首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Images of giant unilamellar vesicles (GUVs) formed by different phospholipid mixtures (1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1, 2-dilauroyl-sn-glycero-3-phosphocholine (DPPC/DLPC) 1:1 (mol/mol), and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPE/DPPC), 7:3 and 3:7 (mol/mol) at different temperatures were obtained by exploiting the sectioning capability of a two-photon excitation fluorescence microscope. 6-Dodecanoyl-2-dimethylamino-naphthalene (LAURDAN), 6-propionyl-2-dimethylamino-naphthalene (PRODAN), and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE) were used as fluorescent probes to reveal domain coexistence in the GUVs. We report the first characterization of the morphology of lipid domains in unsupported lipid bilayers. From the LAURDAN intensity images the excitation generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domain. On the basis of the phase diagram of each lipid mixture, we found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region in all lipid mixtures. At temperatures corresponding to the phase coexistence region we observed lipid domains of different sizes and shapes, depending on the lipid sample composition. In the case of GUVs formed by DPPE/DPPC mixture, the gel DPPE domains present different shapes, such as hexagonal, rhombic, six-cornered star, dumbbell, or dendritic. At the phase coexistence region, the gel DPPE domains are moving and growing as the temperature decreases. Separated domains remain in the GUVs at temperatures corresponding to the solid region, showing solid-solid immiscibility. A different morphology was found in GUVs composed of DLPC/DPPC 1:1 (mol/mol) mixtures. At temperatures corresponding to the phase coexistence, we observed the gel domains as line defects in the GUV surface. These lines move and become thicker as the temperature decreases. As judged by the LAURDAN GP histogram, we concluded that the lipid phase characteristics at the phase coexistence region are different between the DPPE/DPPC and DLPC/DPPC mixtures. In the DPPE/DPPC mixture the coexistence is between pure gel and pure liquid domains, while in the DLPC/DPPC 1:1 (mol/mol) mixture we observed a strong influence of one phase on the other. In all cases the domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This observation is also novel for unsupported lipid bilayers.  相似文献   

2.
3.
The miscibility of phosphatidylcholine (PC) and phosphatidylglycerol (PG) with different chain lengths (n = 14, 16) was examined by differential scanning calorimetry (DSC) at pH 2 and pH 7. The determination of the coexistence curves of the phase diagrams was performed using a new procedure, namely the direct simulation of the heat capacity curves as described recently (Johann et al. 1996, Garidel et al. 1997). From the simulations of the heat capacity curves first estimates for the nonideality parameters for nonideal mixing as a function of composition were obtained and phase diagrams were constructed using temperatures for the onset and offset of melting which were corrected for the broadening effect caused by a decrease in cooperativity of the transition. In most cases, the composition dependence of the nonideality parameters indicated nonsymmetric mixing behavior. The phase diagrams were further refined by simulations of the coexisting curves using a four-parameter model to account for nonideal and nonsymmetric mixing in the gel as well as in the liquid-crystalline phase. The mixing behavior of the systems was analyzed as a function of pH and chain length difference to elucidate the effect of these two parameters on the shape of the phase diagrams. At pH 7 the phase boundaries are much closer together and a narrower coexistence range is obtained compared to the corresponding phase diagrams at pH 2. For DPPC/DMPG at pH 2, the shape of the phase diagram and the strongly positive nonideality parameter ρ 1 for the liquid-crystalline phase indicates an upper azeotropic point. This indicates an unusual behavior of the system, namely more pronounced clustering of like molecules in the liquid-crystalline phase compared to the gel phase. Received: 17 March 1997 / Accepted: 4 July 1997  相似文献   

4.
To determine the nonideal mixing of two lipid components within the membrane, lipid cross-linking experiments were carried out on dipalmitoylphosphatidylethanolamine (DPPE) vesicles and on dipalmitoylphosphatidylethanolamine/dipalmitoylphosphatidylserine (DPPE/DPPS) vesicles. By comparison of the cross-linking reactions on both types of vesicle the mean neighbourhood relations within the binary lipid mixture can be obtained. To elucidate the relationship between cluster formation and phase transition, the temperature dependences of the lipid arrangement within the vesicle membrane and of the lipid order parameter describing the fluidity of the membrane were measured. Cluster size and phase transition correlate: during the phase transition of the lipid species with the lower phase-transition temperature (DPPS) the nonideality of the mixture increases by phase separation. Above the phase transition temperature of the second lipid species (DPPE) the clusters disappear and a slight alternating lipid arrangement is characteristic of the fluid phase.  相似文献   

5.
A simulation program using least-squares minimization was developed to calculate and fit heat capacity (cp) curves to experimental thermograms of dilute aqueous dispersions of phospholipid mixtures determined by high-sensitivity differential scanning calorimetry. We analyzed cp curves and phase diagrams of the pseudobinary aqueous lipid systems 1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol/ 1,2-dipalmitoyl-sn-glycero-3phosphatidylcholine (DMPG/DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphatidic acid/1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DMPA/DPPC) at pH 7. The simulation of the cp curves is based on regular solution theory using two nonideality parameters rho g and rho l for symmetric nonideal mixing in the gel and the liquid-crystalline phases. The broadening of the cp curves owing to limited cooperativity is incorporated into the simulation by convolution of the cp curves calculated for infinite cooperativity with a broadening function derived from a simple two-state transition model with the cooperative unit size n = delta HVH/delta Hcal as an adjustable parameter. The nonideality parameters and the cooperative unit size turn out to be functions of composition. In a second step, phase diagrams were calculated and fitted to the experimental data by use of regular solution theory with four different model assumptions. The best fits were obtained with a four-parameter model based on nonsymmetric, nonideal mixing in both phases. The simulations of the phase diagrams show that the absolute values of the nonideality parameters can be changed in a certain range without large effects on the shape of the phase diagram as long as the difference of the nonideality parameters for rho g for the gel and rho l for the liquid-crystalline phase remains constant. The miscibility in DMPG/DPPC and DMPA/DPPC mixtures differs remarkably because, for DMPG/DPPC, delta rho = rho l -rho g is negative, whereas for DMPA/DPPC this difference is positive. For DMPA/DPPC, this difference is interpreted as being caused by a negative rho g value, indicating complex formation of unlike molecules in the gel phase.  相似文献   

6.
The miscibility properties of ether- and ester-linked phospholipids in two-component, fully hydrated bilayers have been studied by differential scanning calorimetry (DSC) and Raman spectroscopy. Mixtures of 1,2-di-O-hexadecyl-rac-glycero-3-phosphocholine (DHPC) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DHPE) and of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with 1,2-di-O-hexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) have been investigated. The phase diagram for the DPPC/DHPE mixtures indicates that these two phospholipids are miscible in all proportions in the nonrippled bilayer gel phase. In contrast, the DHPC/DPPE mixtures display two regions of gel phase immiscibility between 10 and 30 mol% DPPE. Raman spectroscopic measurements of DHPC/DPPE mixtures in the C-H stretching mode region suggest that this immiscibility arises from the formation of DHPC-rich interdigitated gel phase domains with strong lateral chain packing interactions at temperatures below 27 degrees C. However, in the absence of interdigitation, our findings, and those of others, lead to the conclusion that the miscibility properties of mixtures of ether- and ester-linked phospholipids are determined by the nature of the phospholipid headgroups and are independent of the character of the hydrocarbon chain linkages. Thus it seems unlikely that the ether linkage has any significant effect on the miscibility properties of phospholipids in biological membranes.  相似文献   

7.
In this work we have investigated model lipid mixtures simulating a lipid component of oral stratum corneum (OSC). Neutron diffraction experiments on oriented samples have revealed that SM (bovine brain)/dipalmitoylphosphatidylethanolamine/dipalmitoylphosphatidylcholine (DPPE/DPPC) mixtures at molar ratios of 1/2/1 and 1/1/1 are one-phase membranes. The incorporation of low concentrations of ceramide 6 and cholesterol into SM/DPPC/DPPE bilayers does not result in a phase separation, affecting membrane hydration. The model OSC membrane composed of ceramide 6/cholesterol/fatty acids/cholesterol sulfate/SM (bovine brain)/DPPE/DPPC is characterized by coexistence of several lamellar phases, that behave differently during their hydration in water excess. The phase with lamellar repeat distance of about 45 Å is likely a ceramide-rich phase and shows a restricted swelling in water, while another phase with repeat distance of 50 Å swells very quickly on 15 Å and then disappears. Our results indicate that phospholipid-rich and ceramide-rich domains could possibly coexist in the intercellular space of oral epithelium.  相似文献   

8.
P Garidel  C Johann    A Blume 《Biophysical journal》1997,72(5):2196-2210
The miscibilities of phosphatidic acids (PAs) and phosphatidylcholines (PCs) with different chain lengths (n = 14, 16) at pH 4, pH 7, and pH 12 were examined by differential scanning calorimetry. Simulation of heat capacity curves was performed using a new approach that incorporates changes of cooperativity of the transition in addition to nonideal mixing in the gel and the liquid-crystalline phase as a function of composition. From the simulations of the heat capacity curves, first estimates for the nonideality parameters for nonideal mixing as a function of composition were obtained, and phase diagrams were constructed using temperatures for onset and end of melting, which were corrected for the broadening effect caused by a decrease in cooperativity. In all cases the composition dependence of the nonideality parameters indicated nonsymmetrical mixing behavior. The phase diagrams were therefore further refined by simulations of the coexistence curves using a four-parameter approximation to account for nonideal and nonsymmetrical mixing in the gel and the liquid-crystalline phase. The mixing behavior was studied at three different pH values to investigate how changes in headgroup charge of the PA influences the miscibility. The experiments showed that at pH 7, where the PA component is negatively charged, the nonideality parameters are in most cases negative, indicating that electrostatic effects favor a mixing of the two components. Partial protonation of the PA component at pH 4 leads to strong changes in miscibility; the nonideality parameters for the liquid-crystalline phase are now in most cases positive, indicating clustering of like molecules. The phase diagram for 1,2-dimyristoyl-sn-glycero-3-phosphatidic acid:1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine mixtures at pH 4 indicates that a fluid-fluid immiscibility is likely. The results show that a decrease in ionization of PAs can induce large changes in mixing behavior. This occurs because of a reduction in electrostatic repulsion between PA headgroups and a concomitant increase in attractive hydrogen bonding interactions.  相似文献   

9.
Giant unilamellar vesicles (GUVs) composed of different phospholipid binary mixtures were studied at different temperatures, by a method combining the sectioning capability of the two-photon excitation fluorescence microscope and the partition and spectral properties of 6-dodecanoyl-2-dimethylamino-naphthalene (Laurdan) and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE). We analyzed and compared fluorescence images of GUVs composed of 1,2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DLPC/DPPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DLPC/DSPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-diarachidoyl-sn-glycero-3-phosphocholine (DLPC/DAPC), 1, 2-dimyristoyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DMPC/DSPC) (1:1 mol/mol in all cases), and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine/1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPE/DMPC) (7:3 mol/mol) at temperatures corresponding to the fluid phase and the fluid-solid phase coexistence. In addition, we studied the solid-solid temperature regime for the DMPC/DSPC and DMPE/DMPC mixtures. From the Laurdan intensity images the generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domains. We found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region for all of the lipid mixtures. At temperatures corresponding to phase coexistence we observed concurrent fluid and solid domains in the GUVs independent of the lipid mixture. In all cases the lipid solid domains expanded and migrated around the vesicle surface as we decreased the temperature. The migration of the solid domains decreased dramatically at temperatures close to the solid-fluid-->solid phase transition. For the DLPC-containing mixtures, the solid domains showed line, quasicircular, and dendritic shapes as the difference in the hydrophobic chain length between the components of the binary mixture increases. In addition, for the saturated PC-containing mixtures, we found a linear relationship between the GP values for the fluid and solid domains and the difference between the hydrophobic chain length of the binary mixture components. Specifically, at the phase coexistence temperature region the difference in the GP values, associated with the fluid and solid domains, increases as the difference in the chain length of the binary mixture component increases. This last finding suggests that in the solid-phase domains, the local concentration of the low melting temperature phospholipid component increases as the hydrophobic mismatch decreases. At the phase coexistence temperature regime and based on the Laurdan GP data, we observe that when the hydrophobic mismatch is 8 (DLPC/DAPC), the concentration of the low melting temperature phospholipid component in the solid domains is negligible. This last observation extends to the saturated PE/PC mixtures at the phase coexistence temperature range. For the DMPC/DSPC we found that the nonfluorescent solid regions gradually disappear in the solid temperature regime of the phase diagram, suggesting lipid miscibility. This last result is in contrast with that found for DMPE/DMPC mixtures, where the solid domains remain on the GUV surface at temperatures corresponding to that of the solid region. In all cases the solid domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This last finding extends previous observations of GUVs composed of DPPE/DPPC and DLPC/DPPC mixtures (, Biophys. J. 78:290-305).  相似文献   

10.
Monolayers, fluorescence polarization, differential scanning calorimetry and X-ray diffraction experiments have been carried out to examine the effect of the polypeptide antibiotic polymyxin B on the phase behaviour of dipalmitoylphosphatidylglycerol (DPPG) either pure or mixed with dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC). It is shown that in both phosphatidylglycerol alone and phosphatidylglycerol/phosphatidylcholine mixtures, polymyxin B can induce either phase separation between lipid domains of various compositions or interdigitation of the acyl chains in the solid state, without segregation of the two lipids. Phase separation was observed by fluorescence and differential scanning calorimetry after addition of the antibiotic to vesicles composed of mixtures of DMPC and DPPG in conditions where polymyxin B did not saturate phosphatidylglycerol (DPPG to polymyxin B molar ratio, Ri, higher than 15). Phase separation was also observed in mixed monolayers of DPPC and of the 5:1 DPPG/polymyxin B complex, at high surface pressure. Acyl chain interdigitation was observed by X-ray diffraction in both 5:1 DPPG/polymyxin B mixtures and preformed 5:5:1 DMPC/DPPG/polymyxin B mixture, in which the antibiotic saturates phosphatidylglycerol (Ri 5). In both cases, raising the temperature gave rise to a complex double-peaked phase transition by differential scanning calorimetry, from the interdigitating phase to a normal L alpha lamellar phase. As it is known that polymyxin B does not interact with phosphatidylcholine, the data presented show that, when phosphatidylcholine and phosphatidylglycerol are mixed together, a phase perturbation such as acyl chain interdigitation, which normally affects only phosphatidylglycerol, is also felt by phosphatidylcholine.  相似文献   

11.
In this paper we present a comparative study of supported lipid bilayers (SLBs) and proteolipid sheets (PLSs) obtained from deposition of lactose permease (LacY) of Escherichia coli proteoliposomes in plane. Lipid matrices of two components, phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), at a 3:1, mol/mol ratio, were selected to mimic the inner membrane of the bacteria. The aim was to investigate how species of different compactness and stiffness affect the integration, distribution and nanomechanical properties of LacY in mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) or 1,2-palmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) with 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG). Both compositions displayed phase separation and were investigated by atomic force microscopy (AFM) imaging and force-spectroscopy (FS) mode. PLSs displayed two separated, segregated domains with different features that were characterised by FS and force-volume mode. We correlated the nanomechanical characteristics of solid-like gel phase (Lβ) and fluid liquid-crystalline phase (Lα) with phases emerging in presence of LacY. We observed that for both compositions, the extended PLSs showed a Lβ apparently formed only by lipids, whilst the second domain was enriched in LacY. The influence of the lipid environment on LacY organisation was studied by performing protein unfolding experiments using the AFM tip. Although the pulling experiments were unspecific, positive events were obtained, indicating the influence of the lipid environment when pulling the protein. A possible influence of the lateral surface pressure on this behaviour is suggested by the higher force required to pull LacY from DPPE:POPG than from POPE:POPG matrices. This is related to higher forces governing protein–lipid interaction in presence of DPPE.  相似文献   

12.
Developing rabbits reutilize the phosphatidylcholine of surfactant with an efficiency of about 95%. The efficiency of reutilization of other components of surfactant have not been determined. 3-day-old rabbits were injected intratracheally with [3H]dipalmitoylphosphatidylcholine (DPPC) mixed with unlabeled natural surfactant and either disaturated [32P]phosphatidylglycerol (DSPG) or [14C]dipalmitoylphosphatidyl-ethanolamine (DPPE). The recovery of [3H]DPPC, [14C]DPPE, and [32P]DSPG in the alveolar wash was measured at different times after injection. By plotting the ratio of [32P]DSPG to [3H]DPPC or [14C]DPPE to [3H]DPPC counts/min in the alveolar wash vs. time after injection we showed that these two phospholipids are reutilized less efficiently than phosphatidylcholine. Based on other studies, several assumptions were made about the kinetics of surfactant phosphatidylethanolamine and phosphatidylglycerol. From the slopes of the semilog plots of total [14C]DPPE and total [32P]DSPG counts/min in the alveolar wash vs. time and these assumptions, we determined that these two phospholipids were reutilized at an efficiency of only 79%.  相似文献   

13.
A ternary lipid mixture of palmitoyl-oleoyl-phosphatidylcholine (POPC), palmitoyl-erythro-sphingosylphosphorylcholine (PSM), and cholesterol at a mixing ratio of 37.5:37.5:25 mol/mol/mol was characterized using fluorescence microscopy, 2H NMR, and electron paramagnetic resonance spectroscopy. The synthetic PSM provides an excellent molecule for studying the molecular properties of raft phases. It shows a narrow phase transition at a temperature of 311 K and is commercially available with a perdeuterated sn-2 chain. Fluorescence microscopy shows that large inhomogeneities in the mixed membranes are observed in the coexistence region of liquid-ordered and liquid-disordered lipid phases. Above 310 K, no optically detectable phase separation was shown. Upon decrease in temperature, a redistribution of the cholesterol into large liquid-ordered PSM/cholesterol domains and depletion of cholesterol from liquid-disordered POPC domains was observed by 2H NMR and electron paramagnetic resonance experiments. However, there is no complete segregation of the cholesterol into the liquid-ordered phase and also POPC-rich domains contain the sterol in the phase coexistence region. We further compared order parameters and packing properties of deuterated PSM or POPC in the raft mixture at 313 K, i.e., in the liquid crystalline phase state. PSM shows significantly larger 2H NMR order parameters in the raft phase than POPC. This can be explained by an inhomogeneous interaction of cholesterol between the lipid species and the mutual influence of the phospholipids on each other. These observations point toward an inhomogeneous distribution of the lipids also in the liquid crystalline phase at 313 K. From the prerequisite that order parameters are identical in a completely homogeneously mixed membrane, we can determine a minimal microdomain size of 45-70 nm in PSM/POPC/cholesterol mixtures above the main phase transition of all lipids.  相似文献   

14.
For canonical lipid raft mixtures of cholesterol (chol), N-palmitoylsphingomyelin (PSM), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), electron paramagnetic resonance (EPR) of spin-labeled phospholipids--which is insensitive to domain size--is used to determine the ternary phase diagram at 23°C. No phase boundaries are found for binary POPC/chol mixtures, nor for ternary mixtures with PSM content <24 mol %. EPR lineshapes indicate that conversion from the liquid-disordered (L(α)) to liquid-ordered (L(o)) phase occurs continuously in this region. Two-component EPR spectra and several tie lines attributable to coexistence of gel (L(β)) and fluid phases are found for ternary mixtures with low cholesterol or low POPC content. For PSM/POPC alone, coexistence of L(α) and L(β) phases occurs over the range 50-95.5 mol % PSM. A further tie line is found at 3 mol % chol with endpoints at 50 and ≥77 mol % PSM. For PSM/chol, L(β)-L(o) coexistence occurs over the range 10-38 mol % chol and further tie lines are found at 4.5 and 7 mol % POPC. Two-component EPR spectra indicative of fluid-fluid (L(α)-L(o)) phase separation are found for lipid compositions: 25%POPC>10%, and confirmed by nonlinear EPR. Tie lines are identified in the L(α)-L(o) coexistence region, indicating that the fluid domains are of sufficient size to obey the phase rule. The three-phase triangle is bounded approximately by the compositions 40 and 75 mol % PSM with 10 mol % chol, and 60 mol % PSM with 25 mol % chol. These studies define the compositions of raft-like L(o) phases for a minimal realistic biological lipid mixture.  相似文献   

15.
A phenomenological model is proposed to describe the membrane phase equilibria in binary mixtures of saturated phospholipids with different acyl-chain lengths. The model is formulated in terms of thermodynamic and thermomechanic properties of the pure lipid bilayers, specifically the chain-melting transition temperature and enthalpy, the hydrophobic bilayer thickness, and the lateral area compressibility modulus. The model is studied using a regular solution theory made up of a set of interaction parameters which directly identify that part of the lipid-lipid interaction which is due to hydrophobic mismatch of saturated chains of different lengths. It is then found that there is effectively a single universal interaction parameter which, in the full composition range, describes the phase equilibria in mixtures of DMPC/DPPC, DPPC/DSPC, DMPC/DSPC, and DLPC/DSPC, in excellent agreement with experimental measurements. The model is used to predict the variation with temperature and composition of the specific heat, as well as of the average membrane thickness and area in each of the phases. Given the value of the universal interaction parameter, the model is then used to predict the phase diagrams of binary mixtures of phospholipids with different polar head groups, e.g., DPPC/DPPE, DMPC/DPPE and DMPE/DSPC. By comparison with experimental results for these mixtures, it is shown that difference in acyl-chain lengths gives the major contribution to deviation from ideal mixing. Application of the model to mixtures with non-saturated lipids is also discussed.  相似文献   

16.
Mixtures of phospholipids with cholesterol are able to form liquid-ordered phases that are characterised by short-range orientational order and long-range translational disorder. These Lo-phases are distinct from the liquid-disordered, fluid Lα-phases and the solid-ordered, gel Lβ-phases that are assumed by the phospholipids alone. The liquid-ordered phase can produce spatially separated in-plane fluid domains, which, in the form of lipid rafts, are thought to act as platforms for signalling and membrane sorting in cells. The areas of domain formation are defined by the regions of phase coexistence in the phase diagrams for the binary mixtures of lipid with cholesterol. In this paper, the available binary phase diagrams of lipid-cholesterol mixtures are all collected together. It is found that there is not complete agreement between different determinations of the phase diagrams for the same binary mixture. This can be attributed to the indirect methods largely used to establish the phase boundaries. Intercomparison of the various data sets allows critical assessment of which phase boundaries are rigorously established from direct evidence for phase coexistence.  相似文献   

17.
Using giant unilamellar vesicles (GUVs) made from POPC, DPPC, cholesterol and a small amount of a porphyrin-based photosensitizer that we name PE-porph, we investigated the response of the lipid bilayer under visible light, focusing in the formation of domains during the lipid oxidation induced by singlet oxygen. This reactive species is generated by light excitation of PE-porf in the vicinity of the membrane, and thus promotes formation of hydroperoxides when unsaturated lipids and cholesterol are present. Using optical microscopy we determined the lipid compositions under which GUVs initially in the homogeneous phase displayed Lo-Ld phase separation following irradiation. Such an effect is attributed to the in situ formation of both hydroperoxized POPC and cholesterol. The boundary line separating homogeneous Lo phase and phase coexistence regions in the phase diagram is displaced vertically towards the higher cholesterol content in respect to ternary diagram of POPC:DPPC:cholesterol mixtures in the absence of oxidized species. Phase separated domains emerge from sub-micrometer initial sizes to evolve over hours into large Lo-Ld domains completely separated in the lipid membrane. This study provides not only a new tool to explore the kinetics of domain formation in mixtures of lipid membranes, but may also have implications in biological signaling of redox misbalance.  相似文献   

18.
Coexisting gel and liquid-crystalline phospholipid phase domains can be observed in synthetic phospholipid vesicles during the transition from one phase to the other and, in vesicles of mixed phospholipids, at intermediate temperatures between the transitions of the different phospholipids. The presence of cholesterol perturbs the dynamic properties of both phases to such an extent as to prevent the detection of coexisting phases. 6-Lauroyl-2-dimethylaminopahthalene (Laurdan) fluorescence offers the unique advantage of well resolvable spectral parameters in the two phospholipid phases that can be used for the detection and quantitation of coexisting gel and liquid-crystalline domains. From Laurdan fluorescence excitation and emission spectra, the generalized polarization spectra and values were calculated. By the generalized polarization phospholipid phase domain coexistence can be detected, and each phase can be quantitated. In the same phospholipid vesicles where without cholesterol domain coexistence can be detected, above 15 mol% and, remarkably, at physiological cholesterol concentrations, > or = 30 mol%, no separate Laurdan fluorescence signals characteristic of distinct domains can be observed. Consequences of our results on the possible size and dynamics of phospholipid phase domains and their biological relevance are discussed.  相似文献   

19.
Chemically simplified lipid mixtures are used here as models of the cell plasma membrane exoplasmic leaflet. In such models, phase separation and morphology transitions controlled by line tension in the liquid-disordered (Ld)?+?liquid-ordered (Lo) coexistence regime have been described [1]. Here, we study two four-component lipid mixtures at different cholesterol fractions: brain sphingomyelin (BSM) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol (Chol). On giant unilamellar vesicles (GUVs) display a nanoscopic-to-macroscopic transition of Ld?+?Lo phase domains as POPC is replaced by DOPC, and this transition also depends on the cholesterol fraction. Line tension decreases with increasing cholesterol mole fractions in both lipid mixtures. For the ternary BSM/DOPC/Chol mixture, the published phase diagram [19] requires a modification to show that when cholesterol mole fraction is >~0.33, coexisting phase domains become nanoscopic.  相似文献   

20.
Lipid bilayers composed of two phospholipids with significant acyl-chain mismatch behave as nonideal mixtures. Although many of these systems are well characterized from the equilibrium point of view, studies concerning their nonequilibrium dynamics are still rare. The kinetics of lipid demixing (phase separation) was studied in model membranes (large unilamellar vesicles of 1:1 dilauroylphosphatidylcholine (C(12) acyl chain) and distearoylphosphatidylcholine (C(18) acyl chain)). For this purpose, photophysical techniques (fluorescence intensity, anisotropy, and fluorescence resonance energy transfer) were applied using suitable probes (gel phase probe trans-parinaric acid and fluid phase probe N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-dilauroylphosphatidylethanolamine). The nonequilibrium situation was induced by a sudden thermal quench from a one-fluid phase equilibrium situation (higher temperature) to the gel/fluid coexistence range (lower temperature). We verified that the attainment of equilibrium is a very slow process (occurs in a time scale of hours), leading to large domains at infinite time. The nonequilibrium structure stabilization is due essentially to temporarily rigidified C(12) chains in the interface between gel/fluid domains, which decrease the interfacial tension by acting as surfactants. The relaxation process becomes faster with the increase of the temperature drop. In addition, heterogeneity is already present in the supposed homogeneous fluid mixture at the higher temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号