchyma and meninges. Based upon morphology, the majority of infected cells in both lymphoid and brain tissue appeared to be of macrophage lineage. The virus isolates replicated very well in pig-tailed and rhesus macaque peripheral blood mononuclear cells (PBMC) with rapid kinetics. Differential replicative abilities were observed in both PBMC and macrophage populations, with viruses growing to higher titers in pig-tailed macaque cells than in rhesus macaque cells. An infectious molecular clone of virus derived from the isolate from macaque PGm (PGm5.3) was generated and was shown to have in vitro replication characteristics similar to those of the uncloned virus stock. While molecular analyses of this virus revealed its similarity to SIV isolates from sooty mangabeys, significant amino acid differences in Env and Nef were observed. This virus should provide an excellent system for investigating the mechanism of lentivirus-induced neurologic disease.  相似文献   

12.
Recombinant protein subunit AIDS vaccines have been based predominantly on the virus envelope protein. Such vaccines elicit neutralizing antibody responses that can provide type-specific sterilizing immunity, but in most cases do not confer protection against divergent viruses. In this report we demonstrate that a multiantigen subunit protein vaccine was able to prevent the development of disease induced in rhesus monkeys by a partially heterologous AIDS virus. The vaccine was composed of recombinant human immunodeficiency virus type 1 (HIV-1) gp120, NefTat fusion protein, and simian immunodeficiency virus (SIV) Nef formulated in the clinically tested adjuvant AS02A. Upon challenge of genetically unselected rhesus monkeys with the highly pathogenic and partially heterologous SIV/HIV strain SHIV(89.6p) the vaccine was able to reduce virus load and protect the animals from a decline in CD4-positive cells. Furthermore, vaccination prevented the development of AIDS for more than 2.5 years. The combination of the regulatory proteins Nef and Tat together with the structural protein gp120 was required for vaccine efficacy.  相似文献   

13.
Our previous study demonstrated that the immunization with a cycloimmunogen derived from extracellular loop-2 (ECL-2) of CCR5 (cDDR5) attenuated acute phase of CCR5-tropic simian-human immunodeficiency virus (SHIV)SF162P3 replication in vivo. Although the study showed that the antisera raised against cDDR5 reacted with cell-expressed CCR5, we have not yet demonstrated whether the antisera can react with virion-incorporated CCR5. Here, we show that rhesus cDDR5 (rcDDR5)-specific antibodies react with not only cell-expressed but also virion-incorporated simian CCR5s (siCCR5s), but may predominantly exert their inhibitory effects on simian immunodeficiency virus (SIV) infection by the binding of cell-expressed rather than virion-incorporated CCR5s. These results suggest that the virion-incorporated CCR5 may contribute to the reactivation of the anti-rcDDR5 antibody-producing B-cells by SIV particles after rcDDR5 immunization, although the binding of anti-rcDDR5 antibody to virion-incorporated CCR5 results in a partial inhibitory effect on SIV infection.  相似文献   

14.
As the most numerous cells in the brain, astrocytes play a critical role in maintaining central nervous system homeostasis, and therefore, infection of astrocytes by human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) in vivo could have important consequences for the development of HIV encephalitis. In this study, we establish that astrocytes are infected in macaques during acute SIV infection (10 days postinoculation) and during terminal infection when there is evidence of SIV-induced encephalitis. Additionally, with primary adult rhesus macaque astrocytes in vitro, we demonstrate that the macrophage-tropic, neurovirulent viruses SIV/17E-Br and SIV/17E-Fr replicate efficiently in astrocytes, while the lymphocyte-tropic, nonneurovirulent virus SIV(mac)239 open-nef does not establish productive infection. Furthermore, aminoxypentane-RANTES abolishes virus replication, suggesting that these SIV strains utilize the chemokine receptor CCR5 for entry into astrocytes. Importantly, we show that SIV Nef is required for optimal replication in primary rhesus macaque astrocytes and that normalizing input virus by particle number rather than by infectivity reveals a disparity between the ability of a Nef-deficient virus and a virus encoding a nonmyristoylated form of Nef to replicate in these central nervous system cells. Since the myristoylated form of Nef has been implicated in functions such as CD4 and major histocompatibility complex I downregulation, kinase association, and enhancement of virion infectivity, these data suggest that an as yet unidentified function of Nef may exist to facilitate SIV replication in astrocytes that may have important implications for in vivo pathogenesis.  相似文献   

15.
We have isolated a biologically active molecular clone of simian immunodeficiency virus (SIV), SIVmac 1A11, originally obtained from a rhesus macaque at the New England Regional Primate Research Center. Virus derived from cells transfected with this clone is cytopathic for rhesus peripheral blood mononuclear cells, replicates in cultures of rhesus macrophages, and infects rhesus macaques when inoculated intravenously. Six macaques inoculated with SIVmac 1A11 all became infected and produced antibodies to viral envelope glycoproteins that neutralized virus. Antibodies to viral core proteins were detected in only one animal. No clinical signs of disease were observed throughout 7 months postinoculation.  相似文献   

16.
We have monitored changes in the simian immunodeficiency virus (SIV) envelope (env) gene in two macaques which developed AIDS after inoculation with a molecular clone of SIV. As the animals progressed to AIDS, selection occurred for viruses with variation in two discrete regions (V1 and V4) but not for viruses with changes in the region of SIV env that corresponds to the immunodominant, V3 loop of human immunodeficiency virus. Within the highly variable domains, the vast majority of nucleotide changes encoded an amino acid change (98%), suggesting that these envelope variants had evolved as a result of phenotypic selection. Analysis of the biological properties of these variants, which have been selected for in the host, may be useful in defining the mechanisms underlying viral persistence and progression to simian AIDS.  相似文献   

17.
18.
Induction of virus-specific T-cell responses in mucosal as well as systemic compartments of the immune system is likely to be a critical feature of an effective AIDS vaccine. We investigated whether virus-specific CD8(+) lymphocytes induced in rhesus macaques by immunization with attenuated simian immunodeficiency virus (SIV), an approach that is highly effective in eliciting protection against mucosal challenge, express the mucosa-homing receptor alpha4beta7 and traffic to the intestinal mucosa. SIV-specific CD8(+) T cells expressing alpha4beta7 were detected in peripheral blood and intestine of macaques infected with attenuated SIV. In contrast, virus-specific T cells in blood of animals immunized cutaneously by a combined DNA-modified vaccinia virus Ankara regimen did not express alpha4beta7. These results demonstrate the selective induction of SIV-specific CD8(+) T lymphocytes expressing alpha4beta7 by a vaccine approach that replicates in mucosal tissue and suggest that induction of virus-specific lymphocytes that are able to home to mucosal sites may be an important characteristic of a successful AIDS vaccine.  相似文献   

19.
The simian immunodeficiency virus (SIV)-rhesus macaque model of heterosexual human immunodeficiency virus transmission consists of atraumatic application of cell-free SIVmac onto the intact vaginal mucosa of mature female rhesus macaques. This procedure results in systemic infection, and eventually infected animals develop the clinical signs and pathologic changes of simian AIDS. To achieve 100% transmission with the virus stocks used to date, multiple intravaginal inoculations are required. The current titration study utilized two stocks of SIVmac and demonstrated that a single intravaginal dose of cell-free SIV can reliably produce infection in rhesus macaques. This study also demonstrated that some animals intravaginally inoculated with cell-free SIVmac develop transient viremia characterized by a limited ability to isolate virus from peripheral blood mononuclear cells and lymph node mononuclear cells and no seroconversion to SIV antigen. SIV could be isolated from the peripheral lymph nodes of transiently viremic animals only during periods of viremia and not at times when SIV was not detected in circulating mononuclear cells. Thus, peripheral lymphoid tissues were not reservoirs of infection in the transiently viremic animals. Taken together, these results suggest either that the SIV infection was cleared in the transiently viremic animals or that SIV infection is limited to a compartment of the genital mucosal immune system that cannot be assessed by monitoring SIV infection in peripheral blood mononuclear cells and peripheral lymphoid tissue.  相似文献   

20.
A better understanding of the host and viral factors associated with human immunodeficiency virus (HIV) transmission is essential to developing effective strategies to curb the global HIV epidemic. Here we used the rhesus macaque-simian immunodeficiency virus (SIV) animal model of HIV infection to study the range of viral genotypes that are transmitted by different routes of inoculation and by different types of viral inocula. Analysis of transmitted variants was undertaken in outbred rhesus macaques inoculated intravenously (IV) or intravaginally (IVAG) with a genetically heterogeneous SIVmac251 stock derived from a well-characterized rhesus macaque viral isolate. In addition, we performed serial IV and IVAG passage experiments using plasma from SIV-infected macaques as the inoculum. We analyzed the V1-V2 region of the SIV envelope gene from virion-associated RNA in plasma from infected animals by the heteroduplex mobility assay (HMA) and by DNA sequence analysis. We found that a more diverse population of SIV genetic variants was present in the earliest virus-positive plasma samples from all five IV SIVmac251-inoculated monkeys and from two of five IVAG SIVmac251-inoculated monkeys. In contrast, we found a relatively homogeneous population of SIV envelope variants in three of five monkeys inoculated IVAG with SIVmac251 stock and in two monkeys infected after IVAG inoculation with plasma from an SIV-infected animal. In some IVAG-inoculated animals, the transmitted SIV variant was the most common variant in the inoculum. However, a specific viral variant in the SIVmac251 stock was not consistently transmitted by IVAG inoculation. Thus, it is likely that host factors or stochastic processes determine the specific viral variants that infect an animal after IVAG SIV exposure. In addition, our results clearly demonstrate that the route of inoculation is associated with the extent and breadth of the genetic complexity of the viral variant population in the earliest stages of systemic infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号