首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
TNF-like weak inducer of apoptosis (TWEAK) is a TNF family member with pleiotropic effects on a variety of cell types, one of which is the induction of proinflammatory cytokines by synovial fibroblasts derived from rheumatoid arthritis (RA) patients. In this study, we report that the serum TWEAK level was dramatically elevated during mouse collagen-induced arthritis (CIA) and blocking TWEAK by a neutralizing mAb significantly reduced the clinical severity of CIA. Histological analyses also revealed that TWEAK inhibition diminished joint inflammation, synovial angiogenesis, as well as cartilage and bone erosion. Anti-TWEAK treatment proved efficacious when administered just before the disease onset but not during the priming phase of CIA. Consistent with this, TWEAK inhibition did not affect either cellular or humoral responses to collagen. In contrast, TWEAK inhibition significantly reduced serum levels of a panel of arthritogenic mediators, including chemokines such as MIP-1beta (CCL-4), lymphotactin (XCL-1), IFN-gamma-inducible protein 10 (IP-10) (CXCL-10), MCP-1 (CCL-2), and RANTES (CCL-5), as well as the matrix metalloprotease-9. Exploring the possible role of the TWEAK/Fn14 pathway in human RA pathogenesis, we showed that TWEAK can target human primary chondrocytes and osteoblast-like cells, in addition to synovial fibroblasts. We further demonstrated that TWEAK induced the production of matrix metalloproteases in human chondrocytes and potently inhibited chondrogenesis and osteogenesis using in vitro models. These results provide evidence for a novel cytokine pathway that contributes to joint tissue inflammation, angiogenesis, and damage, as well as may inhibit endogenous repair, suggesting that TWEAK may be a new therapeutic target for human RA.  相似文献   

2.
TNF-like weak inducer of apoptosis (TWEAK), a member of the TNF superfamily, is a prominent inducer of proinflammatory cytokines in vitro and in vivo. We previously found that kidney cells display the TWEAK receptor Fn14, and that TWEAK stimulation of mesangial cells and podocytes induces a potent proinflammatory response. Several of the cytokines up-regulated in the kidney in response to TWEAK are instrumental in Lupus nephritis; we therefore hypothesized that TWEAK/Fn14 interactions may be important in the cascade(s) leading to renal damage in systemic Lupus erythematosus. In this study, we analyzed the effects of Fn14 deficiency in the chronic graft-vs-host model of SLE, and the benefits of treatment with an anti-TWEAK mAb in this mouse model. We found that anti-nuclear Ab titers were no different between C57BL/6 Fn14 wild-type and deficient mice injected with alloreactive bm12 splenocytes. However, kidney disease was significantly less severe in Fn14 knockout mice. Furthermore, kidney IgG deposition, IL-6, MCP-1, RANTES, and IP-10, as well as macrophage infiltration, were significantly decreased in Fn14-deficient mice with induced lupus. Similarly, mice with induced Lupus treated with an anti-TWEAK neutralizing mAb had significantly diminished kidney expression of IL-6, MCP-1, IL-10, as well as proteinuria, but similar autoantibody titers, as compared with control-treated mice. We conclude that TWEAK is an important mediator of kidney damage that acts by promoting local inflammatory events, but without impacting adaptive immunity in this experimental LN model. Thus, TWEAK blockade may be a novel therapeutic approach to reduce renal damage in SLE.  相似文献   

3.
TWEAK induces diverse cellular responses, including pro-inflammatory chemokine production, migration, proliferation, and cell death through the TWEAK receptor, Fn14. In the present study, we examined the effect of TWEAK or Fn14 expression in tumor cells on tumor outgrowth in vivo. Administration of neutralizing anti-TWEAK mAb significantly reduced the frequency of tumor rejection and shortened the survival of mice intraperitoneally inoculated with TWEAK-sensitive Fn14-expressing tumor cells. Moreover, anti-TWEAK mAb treatment promoted the subcutaneous growth of TWEAK-sensitive Fn14-expressing tumor cells, and this promotion was abolished by the inhibition of macrophage infiltration but not NK cell depletion. In contrast, administration of anti-TWEAK mAb had no apparent effect on the growth of TWEAK-resistant tumor cells, even if tumor cells expressed Fn14. On the other hand, TWEAK expression in tumor cells had no significant effect on subcutaneous tumor growth. These results indicate that TWEAK mediates anti-tumor effect of macrophages in vivo.  相似文献   

4.
5.
Rheumatoid arthritis (RA) is a chronic symmetric polyarticular joint disease that primarily affects the small joints of the hands and feet. The inflammatory process is characterized by infiltration of inflammatory cells into the joints, leading to proliferation of synoviocytes and destruction of cartilage and bone. In RA synovial tissue, the infiltrating cells such as macrophages, T cells, B cells and dendritic cells play important role in the pathogenesis of RA. Migration of leukocytes into the synovium is a regulated multi-step process, involving interactions between leukocytes and endothelial cells, cellular adhesion molecules, as well as chemokines and chemokine receptors. Chemokines are small, chemoattractant cytokines which play key roles in the accumulation of inflammatory cells at the site of inflammation. It is known that synovial tissue and synovial fluid from RA patients contain increased concentrations of several chemokines, such as monocyte chemoattractant protein-4 (MCP-4)/CCL13, pulmonary and activation-regulated chemokine (PARC)/CCL18, monokine induced by interferon-gamma (Mig)/CXCL9, stromal cell-derived factor 1 (SDF-1)/CXCL12, monocyte chemotactic protein 1 (MCP-1)/CCL2, macrophage inflammatory protein 1alpha (MIP-1alpha)/CCL3, and Fractalkine/CXC3CL1. Therefore, chemokines and chemokine-receptors are considered to be important molecules in RA pathology.  相似文献   

6.
Rheumatoid arthritis (RA) is an inflammatory disorder of the joints that affects 0.5–1 % of adults. Excessive growth of the fibroblast-like synoviocytes (FLS) promotes hyperplasia of synovial tissues and causes its invasion into the bone and cartilage, which eventually causes deformity and dysfunction of affected joints. Interleukin 35 (IL-35) was shown to suppress the inflammatory responses to collagen-induced arthritis (CIA) via upregulation of T regulatory cells and suppression of T helper type 17 cells in a mouse model. To study the effects of IL-35 on the proliferation and apoptosis frequency of cultured FLS isolated from mice with CIA as well as to examine the effects of IL-35 on CIA in vivo. Thirty DBA/1 J mice, which are used as an animal model for RA, were divided randomly (ten mice per group) to a CIA group (collagen treatment), a CIA + IL-35 group (collagen and IL-35 treatments), and a control group (no treatment). Starting on the 24th day after collagen administration, IL-35 was injected intraperitoneally into mice of the CIA + IL-35 group once per day for 10 days. An arthritis index was calculated, and pathological analysis of synovial tissue was performed. FLS isolated from CIA mice were treated with various concentrations of IL-35 (12.5–100 ng/ml). The MTT assay was used to examine FLS proliferation, and apoptosis frequency of FLS was detected by flow cytometry. On day 24, the CIA mice began to exhibit arthritis symptoms, and the symptoms rapidly progressed with time. Treatment with IL-35 significantly alleviated arthritis symptoms and reduced the synovial tissue inflammation. In addition, IL-35 treatment inhibited proliferation and promoted apoptosis in cultured FLS from CIA mice in a dose-dependent manner. IL-35 could ameliorate the symptoms of arthritis in the CIA mouse model in vivo and inhibited FLS proliferation while promoting FLS apoptosis in vitro, thereby exhibited the potential in inhibiting the progression of RA.  相似文献   

7.
B7 homologous protein (B7h)/B7-related protein 1 (B7RP-1) is a new member of the B7 family of costimulatory molecules that specifically interacts with inducible costimulator (ICOS) expressed on activated T cells. Collagen type II (CII)-induced arthritis (CIA) is an experimental model of arthritis that has been used to dissect the pathogenesis of human rheumatoid arthritis. In this study, we have investigated the effect of neutralizing anti-B7h mAb on the development and disease progression of CIA. Administration of anti-B7h mAb significantly ameliorated the disease as assessed by clinical arthritis score and histology in the joints, and a beneficial effect was also obtained by a delayed treatment after the onset of disease. Expression of ICOS and B7h was observed in the inflamed synovial tissue as well as in the draining lymph nodes (LNs) and expansion of ICOS(+) T cells in the LN was reduced by the anti-B7h mAb treatment. Expression of mRNA for proinflammatory cytokines such as TNF-alpha, IL-1beta, and IL-6 in the joints was inhibited by the treatment. Proliferative responses and production of IFN-gamma and IL-10 upon restimulation with CII in vitro were significantly inhibited in LN cells from the anti-B7h mAb-treated mice. Serum anti-CII IgG1, IgG2a, and IgG2b levels were also reduced. Our present results showed a beneficial effect of the B7h blockade on CIA through anti-inflammatory actions and inhibition of both Th1- and Th2-mediated immune responses, suggesting that the ICOS-B7h interaction plays an important role in the pathogenesis of CIA and thus the blockade of this pathway may be beneficial for the treatment of human rheumatoid arthritis.  相似文献   

8.
Okamoto H 《IUBMB life》2008,60(6):355-361
Vitamin K2 [menaquinone-4 (MK-4)] has been reported to induce apoptosis in hepatocellular carcinoma, leukemia, and MDS cell lines. The effects of MK-4 on the development of arthritis have never been addressed so far. In this study, we investigated the effect of MK-4 upon the proliferation of rheumatoid synovial cells and the development of arthritis in collagen-induced arthritis (CIA). We analyzed the effect of MK-4 on the proliferation of fibroblast-like synoviocytes (FLSs) using the 3-(4,5-demethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The proapoptotic effect of MK-4 upon FLS was investigated with annexin V staining and DNA fragmentation and caspase 3/7 assays. Moreover, we analyzed the effect of MK-4 on the development of CIA in female dark agouti rats. Our results indicated that MK-4 inhibited the proliferation of FLS and the development of CIA in a dose-dependent manner. We concluded that MK-4 may represent a new agent for the treatment of RA in the setting of combination therapy with other disease-modifying antirheumatic drugs.  相似文献   

9.
Prothymosin alpha (ProT) is regulated by c-Myc, an oncoprotein overexpressed in synovium of rheumatoid arthritis, and is associated with cell proliferation. However, ProT also exerts immunomodulatory activities. The growth-promoting activity of ProT can be abolished by deleting its nuclear localization signal (NLS). In this study, we showed that AdProTDeltaNLS, an adenoviral vector encoding ProT lacking the NLS, did not enhance the proliferation of synovial fibroblasts. AdProTDeltaNLS treatment abolished the up-regulation of the MIP-1alpha promoter activity induced by TNF-alpha in synovial fibroblasts. AdProTDeltaNLS suppressed macrophage chemotaxis and reduced macrophage infiltration into the ankle joints in rats with collagen-induced arthritis (CIA). Neutralization test confirmed the involvement of MIP-1alpha in macrophage chemotaxis. Administration of AdProTDeltaNLS reduced the severity of CIA in the clinical, radiographic, and histological aspects. The levels of TNF-alpha (mean +/- SEM, 1261.9 +/- 107.9 vs 2880.1 +/- 561.4 pg/mg total protein; p < 0.05), IL-1beta (56.8 +/- 8.0 vs 109.2 +/- 4.9 pg/mg total protein; p < 0.01), and MIP-1alpha (41.7 +/- 3.6 vs 55.2 +/- 1.1 pg/mg total protein; p < 0.05) in the ankle joints were lower in the AdProTDeltaNLS-treated rats with CIA than those in their control counterparts. In the AdProTDeltaNLS-treated ankle joints, matrix metalloproteinase-9 expression was decreased by 40% and infiltrating macrophages reduced by 50%. Our results demonstrate that intra-articular delivery of AdProTDeltaNLS significantly ameliorated the clinical course of CIA in rats. This study is the first to suggest that ProT lacking the NLS may have therapeutic potential for the management of rheumatoid arthritis.  相似文献   

10.

Introduction

TNF-like weak inducer of apoptosis (TWEAK) has been proposed as a mediator of inflammation and bone erosion in rheumatoid arthritis (RA). This study aimed to investigate TWEAK and TWEAK receptor (Fn14) expression in synovial tissue from patients with active and inactive rheumatoid arthritis (RA), osteoarthritis (OA) and normal controls and assess soluble (s)TWEAK levels in the synovial fluids from patients with active RA and OA. Effects of sTWEAK on osteoclasts and osteoblasts were investigated in vitro.

Methods

TWEAK and Fn14 expression were detected in synovial tissues by immunohistochemistry (IHC). Selected tissues were dual labelled with antibodies specific for TWEAK and lineage-selective cell surface markers CD68, Tryptase G, CD22 and CD38. TWEAK mRNA expression was examined in human peripheral blood mononuclear cells (PBMC) sorted on the basis of their expression of CD22. sTWEAK was detected in synovial fluid from OA and RA patients by ELISA. The effect of sTWEAK on PBMC and RAW 264.7 osteoclastogenesis was examined. The effect of sTWEAK on cell surface receptor activator of NF Kappa B Ligand (RANKL) expression by human osteoblasts was determined by flow cytometry.

Results

TWEAK and Fn14 expression were significantly higher in synovial tissue from all patient groups compared to the synovial tissue from control subjects (P < 0.05). TWEAK was significantly higher in active compared with inactive RA tissues (P < 0.05). TWEAK expression co-localised with a subset of CD38+ plasma cells and with CD22+ B-lymphocytes in RA tissues. Abundant TWEAK mRNA expression was detected in normal human CD22+ B cells. Higher levels of sTWEAK were observed in synovial fluids isolated from active RA compared with OA patients. sTWEAK did not stimulate osteoclast formation directly from PBMC, however, sTWEAK induced the surface expression of RANKL by human immature, STRO-1+ osteoblasts.

Conclusions

The expression of TWEAK by CD22+ B cells and CD38+ plasma cells in RA synovium represents a novel potential pathogenic pathway. High levels of sTWEAK in active RA synovial fluid and of TWEAK and Fn14 in active RA tissue, together with the effect of TWEAK to induce osteoblastic RANKL expression, is consistent with TWEAK/Fn14 signalling being important in the pathogenesis of inflammation and bone erosion in RA.  相似文献   

11.
The enzyme methionine aminopeptidase-2 (MetAP-2) is thought to play an important function in human endothelial cell proliferation, and as such provides a valuable target in both inflammation and cancer. Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with increased synovial vascularity, and hence is a potential therapeutic target for angiogenesis inhibitors. We examined the use of PPI-2458, a selective non-reversible inhibitor of MetAP-2, in disease models of RA, namely acute and chronic collagen-induced arthritis (CIA) in mice. Whilst acute CIA is a monophasic disease, CIA induced with murine collagen type II manifests as a chronic relapsing arthritis and mimics more closely the disease course of RA. Our study showed PPI-2458 was able to reduce clinical signs of arthritis in both acute and chronic CIA models. This reduction in arthritis was paralleled by decreased joint inflammation and destruction. Detailed mechanism of action studies demonstrated that PPI-2458 inhibited human endothelial cell proliferation and angiogenesis in vitro, without affecting production of inflammatory cytokines. Furthermore, we also investigated release of inflammatory cytokines and chemokines from human RA synovial cell cultures, and observed no effect of PPI-2458 on spontaneous expression of cytokines and chemokines, or indeed on the angiogenic molecule vascular endothelial growth factor (VEGF). These results highlight MetAP-2 as a good candidate for therapeutic intervention in RA.  相似文献   

12.
In the present study we analyse chemokine expression in the remodelling of subchondral bone in arthritis patients. Trabecular bone biopsies were tested by immunohistochemistry to identify interleukin (IL)-8, GRO-alpha, MCP-1, RANTES, MIP-1alpha and MIP-1beta expression. Subsequently, we evaluated by immunoassay the effect of interferon (IFN)-gamma and IL-6 on chemokine production by osteoarthritis (OA), rheumatoid arthritis (RA) and post-traumatic (PT) patients' isolated osteoblasts (OB). OB constitutively produced in situ IL-8, GRO-alpha, MCP-1, RANTES and MIP-1alpha. MIP-1beta was positive only in mononuclear cells. In RA many of these chemokines were also produced by mononuclear cells. IFN-gamma significantly down-regulated IL-8 and up-regulated MCP-1 produced by OB from all patients tested, whereas it did not affect the other chemokines analysed. Moreover, IFN-gamma reduced IL-1beta-stimulated IL-8 production but significantly increased both MCP-1 and RANTES. Interestingly, IL-6 significantly downregulated IFN-gamma-induced MCP-1 production, that was significantly lower in OA compared to RA patients. OB expressed chemokines both in vivo and in vitro suggesting that these cells are primary effectors in the bone capable of regulating autocrine/paracrine circuits that affect bone remodelling in these diseases.  相似文献   

13.
Bao L  Zhu Y  Zhu J  Lindgren JU 《Cytokine》2005,31(1):64-71
Collagen-induced arthritis (CIA) is a widely used model of human rheumatoid arthritis (RA) characterized by chronic inflammation of the synovial joints. The pathogenesis of RA and CIA has not been completely defined, but both involve the recruitment of leukocytes and lymphocytes to the joints and Th1-type cell mediated autoimmune responses. The C-C chemokine receptor 5 (CCR5) is preferentially expressed on Th1 cells and has been strongly implicated in inflammatory process through trafficking of leukocytes and lymphocytes into the sites of inflammation. We investigated the role of the CCR5 in CIA using CCR5 knockout mice (CCR5-/-) in which we analyzed the consequences of CCR5 deficiency for the immune response and inflammation. We found that CCR5-/- mice showed a significant reduction in the incidence of CIA after collagen II (CII)-immunization as compared to wild-type (CCR5+/+) mice. The reduced incidence seen in CCR5-/- mice was associated with these animals having significantly lower IgG levels, especially IgG2a and IgG2b antibodies against CII, as well as an obviously augmented IL-10 production in splenocytes. Overproduction of MIP-1beta in CCR5-deficient mice after CII-immunization may contribute partially to the occurrence of arthritis.  相似文献   

14.
TWEAK, a member of the TNF family, induces cell death in some tumor cell lines, but also induces proliferation of endothelial cells and angiogenesis. Recently, fibroblast growth factor-inducible 14 (Fn14) has been identified to be a TWEAK receptor, which may be responsible for the proliferation of endothelial cells and angiogenesis. In this study, we investigated the pro-inflammatory effect of TWEAK on human umbilical vein endothelial cells (HUVEC). We demonstrated that TWEAK could not only induce the proliferation and migration but also upregulate the cell surface expression of adhesion molecules such as ICAM-1 and E-selectin, and induce the secretion of chemokines such as IL-8 and MCP-1 in HUVEC. Moreover, by using an anti-Fn14 mAb that blocks the TWEAK/Fn14 interaction, we demonstrated that Fn14 was constitutively expressed on HUVEC and totally mediated the biological effects of TWEAK on HUVEC. These results indicated that TWEAK could induce pro-inflammatory reactions via Fn14 on HUVEC.  相似文献   

15.
Background. Angiogenesis is involved in rheumatoid arthritis (RA) leading to leucocyte recruitment and inflammation in the synovium. Furthermore, synovial inflammation itself further potentiates endothelial proliferation and angiogenesis. In this study, we aimed at evaluating the reciprocical relationship between synovial inflammation and angiogenesis in a RA model, namely collagen-induced arthritis (CIA). Methods. CIA was induced by immunization of DBA/1 mice with collagen type II in adjuvant. Endothelial cells were detected using a GSL-1 lectin-specific immunohistochemical staining on knee joint sections. Angiogenesis, clinical scores and histological signs of arthritis were evaluated from the induction of CIA until the end of the experiment. Angiogenesis was quantified by counting both the isolated endothelial cells and vessels stained on each section. To evaluate the effect of increased angiogenesis on CIA, VEGF gene transfer was performed using an adeno-associated virus encoding VEGF (AAV-VEGF), by intra-muscular or intra-articular injection in mice with CIA. Results. We showed an increase in synovial angiogenesis from day 6 to day 55 after CIA induction, and, moreover, joint vascularization and clinical scores of arthritis were correlated (p < 0.0001, r = 0.61). Vascularization and histological scores were also correlated (p = 0.0006, r = 0.51). Systemic VEGF overexpression in mice with CIA was followed by an aggravation of arthritis as compared to AAV-lacZ control group (p < 0.0001). In contrast, there was no difference in clinical scores between control mice and mice injected within the knee with AAV-VEGF, even if joint vascularization was higher in this group than in all other groups (p = 0,05 versus non-injected group). Intra-articular AAV-VEGF injections induced more severe signs of histological inflammation and bone destruction than AAV-Lac Z or no injection. Conclusion. Angiogenesis and joint inflammation evolve in parallel during collagen-induced arthritis. Furthermore, this work shows that exogenous VEGF can aggravate CIA. It is direct evidence that the increase in joint vascularization leads to an exacerbation of arthritis. Taken together, these results emphasize the role of angiogenesis in inflammatory arthritis. It also suggests an early involvement of angiogenesis in joint inflammation.  相似文献   

16.
Interleukin-17 is a T cell-derived proinflammatory cytokine. This cytokine is suspected to be involved in the development of rheumatoid arthritis (RA) because this cytokine expression is augmented in synovial tissues of RA patients. The pathogenic roles of IL-17 in the development of RA, however, still remain to be elucidated. In this study, effects of IL-17 deficiency on collagen-induced arthritis (CIA) model were examined using IL-17-deficient mice (IL-17(-/-) mice). We found that CIA was markedly suppressed in IL-17(-/-) mice. IL-17 was responsible for the priming of collagen-specific T cells and collagen-specific IgG2a production. Thus, these observations suggest that IL-17 plays a crucial role in the development of CIA by activating autoantigen-specific cellular and humoral immune responses.  相似文献   

17.
ObjectivesTNF-like weak inducer of apoptosis (TWEAK), a member of the TNF superfamily, has been shown to increase cytokine production by rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). In this study, we determined the effect of interaction between TWEAK and its receptor fibroblast growth factor-inducible-14 (Fn14) on cytokine expression in RAFLS.MethodsRAFLS were obtained from surgical synovial specimens and used at passage 5–10. Cytokine protein and mRNA expression were measured with ELISA and real time-PCR, respectively. Apoptotic cells were detected by TUNEL assay. RelB activation was detected by Western blot analysis.ResultsTWEAK inhibited IL-6 production from total synovial cells from RA. TWEAK weakly induced FLS IL-6 and IL-8, but in contrast TWEAK dose-dependently inhibited IL-6 and IL-8 production by TNFα-activated FLS. TWEAK did not induce apoptosis in FLS but inhibited proliferation of TNFα-activated FLS. TWEAK induced RelB activation and suppressed IL-6 mRNA expression in TNFα-activated FLS and both of these phenomenon were abolished by inhibition of new protein synthesis with cycloheximide.ConclusionsTWEAK has a previously unsuspected inhibitory effect on cytokine production by TNFα-activated RAFLS. This observation suggests that the effects of TWEAK on cytokine expression varies with the pro-inflammatory context, and that in TNFα-activated states such as RA TWEAK may have a net inhibitory effect.  相似文献   

18.
Synovial tissue of rheumatoid arthritis (RA) patients is characterised by an influx and retention of CD97-positive inflammatory cells. The ligands of CD97, CD55, chondroitin sulfate B, and α5β1 (very late antigen [VLA]-5) are expressed abundantly in the synovial tissue predominantly on fibroblast-like synoviocytes, endothelium, and extracellular matrix. Based upon this expression pattern, we hypothesise CD97 expression to result in accumulation of inflammatory cells in the synovial tissue of RA patients. To determine the therapeutic effect of blocking CD97 in an animal model of RA, collagen-induced arthritis was induced in a total of 124 DBA/J1 mice. Treatment was started on day 21 (early disease) or on day 35 (longstanding disease) with the blocking hamster anti-mouse CD97 monoclonal antibody (mAb) 1B2, control hamster immunoglobulin, or NaCl, applied intraperitoneally three times a week. The paws were evaluated for clinical signs of arthritis and, in addition, examined by radiological and histological analysis. Mice receiving 0.5 mg CD97 mAb starting from day 21 had significantly less arthritis activity and hind paw swelling. Furthermore, joint damage and inflammation were reduced and granulocyte infiltration was decreased. When treatment was started on day 35, CD97 mAb treatment had similar effects, albeit less pronounced. The results support the notion that CD97 contributes to synovial inflammation and joint destruction in arthritis.  相似文献   

19.

Introduction

Biological drugs are effective in patients with rheumatoid arthritis (RA), but increase severe infections. The CC chemokine receptor (CCR) 9 antagonist was effective for Crohn’s disease without critical adverse effects including infections in clinical trials. The present study was carried out to explore the pathogenic roles of chemokine (C-C motif) ligand (CCL) 25 and its receptor, CCR9, in autoimmune arthritis and to study if the CCR9 antagonist could be a new treatment for RA.

Methods

CCL25 and CCR9 expression was examined with immunohistochemistry and Western blotting. Concentration of interleukin (IL)-6, matrix metalloproteinase (MMP)-3 and tumor necrosis factor (TNF)-α was measured with enzyme-linked immunosorbent assays. Effects of abrogating CCR9 on collagen-induced arthritis (CIA) was evaluated using CCR9-deficient mice or the CCR9 antagonist, CCX8037. Fluorescence labeled-CD11b+ splenocytes from CIA mice were transferred to recipient CIA mice and those infiltrating into the synovial tissues of the recipient mice were counted.

Results

CCL25 and CCR9 proteins were found in the RA synovial tissues. CCR9 was expressed on macrophages, fibroblast-like synoviocytes (FLS) and dendritic cells in the synovial tissues. Stimulation with CCL25 increased IL-6 and MMP-3 production from RA FLS, and IL-6 and TNF-α production from peripheral blood monocytes. CIA was suppressed in CCR9-deficient mice. CCX8037 also inhibited CIA and the migration of transferred CD11b+ splenocytes into the synovial tissues.

Conclusions

The interaction between CCL25 and CCR9 may play important roles in cell infiltration into the RA synovial tissues and inflammatory mediator production. Blocking CCL25 or CCR9 may represent a novel safe therapy for RA.  相似文献   

20.

Introduction

It is well known that neutrophils play very important roles in the development of rheumatoid arthritis (RA) and interleukin (IL)-8 is a critical chemokine in promoting neutrophil migration. We previously showed that increased production of Cyr61 by fibroblast-like synoviocytes (FLS) in RA promotes FLS proliferation and Th17 cell differentiation, thus Cyr61 is a pro-inflammatory factor in RA pathogenesis. In this study, we explored the role of Cyr61 in neutrophil migration to the joints of RA patients.

Methods

RA FLS were treated with Cyr61 and IL-8 expression was analyzed by real-time PCR and ELISA. The migration of neutrophils recruited by the culture supernatants was determined by the use of a chemotaxis assay. Mice with collagen-induced arthritis (CIA) were treated with anti-Cyr61 monoclonal antibodies (mAb), or IgG1 as a control. Arthritis severity was determined by visual examination of the paws and joint destruction was determined by hematoxylin-eosin (H&E) staining. Signal transduction pathways in Cyr61-induced IL-8 production were investigated by real-time PCR, western blotting, confocal microscopy, luciferase reporter assay or chromatin immunoprecipitation (ChIP) assay.

Results

We found that Cyr61 induced IL-8 production by RA FLS in an IL-1β and TNF-α independent pathway. Moreover, we identified that Cyr61-induced IL-8-mediated neutrophil migration in vitro. Using a CIA animal model, we found that treatment with anti-Cyr61 mAb led to a reduction in MIP-2 (a counterpart of human IL-8) expression and decrease in neutrophil infiltration, which is consistent with an attenuation of inflammation in vivo. Mechanistically, we showed that Cyr61 induced IL-8 production in FLS via AKT, JNK and ERK1/2-dependent AP-1, C/EBPβ and NF-κB signaling pathways.

Conclusions

Our results here reveal a novel role of Cyr61 in the pathogenesis of RA. It promotes neutrophil infiltration via up-regulation of IL-8 production in FLS. Taken together with our previous work, this study provides further evidence that Cyr61 plays a key role in the vicious cycle formed by the interaction between infiltrating neutrophils, proliferated FLS and activated Th17 cells in the development of RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号