首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor (TGF)-beta1 is secreted as a latent form, which consists of its mature form and a latency-associated peptide (beta1-LAP) in either the presence or the absence of additional latent TGF-beta1-binding protein. We recently reported that three different missense mutations (R218H, R218C, and C225R) of beta1-LAP cause the Camurati-Engelmann disease (CED), an autosomal dominant disorder characterized by hyperosteosis and sclerosis of the diaphysis of the long bones. Pulse-chase experiments using fibroblasts from CED patients and expression experiments of the mutant genes in an insect cell system suggest that these mutations disrupt the association of beta1-LAP and TGF-beta1 and the subsequent release of the mature TGF-beta1. Furthermore, the cell growth of fibroblasts from a CED patient and mutant gene-transfected fibroblasts was suppressed via TGF-beta1. The growth suppression observed was attenuated by neutralizing antibody to TGF-beta1 or by treatment of dexamethasone. On the other hand, the proliferation of human osteoblastic MG-63 cells was accelerated by coculture with CED fibroblasts. These data suggest that the domain-specific mutations of beta1-LAP result in a more facile activation of TGF-beta1, thus causing CED.  相似文献   

2.
Camurati-Engelmann disease (CED) [OMIM 131300] is an autosomal dominant sclerosing bone dysplasia recently ascribed to mutations of the transforming growth factor (TGF-beta1) gene on chromosome 19q13.1-q13.3. Five mutations consistently located in the TGF-beta1 propeptide have been hitherto identified in 21 families. Here, we report on TGF-beta1 mutations in one Australian and six European families. Three distinct mutations were identified among seven families: namely, R218H (family 1), R218C (families 2, 6, 7) and C225R (families 3, 4, 5). The three mutations identified in our pedigrees have been previously observed in families of Japanese and Israeli origin and the R218C appears to be the most prevalent mutation worldwide (17/28 reported families). No obvious correlation between the nature of the mutations and the severity of the clinical manifestations could be established, but a marked intrafamilial clinical variability was observed, supporting incomplete penetrance of CED. Interestingly, the polymorphisms in the TGF-beta1 gene showed no correlation with the severity of the disease. We conclude that CED is a clinically variable condition and that this clinical variability is not accounted for by polymorphisms at the TGF-beta1 locus.  相似文献   

3.
Transforming growth factor-beta 1 (TGF-beta 1) is synthesized as a latent high molecular weight complex in a human erythroleukemia cell line, HEL, treated with phorbol 12-myristate 13-acetate. The complex is comprised of three components: mature TGF-beta 1, the TGF-beta 1 latency-associated peptide (beta 1-LAP), and the latent TGF-beta 1-binding protein (LTBP). LTBP plays an important role in the assembly and secretion of the latent TGF-beta 1 complex; if the TGF-beta 1 precursor fails to bind to LTBP, much of it remains inside the cells and may contain anomalous disulfide bond(s) between beta 1-LAP and the mature TGF-beta 1 molecule (Miyazono, K., Olofsson, A., Colosetti, P., and Heldin, C.-H. (1991) EMBO J. 10, 1091-1101). In the present work, we have investigated the subcellular localization and properties of the TGF-beta 1 precursor retained intracellularly. When the HEL cells were metabolically labeled and chased for up to 72 h, a considerable part of the TGF-beta 1 precursor was still observed intracellularly in an unprocessed form. The secreted form of the TGF-beta 1 precursor was resistant to endoglycosidase H, whereas the intracellular form of the TGF-beta 1 precursor was sensitive to endoglycosidase H, regardless of the presence or absence of swainsonine, an inhibitor of mannosidase II. Indirect immunofluorescence microscopy revealed that the TGF-beta 1 precursor co-localized with mannosidase II, a marker for the Golgi complex, but not with protein disulfide isomerase, a marker for the endoplasmic reticulum. The intracellular TGF-beta 1 precursor was prepared from phorbol 12-myristate 13-acetate-treated HEL cells and tested for TGF-beta 1 bioactivity. Half-maximal inhibition of the DNA synthesis in mink lung epithelial cells, Mv1Lu, was observed at 80 pM of the acid-treated TGF-beta 1 precursor, whereas nontreated material showed minimal growth inhibitory activity. Taken together, these results indicate that the TGF-beta 1 precursor is retained inside the cells in the Golgi complex, mainly in a latent, immature form.  相似文献   

4.
Transforming growth factor-beta (TGF-beta) is secreted as a latent complex of the latency-associated peptide (LAP) and the mature domain, which must be activated for TGF-beta to signal. We previously identified thrombospondin 1 (TSP1) as a physiologic activator of TGF-beta in vitro and in vivo. The WSXW sequences in the type 1 repeats of TSP1 interact with the mature domain of TGF-beta, and WSXW peptides inhibit TSP1-mediated activation by blocking TSP1 binding to the TGF-beta latent complex. However, the binding site for the WSXW sequence was not identified. In this report, we show that the WSXW sequences bind the (61)VLAL sequence in mature TGF-beta and also bind (77)VLAL in LAP. A glutathione S-transferase (GST) fusion protein of the second TSP1 type 1 repeat (GST-TSR2) binds immobilized VLAL peptide. VLAL peptides inhibit binding of LAP and mature TGF-beta to soluble GST-TSR2 and immobilized WSXW peptide. VLAL peptide inhibits TSP1-mediated activation of recombinant and endothelial cell-derived latent TGF-beta. Furthermore, TGF-beta or LAP deleted in the VLAL sequence fails to bind immobilized WSXW or soluble GST-TSR2, indicating that binding to both VLAL sequences is important for association of TSP1 and the latent complex. Additionally, TSP1 is unable to activate latent TGF-beta when VLAL is deleted from the mature domain. These data show that the WSXW motif binds VLAL on both LAP and mature TGF-beta, and these interactions are critical for TSP1-mediated activation of the TGF-beta latent complex.  相似文献   

5.
Transforming growth factor (TGF)-betas are secreted in large latent complexes consisting of TGF-beta, its N-terminal latency-associated peptide (LAP) propeptide, and latent TGF-beta binding protein (LTBP). LTBPs are required for secretion and subsequent deposition of TGF-beta into the extracellular matrix. TGF-beta1 associates with the 3(rd) 8-Cys repeat of LTBP-1 by LAP. All LTBPs, as well as fibrillins, contain multiple 8-Cys repeats. We analyzed the abilities of fibrillins and LTBPs to bind latent TGF-beta by their 8-Cys repeats. 8-Cys repeat was found to interact with TGF-beta1*LAP by direct cysteine bridging. LTBP-1 and LTBP-3 bound efficiently all TGF-beta isoforms, LTBP-4 had a much weaker binding capacity, whereas LTBP-2 as well as fibrillins -1 and -2 were negative. A short, specific TGF-beta binding motif was identified in the TGF-beta binding 8-Cys repeats. Deletion of this motif in the 3(rd) 8-Cys repeat of LTBP-1 resulted in loss of TGF-beta*LAP binding ability, while its inclusion in non-TGF-beta binding 3(rd) 8-Cys repeat of LTBP-2 resulted in TGF-beta binding. Molecular modeling of the 8-Cys repeats revealed a hydrophobic interaction surface and lack of three stabilizing hydrogen bonds introduced by the TGF-beta binding motif necessary for the formation of the TGF-beta*LAP - 8-Cys repeat complex inside the cells.  相似文献   

6.
Targeting cytokines to inflammation sites   总被引:2,自引:0,他引:2  
To increase the half-life of a cytokine and target its activation specifically to disease sites, we have engineered a latent cytokine using the latency-associated protein (LAP) of transforming growth factor-beta 1 (TGF-beta 1) fused via a matrix metalloproteinase (MMP) cleavage site to interferon (IFN)-beta at either its N or C terminus. The configuration LAP-MMP-IFN-beta resembles native TGF-beta and lacks biological activity until cleaved by MMPs, whereas the configuration IFN-beta-MMP-LAP is active. LAP provides for a disulfide-linked shell hindering interaction of the cytokine with its cellular receptors, conferring a very long half-life of 55 h in vivo. Mutations of the disulfide bonds in LAP abolish this latency. Samples of cerebrospinal fluid (CSF) or synovial fluid from patients with inflammatory diseases specifically activate the latent cytokine, whereas serum samples do not. Intramuscular injection in arthritic mice of plasmid DNA encoding these constructs demonstrated a greater therapeutic effect of the latent as compared to the active forms.  相似文献   

7.
Thrombospondin-1 (TSP-1) has been shown to bind and activate transforming growth factor-beta1 (TGF-beta1). This observation raises the possibility that TSP-1 helps to sequester TGF-beta1 in platelet alpha granules and activates TGF-beta1 once both proteins are secreted. Herein, we evaluated the level of active and latent TGF-beta1 in the plasma and in the supernatant of thrombin-treated platelets from TSP-1 null and wild-type mice on two genetic backgrounds (C57BL/6 and 129Sv). The plasminogen activator inhibitor-1/luciferase bioassay and an immunological assay were used to determine active and latent TGF-beta1. No significant differences were observed in the levels of active and latent TGF-beta1 in the supernatant of thrombin-treated platelets from TSP-1 null and wild-type mice. Active and latent TGF-beta1 were significantly increased in the plasma and platelets of C57BL/6 mice as compared with 129Sv mice. In addition, there was an increase of plasma level of latent TGF-beta1 in TSP-1 null mice as compared with wild-type mice on the C57BL/6 background but not on the 129Sv background. No active TGF-beta1 was observed in the plasma of either TSP-1 null and wild-type mice. These data indicate that TSP-1 does not function as a chaperon for TGF-beta1 during platelet production and does not activate significant quantities of secreted TGF-beta1 despite a vast excess in the number of TSP-1 molecules as compared with TGF-beta1 molecules. Because platelet releasates from TSP-1 null mice contain active TGF-beta1, we suggest that other important mechanisms of physiological activation of TGF-beta1 probably exist in platelets.  相似文献   

8.
Transforming growth factor-betas (TGF-beta) are secreted as inactive complexes containing the TGF-beta, the TGF-beta propeptide, also called the latency-associated protein (LAP), and the latent TGF-beta binding protein (LTBP). Extracellular activation of this complex is a critical but incompletely understood step in TGF-beta regulation. We have investigated the role of LTBP in modulating TGF-beta generation by the integrin alphaVbeta6. We show that even though alphavbeta6 recognizes an RGD on LAP, LTBP-1 is required for alphaVbeta6-mediated latent TGF-beta activation. The domains of LTBP-1 necessary for activation include the TGF-beta propeptide-binding domain and a basic amino acid sequence (hinge domain) with ECM targeting properties. Our results demonstrate an LTBP-1 isoform-specific function in alphaVbeta6-mediated latent TGF-beta activation; LTBP-3 is unable to substitute for LTBP-1 in this assay. The results reveal a functional role for LTBP-1 in latent TGF-beta activation and suggest that activation of specific latent complexes is regulated by distinct mechanisms that may be determined by the LTBP isoform and its potential interaction with the matrix.  相似文献   

9.
Growth factors of the transforming growth factor-beta family are potent regulators of the extracellular matrix formation, in addition to their immunomodulatory and regulatory roles for cell growth. TGF-beta s are secreted from cells as latent complexes containing TGF-beta and its propeptide, LAP (latency-associated peptide). In most cells LAP is covalently linked to an additional protein, latent TGF-beta binding protein (LTBP), forming the large latent complex. LTBPs are required for efficient secretion and correct folding of TGF-beta s. The secreted large latent complexes associate covalently with the extracellular matrix via the N-termini of the LTBPs. LTBPs belong to the fibrillin-LTBP family of extracellular matrix proteins, which have a typical repeated domain structure consisting mostly of epidermal growth factor (EGF)-like repeats and characteristic eight cysteine (8-Cys) repeats. Currently four different LTBPs and two fibrillins have been identified. LTBPs contain multiple proteinase sensitive sites, providing means to solubilize the large latent complex from the extracellular matrix structures. LTBPs are now known to exist both as soluble molecules and in association with the extracellular matrix. An important consequence of this is LTBP-mediated deposition and targeting of latent, activatable TGF-beta into extracellular matrices and connective tissues. LTBPs have a dual function, they are required both for the secretion of the small latent TGF-beta complex as well as directing bound latent TGF-beta to extracellular matrix microfibrils. However, it is not known at present whether LTBPs are capable of forming microfibrils independently, or whether they are a part of the fibrillin-containing fibrils. Most LTBPs possess RGD-sequences, which may have a role in their interactions with the cell surface. At least LTBP-1 is chemotactic to smooth muscle cells, and is involved in vascular remodelling. Analyses of the expressed LTBPs have revealed considerable variations throughout the molecules, generated both by alternative splicing and utilization of multiple promoter regions. The significance of this structural diversity is mostly unclear at present.  相似文献   

10.
One of the primary points of regulation of transforming growth factor-beta (TGF-beta) activity is control of its conversion from the latent precursor to the biologically active form. We have identified thrombospondin-1 as a major physiological regulator of latent TGF-beta activation. Activation is dependent on the interaction of a specific sequence in thrombospondin-1 (K412RFK415) with the latent TGF-beta complex. Platelet thrombospon-din-1 has TGF-beta activity and immunoreactive mature TGF-beta associated with it. We now report that the latency-associated peptide (LAP) of the latent TGF-beta complex also interacts with thrombospondin-1 as part of a biologically active complex. Thrombospondin.LAP complex formation involves the activation sequence of thrombospondin-1 (KRFK) and a sequence (LSKL) near the amino terminus of LAP that is conserved in TGF-beta1-5. The interactions of LAP with thrombospondin-1 through the LSKL and KRFK sequences are important for thrombospondin-mediated activation of latent TGF-beta since LSKL peptides can competitively inhibit latent TGF-beta activation by thrombospondin or KRFK-containing peptides. In addition, the association of LAP with thrombospondin-1 may function to prevent the re-formation of an inactive LAP.TGF-beta complex since thrombospondin-bound LAP no longer confers latency on active TGF-beta. The mechanism of TGF-beta activation by thrombospondin-1 appears to be conserved among TGF-beta isoforms as latent TGF-beta2 can also be activated by thrombospondin-1 or KRFK peptides in a manner that is sensitive to inhibition by LSKL peptides.  相似文献   

11.
The TGF-beta family members are generated as latent pre-pro-polypeptides. The active mature peptides are cleaved from the latent forms by cellular proteases. TGF-beta 1, for instance, is predominantly processed by a substilisin-like proprotein convertase, furin. TGF-beta 2 has a consensus cleavage site for furin and therefore has been presumed to be cleaved by furin. However, TGF-beta 2 is often secreted as the latent form, which appears to be inconsistent with its postulated sensitivity to furin. We report here that both the regular (short) form of TGF-beta2 and its spliced variant with an additional exon (long form) are insensitive to furin. NIH 3T3 and CHO cells were transfected with expression vectors containing the short or long form of TGF-beta 2 or a chimeric TGF-beta consisting of the TGF-beta1 LAP region, the TGF-beta 2 cleavage site and the TGF-beta 2 mature peptide. The constructs included a c-myc epitope tag in the N-terminal region of the mature peptide. The TGF-betas produced by the transfected cells were analyzed with Western blots and immunocytochemistry. The intracellular proteins harvested from these cells were incubated with furin. Furin only inefficiently cleaved both the long and short forms of TGF-beta 2, but efficiently processed the chimeric TGF-beta. This indicates that the insensitivity of both forms of TGF-beta 2 to furin is a consequence of the tertiary structure of their LAP regions rather than their cleavage site. This differential processing of TGF-beta1 and -beta 2 may be part of the mechanism that generates isoform-specific functions of the TGF-betas.  相似文献   

12.
The three mammalian transforming growth factor beta (TGF-beta) isoforms are each secreted in a latent complex in which TGF-beta homodimers are non-covalently associated with homodimers of their respective pro-peptide called the latency-associated peptide (LAP). Release of TGF-beta from its LAP, called activation, is required for binding of TGF-beta to cellular receptors, making extracellular activation a critical regulatory point for TGF-beta bioavailability. Our previous work demonstrated that latent TGF-beta1 (LTGF-beta1) is efficiently activated by ionizing radiation in vivo and by reactive oxygen species (ROS) generated by Fenton chemistry in vitro. In the current study, we determined the specific ROS and protein target that render LTGF-beta1 redox sensitive. First, we compared LTGF-beta1, LTGF-beta2 and LTGF-beta3 to determine the generality of this mechanism of activation and found that redox-mediated activation is restricted to the LTGF-beta1 isoform. Next, we used scavengers to determine that ROS activation was a function of OH(.) availability, confirming oxidation as the primary mechanism. To identify which partner of the LTGF-beta1 complex was functionally modified, each was exposed to ROS and tested for the ability to form a latent complex. Exposure of TGF-beta1 did not alter its ability to associate with LAP, but exposing LAP-beta1 to ROS prohibited this phenomenon, while treatment of ROS-exposed LAP-beta1 with a mild reducing agent restored its ability to neutralize TGF-beta1 activity. Taken together, these results suggest that ROS-induced oxidation in LAP-beta1 triggers a conformational change that releases TGF-beta1. Using site-specific mutation, we identified a methionine residue at amino acid position 253 unique to LAP-beta1 as critical to ROS-mediated activation. We propose that LTGF-beta1 contains a redox switch centered at methionine 253, which allows LTGF-beta1 to act uniquely as an extracellular sensor of oxidative stress in tissues.  相似文献   

13.
Transforming growth factor-beta1 (TGF-beta1) is secreted by most cells as a high molecular weight latent complex, which consists of latent TGF-beta1 disulfide bonded to latent TGF-beta1-binding protein (LTBP). Current recombinant expression systems yield less than 1-2 mg of the mature TGF-beta1 per liter of cell culture medium. In an effort to produce large quantities of the recombinant cytokine for structural studies, we have constructed a mammalian expression system based on a modified pcDNA3.1(+) vector with a glutamine synthetase gene inserted for gene amplification. The leader peptide of TGF-beta1 was replaced with that of rat serum albumin, and an eight-histidine tag was inserted immediately after the leader sequence to facilitate protein purification. In addition, Cys 33 of TGF-beta1, which forms a disulfide bond with LTBP, was replaced by a serine residue. The resulting expression construct produced a stable clone expressing 30 mg of mature TGF-beta1 per liter of spent medium. Purified TGF-beta1 bound with high affinity to its type II receptor with a solution dissociation constant of approximately 70 nM, and was fully active in both a Mv1Lu cell growth inhibition assay and in a PAI-1 luciferase reporter assay. Owing to similarities in the synthesis, secretion, and structure of TGF-beta family members, this recombinant expression system may also be applied to the overexpression of other TGF-beta isomers and even to members of the TGF-beta superfamily to facilitate their preparation.  相似文献   

14.
15.
《The Journal of cell biology》1993,123(5):1249-1254
Transforming growth factor-beta (TGF-beta) is secreted in a latent form and activated during co-culture of endothelial cells and smooth muscle cells. Plasmin located on the surface of endothelial cells is required for the activation of latent TGF-beta (LTGF-beta) during co-culture, and the targeting of LTGF-beta to the cellular surface is requisite for its activation. In the present study, the cellular targeting of LTGF- beta was examined. We detected the specific binding of 125I-large LTGF- beta 1 isolated from human platelets to smooth muscle cells but not to endothelial cells. A mAb against the latency-associated peptide (LAP) of large LTGF-beta 1 complex, which blocked the binding of 125I-large LTGF-beta 1 to smooth muscle cells, inhibited the activation of LTGF- beta during co-culture. The binding of 125I-large LTGF-beta 1 could not be competed either by mannose-6-phosphate (300 microM) or by the synthetic peptide Arg-Gly-Asp-Ser (300 micrograms/ml). These results indicate that the targeting of LTGF-beta to smooth muscle cells is required for the activation of LTGF-beta during co-culture of endothelial cells and smooth muscle cells. The targeting of LTGF-beta to smooth muscle cells is mediated by LAP, and the domain of LAP responsible for the targeting to smooth muscle cells may not be related to mannose-6-phosphate or an Arg-Gly-Asp sequence, both of which have been previously proposed as candidates for the cellular binding domains within LAP.  相似文献   

16.
17.
18.
Transforming growth factor-betas (TGF-betas) are produced by most cells in large latent complexes of TGF-beta and its propeptide (LAP) associated with a binding protein. The latent TGF-beta binding proteins (LTBPs-1, -2 and -3) mediate the secretion and, subsequently, the association of latent TGF-beta complexes with the extracellular matrix (ECM). The association of beta1-LAP with LTBP-1 was characterized at the molecular level with an expression system in mammalian cells, where TGF-beta1 and various fragments of LTBP-1 were co-expressed and secreted with the aid of a signal peptide synthesized to the LTBP-1 constructs. Immunoblotting of the fusion protein complexes indicated that the third 8-Cys repeat of LTBP-1 bound covalently to the LAP region of TGF-beta1. The cysteine required for the association between LTBP-1 and beta1-LAP was mapped to Cys33 of beta1-LAP. The N-terminal region of LTBP-1 consisting of the first 400 amino acids was found to associate covalently with the ECM. The data indicate that an 8-Cys repeat of LTBP is capable of covalent and specific protein-protein interactions. These interactions are mediated by exchanging cysteine disulfide bonds between the core 8-Cys repeat and an optionally associated protein during the secretion. This is, to our knowledge, the first demonstration of an extracellular protein module that is able to exchange cysteine disulfide bonds with heterologous ligand proteins.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine with important roles in inflammation, wound repair, and cancer. Cells secrete TGF-beta as a latent protein complex, consisting of disulfide-bonded homodimers of growth factor and latency-associated propeptide. Latency regulates extracellular TGF-beta action by controlling the levels of active growth factor available. We report here that active and latent TGF-beta were inactivated in vitro by reduction of the growth factor dimer under physiological conditions. We also demonstrate that the latency-associated propeptide has chaperone-like activity and partially protects TGF-beta from inactivation. TGF-beta inactivation occurred upon incubation with the physiological redox agents, cysteine, homocysteine, and reduced glutathione. Inactivation was temperature- and dose-dependent. While inactivation by physiological concentrations of redox agents was partial at 37 degrees C, active and latent TGF-beta were completely inactivated by raising the temperature in the presence of the redox agents. The mechanism of TGF-beta inactivation involved the generation of biologically inactive growth factor monomer and required the presence of free thiol groups, since thiol blockers protected TGF-beta from reduction. We conclude that non-enzymatic redox reactions may be involved in the regulation of extracellular TGF-beta activity. This might be of particular relevance in wound repair (e.g. in burns), as a mechanism protecting from excess TGF-beta activity, as well as in conditions involving redox dysregulation, such as reperfusion injury of the heart, Alzheimer's disease, and cancer.  相似文献   

20.
Annes JP  Rifkin DB  Munger JS 《FEBS letters》2002,511(1-3):65-68
Transforming growth factors-beta (TGFbeta1, 2 and 3) are secreted in a complex with their propeptides (latency-associated peptide 1 (LAP1), 2 and 3). TGFbeta signaling requires the dissociation of LAP and TGFbeta, a process termed latent TGFbeta activation. This process is a critical but incompletely understood step in the regulation of TGFbeta function. In particular, the extent to which activation mechanisms differ among the three TGFbeta isoforms is relatively unexplored. We show here that alphaVbeta6 binds and activates latent TGFbeta3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号