首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biosynthesis of fimbriae is a complex process requiring multiple genes which are generally found clustered on the chromosome. In Bordetella pertussis, only major fimbrial subunit genes have been identified, and no evidence has yet been found that they are located in a fimbrial gene cluster. To locate additional genes involved in the biosynthesis of B. pertussis fimbriae, we used TnphoA mutagenesis. A PhoA+ mutant (designated B176) was isolated which was affected in the production of both serotype 2 and 3 fimbriae. Cloning and sequencing of the DNA region harbouring the transposon insertion revealed the presence of at least three additional fimbrial genes, designated fimB, fimC and fimD. The transposon was found to be located in fimD. Analysis of PhoA activity indicated that the fimbrial gene cluster was positively regulated by the bvg locus. A potential binding site for BvgA was observed upstream of fimB. FimB showed homology with the so-called chaperone-like fimbrial proteins, while FimC was homologous with a class of fimbrial proteins located in the outer membrane and presumed to be involved in transport and anchorage of fimbrial subunits. An insertion mutation in fimB abolished the expression of fimbrial subunits, implicating this gene in the biosynthesis of both serotype 2 and 3 fimbriae. Upstream of fimB a pseudogene (fimA) was observed which showed homology with the three major fimbrial subunit genes, fim2, fim3 and fimX. The construction of a phylogenetic tree suggested that fimA may be the primordial major fimbrial subunit gene from which the other three were derived by gene duplication. Interestingly, the fimbrial gene cluster was found to be located directly downstream from the gene coding for the filamentous haemagglutinin, an important B. pertussis adhesin, possibly suggesting co-operation between the two loci in the pathogenesis of pertussis.  相似文献   

2.
Bordetella pertussis strains contain at least three distinct genes coding for fimbrial subunits, designated fim2, fim3, and fimX. The sequences of the fim2 and fimX genes have been published. Here we present the sequence of the fim3 gene. Proximal and distal to the fim3 gene, regions were observed that could function as rho-independent terminators, suggesting that the gene is not part of a larger operon. Comparison of the putative promoter regions of the fim2 and fim3 genes revealed a conserved region containing a stretch of approximately 13 C's. This region may be involved in fimbrial phase variation. A comparison of the deduced amino acid sequences of the three fimbrial subunits revealed conserved, variable, and hypervariable regions. The hypervariable regions coincided with predicted antigenic determinants. Peptides derived from the conserved regions may be incorporated into a future pertussis vaccine to induce antibodies which confer protection against strains producing different fimbrial serotypes.  相似文献   

3.
A search for pilin genes in a Bordetella pertussis (Bp) genomic library has led to the identification of several clones which hybridize to synthetic oligonucleotides with sequences derived from amino acid sequences of Bp fimbrial subunits. One of these clones (corresponding to a gene we have named fimX) contains an open reading frame encoding a protein with a molecular weight of about 20 kD and a sequence similar but not identical to the fimbrial subunit fim2 and to other fimbrial protein sequences. In this communication we present the cloning and nucleotide sequence of the fimX gene and its homology to the fim2 gene. A genomic analysis on the positional relationship between the two genes is also presented.  相似文献   

4.
5.
Kania SA  Rajeev S  Burns EH  Odom TF  Holloway SM  Bemis DA 《Gene》2000,256(1-2):149-155
Fimbrial proteins play an important role in the binding of Bordetella bronchiseptica to mammalian cells, an event that is key to the pathogenesis of this organism. The fimbrial phenotype of B. bronchiseptica isolates is usually defined serologically by Fim2 and Fim3 antigens. In this study, a previously unidentified fimbrial gene, fimN, was cloned and sequenced. The identity of fimN is based on several observations. The predicted FimN protein has 59.4 and 52. 2% homology with B. bronchiseptica Fim2 and Fim3, respectively, and is similar in size to these fimbriae. fimN, expressed as a recombinant protein, is recognized by mAb prepared against Fim2 from Bordetella pertussis. The fimN promoter region contains a stretch of cytosine residues similar in length to those of other fimbrial genes expressed by Bordetella species. It also has an activator binding region, upstream from the C-stretch, that closely resembles a corresponding bvg regulated region in fim2, fim3, and fimX. The fimN gene was isolated from a cosmid prepared with B. bronchiseptica genomic DNA that restored normal properties of cellular adhesion to an adhesion deficient strain of B. bronchiseptica. As such, FimN may be a previously overlooked fimbrial antigen and may play an important role in the pathogenicity of B. bronchiseptica.  相似文献   

6.
Escherichia coli containing a cloned gene encoding the Bordetella pertussis serotype 2 fimbrial subunit failed to produce detectable levels of the gene product in whole-cell extracts. To engineer plasmids capable of directing the expression in E. coli of high levels of this product, both as a pre-protein and as a methionylated mature form the upstream signals of the fimbrial subunit gene were replaced by the lambda P(L) and P(R) promoters and the E. coli atpE translational initiation region. These constructs did not result in the expression of fimbrial subunit at detectable levels in several E. coli strains including DH5. However, they did in E. coli CAG629, which is lon protease and heat shock protein deficient. Both pre-protein and methionylated mature protein had molecular weights of 25.0 kD, which indicated that correct processing of the leader sequence had occurred and thus that it was transposed across the inner membrane. Electron microscopic investigation of the cell surface of E. coli cells expressing either form of the fimbrial gene failed to detect the presence of filamentous structures. The methionylated mature form of the recombinant fimbrial subunit was purified to apparent homogeneity. After dialysis in appropriate conditions it was seen to autoassemble into protein polymers. Antibodies raised against polymerized recombinant subunit reacted weakly with whole B. pertussis serotype 2 fimbriae in immunodot blot assays. However, such antibodies reacted in Western blots equally well with the recombinant and wild-type form of the fimbrial subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Bordetella pertussis is the causative agent of pertussis, a highly contagious disease of the human respiratory tract. Despite high vaccination coverage, pertussis has resurged and has become one of the most prevalent vaccine-preventable diseases in developed countries. We have proposed that both waning immunity and pathogen adaptation have contributed to the persistence and resurgence of pertussis. Allelic variation has been found in virulence-associated genes coding for the pertussis toxin A subunit (ptxA), pertactin (prn), serotype 2 fimbriae (fim2), serotype 3 fimbriae (fim3) and the promoter for pertussis toxin (ptxP). In this study, we investigated how more than 60 years of vaccination has affected the Dutch B. pertussis population by combining data from phylogeny, genomics and temporal trends in strain frequencies. Our main focus was on the ptxA, prn, fim3 and ptxP genes. However, we also compared the genomes of 11 Dutch strains belonging to successful lineages. Our results showed that, between 1949 and 2010, the Dutch B. pertussis population has undergone as least four selective sweeps that were associated with small mutations in ptxA, prn, fim3 and ptxP. Phylogenetic analysis revealed a stepwise adaptation in which mutations accumulated clonally. Genomic analysis revealed a number of additional mutations which may have a contributed to the selective sweeps. Five large deletions were identified which were fixed in the pathogen population. However, only one was linked to a selective sweep. No evidence was found for a role of gene acquisition in pathogen adaptation. Our results suggest that the B. pertussis gene repertoire is already well adapted to its current niche and required only fine tuning to persist in the face of vaccination. Further, this work shows that small mutations, even single SNPs, can drive large changes in the populations of bacterial pathogens within a time span of six to 19 years.  相似文献   

8.
Genomes of members of the family Enterobacteriaceae contain large repertoires of putative fimbrial operons. Since many of these operons are poorly expressed in vitro, a convenient method for inducing elaboration of the encoded fimbriae would greatly facilitate their functional characterization. Here we describe a new technique for identifying fimbriated bacteria from a library of transposon mutants by screening with immunomagnetic particles for ligand expression (SIMPLE). The SIMPLE method was applied to identify the T-POP mutants of Salmonella enterica serotype Typhimurium carrying on their surfaces filaments composed of PefA, the major subunit product of a fimbrial operon (pef) that is not expressed during growth in Luria-Bertani broth. Four such mutants were identified from a library of 24,000 mutants, each of which carried a T-POP insertion within the hns gene, which encodes a global silencer of horizontally acquired genes. Our data suggest that the SIMPLE method is an effective approach for isolating fimbriated bacteria, which can be readily applied to fimbrial operons identified by whole-genome sequencing.  相似文献   

9.
An oligonucleotide probe complementary to the beginning of the gene encoding the serotype 2(ST2) fimbrial subunit of Bordetella pertussis was synthesized and a cloned DNA fragment hybridizing with the probe identified and sequenced. Several lines of evidence indicate that an open reading frame with coding information for a polypeptide of 207 amino acids, including a 26-amino-acid signal sequence, is the ST2 gene. The protein deduced from the nucleotide sequence shows good agreement with the NH2-terminal amino acid sequence, amino acid composition and molecular weight of the purified fimbrial subunit. In addition, the proposed ST2 subunit is shown to have homology with other fimbrial subunits.  相似文献   

10.
Pathogens of the bacterial genus Bordetella cause respiratory disease in humans and animals. Although virulence and host specificity vary across the genus, the genetic determinants of this diversity remain unidentified. To identify genes that may underlie key phenotypic differences between these species and clarify their evolutionary relationships, we performed a comparative analysis of genome content in 42 Bordetella strains by hybridization of genomic DNA to a microarray representing the genomes of three Bordetella species and by subtractive hybridization. Here we show that B. pertussis and B. parapertussis are predominantly differentiated from B. bronchiseptica by large, species-specific regions of difference, many of which encode or direct synthesis of surface structures, including lipopolysaccharide O antigen, which may be important determinants of host specificity. The species also exhibit sequence diversity at a number of surface protein-encoding loci, including the fimbrial major subunit gene, fim2. Gene loss, rather than gene acquisition, accompanied by the proliferation of transposons, has played a fundamental role in the evolution of the pathogenic bordetellae and may represent a conserved evolutionary mechanism among other groups of microbial pathogens.  相似文献   

11.
Abstract Analysis of the Salmonella chromosomal region located upstream of the fimA gene (coding for the major type 1 fimbrial subunit) showed a close linkage of this gene to the folD gene (coding for the enzyme 5,10-methylenetetrahydrofolate dehydrogenase/5, 10-methenyltetrahydrofolate cyclohydrolase), indicating that the fim gene cluster of Salmonella , unlike that of Escherichia coli , has no regulatory genes located upstream of fimA and apparently terminates with this gene. The respective locations of the fim and folD genes in the E. coli and Salmonella genetic maps suggests that the fimA-folD intergenic region of Salmonella encompasses a junctional site of a genetic rearrangement that probably originated from the different chromosomal location of the fim genes in these species.  相似文献   

12.
The differential host species specificities of Bordetella pertussis, B. parapertussis, and B. bronchiseptica might be explained by polymorphisms in adherence factor genes. We have found that B. parapertussis and B. bronchiseptica, unlike B. pertussis, contain a full-length gene for the fimbrial subunit FimA. B. bronchiseptica expresses fimA in a BvgAS-dependent fashion.  相似文献   

13.
Pertussis reemerges periodically despite high pertussis vaccination coverage in many countries. We used prn and fim3 gene sequences and pulsed-field gel electrophoresis (PFGE) to analyze the molecular epidemiology of 168 clinical isolates of Bordetella pertussis during 1993-2004, and deduced possible reasons for an outbreak in 1997 in Taiwan. In Taiwan, during 1996-1997, a shift of prn1 to prn2 was reflected in a transition of PFGE group I to group IIIa; during 2000-2001, the change from fim3A to fim3B was displayed in transition of PFGE group IIIa to group IIIb. These changes were also consistent with the two peaks of pertussis incidence in 1997 and 2000. In 1997, a larger than expected increase in the incidence of pertussis occurred and isolates were characterized by complicated pulsotypes, appearance of many new profiles and an unusual presence of prn3. Based on a high resemblance of PFGE profiles and the same virulence genes, a similar shift of circulating strains was observed in European countries as well as Taiwan; thus, the high incidence of pertussis in 1997 may be due to an international expansion of B. pertussis strains from a similar source. This study provides further elucidation of the global molecular epidemiology of B. pertussis.  相似文献   

14.
An oligonucleotide, derived from the N-terminal amino acid sequence of the CS1 fimbrial subunit protein was used to identify the subunit gene on recombinant plasmid pDEP23 containing the structural genes of the CS1 fimbrial operon. The nucleotide sequence of the subunit gene (csoA), encoding a protein of 171 amino acids, was determined. Flanking it upstream, a gene (csoB) encoding a protein of 238 amino acids was found. The CsoB and CsoA proteins are homologous to the CfaA and CfaB proteins in the CFA/I fimbrial operon. For all the CS1 producing strains investigated the structural genes are located on plasmids. Like CFA/I fimbriae, CS1 fimbriae are only expressed in the presence of a positive regulator, CfaD for CFA/I and Rns for CS1, respectively. The promoter region upstream of the csoB gene was cloned in front of the promoterless alkaline phosphatase (phoA) gene of the promoter-probe vector pCB267. PhoA activity was enhanced approximately two-fold by the introduction of compatible plasmids containing either rns or cfaD.  相似文献   

15.
The periodontal pathogen Porphyromonas gingivalis colonizes largely through FimA fimbriae, composed of polymerized FimA encoded by fimA. fimA exists as a single copy within the fim gene cluster (fim cluster), which consists of seven genes: fimX, pgmA and fimA-E. Using an expression vector, fimA alone was inserted into a mutant from which the whole fim cluster was deleted, and the resultant complement exhibited a fimbrial structure. Thus, the genes of the fim cluster other than fimA were not essential for the assembly of FimA fimbriae, although they were reported to influence FimA protein expression. It is known that there are various genotypes for fimA, and it was indicated that the genotype was related to the morphological features of FimA fimbriae, especially the length, and to the pathogenicity of the bacterium. We next complemented the fim cluster-deletion mutant with fimA genes cloned from P. gingivalis strains including genotypes I to V. All genotypes showed a long fimbrial structure, indicating that FimA itself had nothing to do with regulation of the fimbrial length. In FimA fimbriae purified from the complemented strains, types I, II, and III showed slightly higher thermostability than types IV and V. Antisera of mice immunized with each purified fimbria principally recognized the polymeric, structural conformation of the fimbriae, and showed low cross-reactivity among genotypes, indicating that FimA fimbriae of each genotype were antigenically different. Additionally, the activity of a macrophage cell line stimulated with the purified fimbriae was much lower than that induced by Escherichia coli lipopolysaccharide.  相似文献   

16.
The expression of virulence-associated genes in Bordetella pertussis can be lost in three ways: phase variation, antigenic modulation, or serotype conversion. The mechanism(s) of these alterations in gene expression is unclear. B. pertussis chromosomal DNA was probed with cloned pin genes from Escherichia coli and cloned hin genes from Salmonella typhimurium. DNA duplex melting temperature experiments indicated significant homology between B. Pertussis chromosomal DNA and both DNA inversion genes. Southern blots using the hin gene probe showed homology with a 15 kb EcoRI fragment of B. pertussis chromosomal DNA. We postulate here that B. pertussis contains a DNA inversion system which may be responsible for serotype conversion or virulence phase change in this organism.  相似文献   

17.
18.
19.
We report the purification of a minor Bordetella pertussis fimbrial subunit, designated FimD, and the identification of its gene (fimD.) FimD could be purified from the bulk of major fimbrial subunits by exploiting the fact that major subunit-subunit interactions are more stable in the presence of SDS than minor-major subunit interactions. To locate the gene for FimD, internal peptides of FimD were generated, purified and sequenced. Subsequently, an oligonucleotide probe, based on the primary sequence of one peptide, was used to clone fimD. The primary structure of FimD, derived from the DNA sequence of its gene, showed homology with a number of fimbrial adhesins. Most pronounced homology was observed with MrkD, a fimbrial adhesin derived from Klebsieila pneumoniae. These observations suggest that FimD may represent a B. pertussis fimbrial adhesin. With a fimD-specific probe we detected the presence of a fimD homologue in Bordetella parapertussis and Bordetella bron-chiseptica but not in Bordetella avium. Cloning and sequencing revealed that the B. parapertussis and B. bronchiseptica fimD product differed from the B. pertussis fimD product in 20 and 1 amino acid residues, respectively. Since B. bronchiseptica is normally not a human pathogen, but causes respiratory disease in a wide range of non-human mammalian species, this may suggest that FimD recognizes a receptor that is well conserved in mammalian species. An in-frame deletion in fimD completely abolished FimD expression and also affected the expression of the major subunits Fim2 and Fim3 suggesting that, in contrast to other adhesins that are minor components of fimbriae, FimD is required for formation of the fimbrial structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号