首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since radiation fields of space contain many-fold more protons than high atomic number, high energy (HZE) particles, cells in astronaut crews will experience on average several proton hits before an HZE hit. Thus radiation regimes of proton exposure before HZE particle exposure simulate space radiation exposure, and measurement of the frequency of neoplastic transformation of human primary cells to anchorage-independent growth simulates an initial step in cancer induction. Although previous investigations indicated a synergistic increase in transformation yields in the cells exposed to protons followed by HZE particles, these experiments did not differentiate between the effect of splitting of the dose into two fractions and that of changing the ion beams. To test this, we irradiated cells with split doses of either protons or HZE particles, then measured clonogenic survival and neoplastic transformation, as measured by colony formation in semi-solid soft agar medium. The data show that the split dose of 20 cGy plus 20 cGy of either H or HZE ions gave about the same effect as the 40 cGy uninterrupted dose, quite different from the effect of the mixed ion beam H + HZE irradiation. We also asked if lower proton doses than 20 cGy followed 15 min later by 20 cGy of HZE ions gave greater than additive transformation frequencies. Substantial increases in transformation levels were observed for all proton doses tested, including 1 cGy. These results point to the signal importance of protons in affecting the effect of space radiation on human cells.  相似文献   

2.
In space, astronauts are exposed to radiation fields consisting of energetic protons and high atomic number, high-energy (HZE) particles at very low dose rates or fluences. Under these conditions, it is likely that, in addition to cells in an astronaut's body being traversed by ionizing radiation particles, unirradiated cells can also receive intercellular bystander signals from irradiated cells. Thus this study was designed to determine the dependence of DNA damage induction on dose at very low fluences of charged particles. Novel techniques to quantify particle fluence have been developed at the NASA Space Radiation Biology Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The approach uses a large ionization chamber to visualize the radiation beam coupled with a scintillation counter to measure fluence. This development has allowed us to irradiate cells with 1 GeV/nucleon protons and iron ions at particle fluences as low as 200 particles/cm(2) and quantify biological responses. Our results show an increased fraction of cells with DNA damage in both the irradiated population and bystander cells sharing medium with irradiated cells after low fluences. The fraction of cells with damage, manifest as micronucleus formation and 53BP1 focus induction, is about 2-fold higher than background at doses as low as ~0.47 mGy iron ions (~0.02 iron ions/cell) or ~70 μGy protons (~2 protons/cell). In the irradiated population, irrespective of radiation type, the fraction of damaged cells is constant from the lowest damaging fluence to about 1 cGy, above which the fraction of damaged cells increases with dose. In the bystander population, the level of damage is the same as in the irradiated population up to 1 cGy, but it does not increase above that plateau level with increasing dose. The data suggest that at fluences of high-energy protons or iron ions less than about 5 cGy, the response in irradiated cell populations may be dominated by the bystander response.  相似文献   

3.
High-charge and energy (HZE) nuclei represent one of the main health risks for human space exploration, yet little is known about the mechanisms responsible for the high biological effectiveness of these particles. We have used in situ hybridization probes for cross-species multicolor banding (RxFISH) in combination with telomere detection to compare yields of different types of chromosomal aberrations in the progeny of human peripheral blood lymphocytes exposed to either high-energy iron ions or gamma rays. Terminal deletions showed the greatest relative variation, with many more of these types of aberrations induced after exposure to accelerated iron ions (energy 1 GeV/nucleon) compared with the same dose of gamma rays. We found that truncated chromosomes without telomeres could be transmitted for at least three cell cycles after exposure and represented about 10% of all aberrations observed in the progeny of cells exposed to iron ions. On the other hand, the fraction of cells carrying stable, transmissible chromosomal aberrations was similar in the progeny of cells exposed to the same dose of densely or sparsely ionizing radiation. The results demonstrate that unrejoined chromosome breaks are an important component of aberration spectra produced by the exposure to HZE nuclei. This finding may well be related to the ability of such energetic particles to produce untoward late effects in irradiated organisms.  相似文献   

4.
Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of l-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 μM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have been shown to be activated in cells exposed to radiation from photons (like cell cycle arrest in G1/S), and that supplementation with SeM abolishes HZE particle-induced differential expression of many genes. Understanding the roles that these genes play in the radiation-induced transformation of cells may help to decipher the origins of radiation-induced cancer.  相似文献   

5.
During space travel, astronauts will be exposed to protons and heavy charged particles. Since the proton flux is high compared to HZE particles, on average, it is assumed that a cell will be hit by a proton before it is hit by an HZE ion. Although the effects of individual ion species on human cells have been investigated extensively, little is known about the effects of exposure to mixed beam irradiation. To address this, we exposed human epithelial cells to protons followed by HZE particles and analyzed chromosomal damage using the multicolor banding in situ hybridization (mBAND) procedure. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of intra-chromosomal aberrations (inversions and deletions within a single painted chromosome) as well as inter-chromosomal aberrations (translocation to unpainted chromosomes). Our results indicated that chromosome aberration frequencies from exposures to protons followed by Fe ions did not simply decrease as the interval between the two exposures increased, but peak when the interval was 30 min.  相似文献   

6.
A standardized dichlorofluorescin (DCF) fluorometric assay capable of measuring radiation-induced oxidative stress was used to determine the effectiveness of protons and high-mass, high-atomic number (Z) and high-energy (HZE) particles to produce oxidative stress in vitro. Protons were found to be about equally as effective as X rays in the generation of oxidative stress in cultured cells. However, 56Fe-ion beams with energies of 1 GeV/nucleon and 5 GeV/nucleon were less effective than X rays or gamma rays in inducing dichlorofluorescin (DCFH) oxidation. The relatively lower slope values for the dose responses of HZE-particle radiation-induced DCFH oxidation indicate that the sensitivity of the DCF fluorometric assay is probably dependent on the linear energy transfer (LET) of the radiation beam.  相似文献   

7.
One of the risks of prolonged manned space flight is the exposure of astronauts to radiation from galactic cosmic rays, which contain heavy ions such as (56)Fe. To study the effects of such exposures, experiments were conducted at the Brookhaven National Laboratory by exposing Wistar rats to high-mass, high-Z, high-energy (HZE) particles using the Alternating Gradient Synchrotron (AGS). The biological effectiveness of (56)Fe ions (1000 MeV/nucleon) relative to low-LET gamma rays and high-LET alpha particles for the induction of chromosome damage and micronuclei was determined. The mitotic index and the frequency of chromosome aberrations were evaluated in bone marrow cells, and the frequency of micronuclei was measured in cells isolated from the trachea and the deep lung. A marked delay in the entry of cells into mitosis was induced in the bone marrow cells that decreased as a function of time after the exposure. The frequencies of chromatid aberrations and micronuclei increased as linear functions of dose. The frequency of chromosome aberrations induced by HZE particles was about 3.2 times higher than that observed after exposure to (60)Co gamma rays. The frequency of micronuclei in rat lung fibroblasts, lung epithelial cells, and tracheal epithelial cells increased linearly, with slopes of 7 x 10(-4), 12 x 10(-4), and 11 x 10(-4) micronuclei/binucleated cell cGy(-1), respectively. When genetic damage induced by radiation from (56)Fe ions was compared to that from exposure to (60)Co gamma rays, (56)Fe-ion radiation was between 0.9 and 3.3 times more effective than (60)Co gamma rays. However, the HZE-particle exposures were only 10-20% as effective as radon in producing micronuclei in either deep lung or tracheal epithelial cells. Using microdosimetric techniques, we estimated that 32 cells were hit by delta rays for each cell that was traversed by the primary HZE (56)Fe particle. These calculations and the observed low relative effectiveness of the exposure to HZE particles suggest that at least part of the cytogenetic damage measured was caused by the delta rays. Much of the energy deposited by the primary HZE particles may result in cell killing and may therefore be "wasted" as far as production of detectable micronuclei is concerned. The role of wasted energy in studies of cancer induction may be important in risk estimates for exposure to HZE particles.  相似文献   

8.
The radiation environment in space is complex in terms of both the variety of charged particles and their dose rates. Simulation of such an environment for experimental studies is technically very difficult. However, with the variety of beams available at the National Space Research Laboratory (NSRL) at Brookhaven National Laboratory (BNL) it is possible to ask questions about potential interactions of these radiations. In this study, the end point examined was transformation in vitro from a preneoplastic to a neoplastic phenotype. The effects of 1?GeV/n iron ions and 1?GeV/n protons alone provided strong evidence for suppression of transformation at doses ≤5?cGy. These ions were also studied in combination in so-called mixed-beam experiments. The specific protocols were a low dose (10?cGy) of protons followed after either 5-15?min (immediate) or 16-24?h (delayed) by 1?Gy of iron ions and a low dose (10?cGy) of iron ions followed after either 5-15?min or 16-24?h by 1?Gy of protons. Within experimental error the results indicated an additive interaction under all conditions with no evidence of an adaptive response, with the one possible exception of 10?cGy iron ions followed immediately by 1?Gy protons. A similar challenge dose protocol was also used in single-beam studies to test for adaptive responses induced by 232?MeV/n protons and (137)Cs γ radiation and, contrary to expectations, none were observed. However, subsequent tests of 10?cGy of (137)Cs γ radiation followed after either 5-15?min or 8?h by 1?Gy of (137)Cs γ radiation did demonstrate an adaptive response at 8?h, pointing out the importance of the interval between adapting and challenge dose. Furthermore, the dose-response data for each ion alone indicate that the initial adapting dose of 10?cGy used in the mixed-beam setting may have been too high to see any potential adaptive response.  相似文献   

9.
Galactic Cosmic Radiation consisting of high-energy, high-charged (HZE) particles poses a significant threat to future astronauts in deep space. Aside from cancer, concerns have been raised about late degenerative risks, including effects on the brain. In this study we examined the effects of 56Fe particle irradiation in an APP/PS1 mouse model of Alzheimer’s disease (AD). We demonstrated 6 months after exposure to 10 and 100 cGy 56Fe radiation at 1 GeV/µ, that APP/PS1 mice show decreased cognitive abilities measured by contextual fear conditioning and novel object recognition tests. Furthermore, in male mice we saw acceleration of Aβ plaque pathology using Congo red and 6E10 staining, which was further confirmed by ELISA measures of Aβ isoforms. Increases were not due to higher levels of amyloid precursor protein (APP) or increased cleavage as measured by levels of the β C-terminal fragment of APP. Additionally, we saw no change in microglial activation levels judging by CD68 and Iba-1 immunoreactivities in and around Aβ plaques or insulin degrading enzyme, which has been shown to degrade Aβ. However, immunohistochemical analysis of ICAM-1 showed evidence of endothelial activation after 100 cGy irradiation in male mice, suggesting possible alterations in Aβ trafficking through the blood brain barrier as a possible cause of plaque increase. Overall, our results show for the first time that HZE particle radiation can increase Aβ plaque pathology in an APP/PS1 mouse model of AD.  相似文献   

10.
Suzuki M  Piao C  Hall EJ  Hei TK 《Radiation research》2001,155(3):432-439
We examined cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with high-energy 56Fe ions. Cells were irradiated with graded doses of 56Fe ions (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at Brookhaven National Laboratory. The survival curves for cells plated 1 h after irradiation (immediate plating) showed little or no shoulder. However, the survival curves for cells plated 24 h after irradiation (delayed plating) had a small initial shoulder. The RBE for 56Fe ions compared to 137Cs gamma rays was 1.99 for immediate plating and 2.73 for delayed plating at the D10. The repair ratio (delayed plating/immediate plating) was 1.67 for 137Cs gamma rays and 1.22 for 56Fe ions. The dose-response curves for initially measured and residual chromatid fragments detected by the Calyculin A-mediated premature chromosome condensation technique showed a linear response. The results indicated that the induction frequency for initially measured fragments was the same for 137Cs gamma rays and 56Fe ions. On the other hand, approximately 85% of the fragments induced by 137Cs gamma rays had rejoined after 24 h of postirradiation incubation; the corresponding amount for 56Fe ions was 37%. Furthermore, the frequency of chromatid exchanges induced by gamma rays measured 24 h after irradiation was higher than that induced by 56Fe ions. No difference in the amount of chromatid damage induced by the two types of radiations was detected when assayed 1 h after irradiation. The results suggest that high-energy 56Fe ions induce a higher frequency of complex, unrepairable damage at both the cellular and chromosomal levels than 137Cs gamma rays in the target cells for radiation-induced lung cancers.  相似文献   

11.
The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LEpsilonTau gamma or X rays, the presence of shielding does not always reduce the radiation risks for energetic charged-particle exposure. The dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak. However, the Bragg curve does not necessarily represent the biological damage along the particle path since biological effects are influenced by the track structures of both primary and secondary particles. Therefore, the "biological Bragg curve" is dependent on the energy and the type of the primary particle and may vary for different biological end points. Here we report measurements of the biological response across the Bragg curve in human fibroblasts exposed to energetic silicon and iron ions in vitro at two different energies, 300 MeV/nucleon and 1 GeV/nucleon. A quantitative biological response curve generated for micronuclei per binucleated cell across the Bragg curve did not reveal an increased yield of micronuclei at the location of the Bragg peak. However, the ratio of mono- to binucleated cells, which indicates inhibition of cell progression, increased at the Bragg peak location. These results confirm the hypothesis that severely damaged cells at the Bragg peak are more likely to go through reproductive death and not be evaluated for micronuclei.  相似文献   

12.
An increased risk of carcinogenesis caused by exposure to space radiation during prolonged space travel is a limiting factor for human space exploration. Typically, astronauts are exposed to low fluences of ionizing particles that target only a few cells in a tissue at any one time. The propagation of stressful effects from irradiated to neighboring bystander cells and their transmission to progeny cells would be of importance in estimates of the health risks of exposure to space radiation. With relevance to the risk of carcinogenesis, we investigated, in model C3H 10T½ mouse embryo fibroblasts (MEFs), modulation of the spontaneous frequency of neoplastic transformation in the progeny of bystander MEFs that had been in co-culture 10 population doublings earlier with MEFs exposed to moderate doses of densely ionizing iron ions (1 GeV/nucleon) or sparsely ionizing protons (1 GeV). An increase (P<0.05) in neoplastic transformation frequency, likely mediated by intercellular communication through gap junctions, was observed in the progeny of bystander cells that had been in co-culture with cells irradiated with iron ions, but not with protons.  相似文献   

13.
Radiation-induced neurotoxicity is a well-characterized phenomenon. However, the underlying mechanism of this toxicity is poorly understood. In the central nervous system (CNS), excitotoxic mechanisms are implicated in many neurodegenerative disease processes. Pivotal to the excitotoxic pathway is dysfunction of glutamate signaling. We reported previously that exposure to low-LET γ radiation results in altered glutamate transport in neurons and astrocytes. In the present study, we sought to investigate the effects of various particle radiations of differing LET on glutamate transport as a measure of the neurochemical vulnerability of the CNS. NTera2-derived neurons and astrocytes isolated as pure and mixed cultures were exposed to doses of 10 cGy, 50 cGy or 2 Gy of 250 MeV protons, 290 MeV/nucleon carbon ions, or 1000 MeV/nucleon iron ions. Transporter function was assessed at 3 h, 2 days and 7days after exposure. Functional assessment of glutamate transport revealed that neurons and astrocytes respond in a reciprocal manner after exposure to particle radiation. Uptake activity in neurons increased after particle irradiation. This effect was evident as late as our last time (7 days) after exposure (P < 0.05). In astrocytes, transporter activity decreased after exposure. The decrease in uptake observed in astrocytes was evident 7 days after exposure to carbon and iron ions. Uptake in mixed cultures after exposure to all three forms of radiation revealed a muted interactive response suggestive of the individual responses of each cellular phenotype acting in opposition.  相似文献   

14.
DNA damage generated by high-energy and high-Z (HZE) particles is more skewed toward multiply damaged sites or clustered DNA damage than damage induced by low-linear energy transfer (LET) X and gamma rays. Clustered DNA damage includes abasic sites, base damages and single- (SSBs) and double-strand breaks (DSBs). This complex DNA damage is difficult to repair and may require coordinated recruitment of multiple DNA repair factors. As a consequence of the production of irreparable clustered lesions, a greater biological effectiveness is observed for HZE-particle radiation than for low-LET radiation. To understand how the inability of cells to rejoin DSBs contributes to the greater biological effectiveness of HZE particles, the kinetics of DSB rejoining and cell survival after exposure of normal human skin fibroblasts to a spectrum of HZE particles was examined. Using gamma-H2AX as a surrogate marker for DSB formation and rejoining, the ability of cells to rejoin DSBs was found to decrease with increasing Z; specifically, iron-ion-induced DSBs were repaired at a rate similar to those induced by silicon ions, oxygen ions and gamma radiation, but a larger fraction of iron-ion-induced damage was irreparable. Furthermore, both DNA-PKcs (DSB repair factor) and 53BP1 (DSB sensing protein) co-localized with gamma-H2AX along the track of dense ionization produced by iron and silicon ions and their focus dissolution kinetics was similar to that of gamma-H2AX. Spatial co-localization analysis showed that unlike gamma-H2AX and 53BP1, phosphorylated DNA-PKcs was localized only at very specific regions, presumably representing the sites of DSBs within the tracks. Examination of cell survival by clonogenic assay indicated that cell killing was greater for iron ions than for silicon and oxygen ions and gamma rays. Collectively, these data demonstrate that the inability of cells to rejoin DSBs within clustered DNA lesions likely contributes to the greater biological effectiveness of HZE particles.  相似文献   

15.
Exposure to galactic cosmic radiation (GCR) is considered to be a potential health risk in long-term space travel, and it represents a significant risk to the central nervous system (CNS). The most harmful component of GCR is the HZE [high-mass, highly charged (Z), high-energy] particles, e.g. (56)Fe. In previous ground-based experiments, exposure to high doses of HZE-particle radiation induced pronounced deficits in hippocampus-dependent learning and memory in rodents. Recent data suggest that glutamatergic transmission in hippocampal synaptosomes is impaired after low (60 cGy) doses of 1 GeV/u (56)Fe particles, which could lead to impairment of hippocampus-dependent spatial memory. To assess the effects of mission-relevant (20-60 cGy) doses of 1 GeV/u (56)Fe particles on hippocampus-dependent spatial memory, male Wistar rats either received sham treatment or were irradiated and tested 3 months later in the Barnes maze test. Compared to the controls, rats that received 20, 40 and 60 cGy 1 GeV/u (56)Fe particles showed significant impairments in their ability to locate the escape box in the Barnes maze, which was manifested by progressively increasing escape latency times over the 3 days of testing. However, this increase was not due to a lack of motivation of the rats to escape, because the total number of head pokes (and especially incorrect head pokes) remained constant over the test period. Given that rats exposed to X rays did not exhibit spatial memory impairments until >10 Gy was delivered, the RBE for 1 GeV/u (56)Fe-particle-induced hippocampal spatial memory impairment is ~50. These data demonstrate that mission-relevant doses of 1 GeV/u (56)Fe particles can result in severe deficits in hippocampus-dependent neurocognitive tasks, and the extreme sensitivity of these processes to 1 GeV/u (56)Fe particles must arise due to the perturbation of multiple processes in addition to killing neuronal cells.  相似文献   

16.
We previously reported that laminin immunoreactivity in mouse mammary epithelium is altered shortly after whole-body irradiation with 0.8 Gy from 600 MeV/nucleon iron ions but is unaffected after exposure to sparsely ionizing radiation. This observation led us to propose that the effect could be due to protein damage from the high ionization density of the ion tracks. If so, we predicted that it would be evident soon after radiation exposure in basement membranes of other tissues and would depend on ion fluence. To test this hypothesis, we used immunofluorescence, confocal laser scanning microscopy, and image segmentation techniques to quantify changes in the basement membrane of mouse skin epidermis. At 1 h after exposure to 1 GeV/nucleon iron ions with doses from 0.03 to 1.6 Gy, neither the visual appearance nor the mean pixel intensity of laminin in the basement membrane of mouse dorsal skin epidermis was altered compared to sham-irradiated tissue. This result does not support the hypothesis that particle traversal directly affects laminin protein integrity. However, the mean pixel intensity of laminin immunoreactivity was significantly decreased in epidermal basement membrane at 48 and 96 h after exposure to 0.8 Gy 1 GeV/nucleon iron ions. We confirmed this effect with two additional antibodies raised against affinity-purified laminin 1 and the E3 fragment of the long-arm of laminin 1. In contrast, collagen type IV, another component of the basement membrane, was unaffected. Our studies demonstrate quantitatively that densely ionizing radiation elicits changes in skin microenvironments distinct from those induced by sparsely ionizing radiation. Such effects may might contribute to the carcinogenic potential of densely ionizing radiation by altering cellular signaling cascades mediated by cell-extracellular matrix interactions.  相似文献   

17.
Although bystander effects have been shown for some high-LET radiations, few studies have been done on bystander effects induced by heavy-ion radiation. In this study, using a Transwell insert co-culture system, we have demonstrated that irradiation with 1 GeV/nucleon iron ions can induce medium-mediated bystander effects in normal AG01522 human fibroblasts. When irradiated and unirradiated bystander cells were combined in shared medium immediately after irradiation, a two- to threefold increase in the percentage of bystander cells with gamma-H2AX foci occurred as early as 1 h after irradiation and lasted at least 24 h. There was a twofold increase in the formation of micronuclei in bystander cells when they were co-cultured with irradiated cells immediately or 1 or 3 h after irradiation, but there was no bystander effect when the cells were co-cultured 6 h or later after irradiation. In addition, bystander micronucleus formation was observed even when the bystander cells were co-cultured with irradiated cells for only 1 h. This indicates that the crucial signaling to bystander cells from irradiated cells occurs shortly after irradiation. Moreover, both gamma-H2AX focus formation and micronucleus formation in bystander cells were inhibited by the ROS scavengers SOD or catalase or the NO scavenger PTIO. This suggests that ROS and NO play important roles in the initiation of bystander effects. The results with iron ions were similar to those with X rays, suggesting that the bystander responses in this system are independent of LET.  相似文献   

18.
Effects of heavy ions and energetic protons on normal human fibroblasts   总被引:2,自引:0,他引:2  
At the low particle fluences of radiation to which astronauts are exposed in space, "non-targeted" effects such as the bystander response may have increased significance. The radiation-induced bystander effect is the occurrence of biological responses in unirradiated cells near to or sharing medium with cells traversed by radiation. The objectives of this study were to establish the responses of AG01522 diploid human fibroblasts after exposure to several heavy ions and energetic protons, as compared to X-rays, and to obtain initial information on the bystander effect in terms of cell clonogenic survival after Fe ion irradiation. Using a clonogenic survival assay, relative biological effectiveness (RBE) values at 10% survival were 2.5, 2.3, 1.0 and 1.2 for 1 GeV/amu Fe, 1 GeV/amu Ti, 290 MeV/amu C and 1 GeV/amu protons, respectively, compared to 250 kVp X-rays. For induction of micronuclei (MN), compared to the low LET protons, Fe and Ti are very effective inducers of damage, although C ions are similar to protons. Using a transwell insert system in which irradiated and unirradiated bystander cells share medium but are not touching each other, it was found that clonogenic survival in unirradiated bystander cells was decreased when irradiated cells were exposed to Fe ions or X-rays. The magnitude of the decrease in bystander survival was similar with both radiation types, reaching a plateau of about 80% survival at doses of about 0.5 Gy or larger.  相似文献   

19.
Of particular concern for the health of astronauts during space travel is radiation from protons and high-mass, high-atomic-number (Z), and high-energy particles (HZE particles). Space radiation is known to induce oxidative stress in astronauts after extended space flight. In the present study, the total antioxidant status was used as a biomarker to evaluate oxidative stress induced by gamma rays, protons and HZE-particle radiation. The results demonstrate that the plasma level of total antioxidants in Sprague-Dawley rats was significantly decreased (P < 0.01) in a dose-dependent manner within 4 h after exposure to gamma rays. Exposure to protons and HZE-particle radiation also significantly decreased the serum or plasma level of total antioxidants in the irradiated animals. Diet supplementation with L-selenomethionine alone or a combination of selected antioxidant agents was shown to partially or completely prevent the decrease in the serum or plasma levels of total antioxidants in animals exposed to gamma rays, protons or HZE particles. These findings suggest that exposure to space radiation may compromise the capacity of the host antioxidant defense and that this adverse biological effect can be prevented at least partially by dietary supplementation with L-selenomethionine and antioxidants.  相似文献   

20.
Widespread evidence indicates that exposure of cell populations to ionizing radiation results in significant biological changes in both the irradiated and nonirradiated bystander cells in the population. We investigated the role of radiation quality, or linear energy transfer (LET), and radiation dose in the propagation of stressful effects in the progeny of bystander cells. Confluent normal human cell cultures were exposed to low or high doses of 1GeV/u iron ions (LET ~ 151 keV/μm), 600 MeV/u silicon ions (LET ~ 51 keV/μm), or 1 GeV protons (LET ~ 0.2 keV/μm). Within minutes after irradiation, the cells were trypsinized and co-cultured with nonirradiated cells for 5 h. During this time, irradiated and nonirradiated cells were grown on either side of an insert with 3-μm pores. Nonirradiated cells were then harvested and allowed to grow for 20 generations. Relative to controls, the progeny of bystander cells that were co-cultured with cells irradiated with iron or silicon ions, but not protons, exhibited reduced cloning efficiency and harbored higher levels of chromosomal damage, protein oxidation and lipid peroxidation. This correlated with decreased activity of antioxidant enzymes, inactivation of the redox-sensitive metabolic enzyme aconitase, and altered translation of proteins encoded by mitochondrial DNA. Together, the results demonstrate that the long-term consequences of the induced nontargeted effects greatly depend on the quality and dose of the radiation and involve persistent oxidative stress due to induced perturbations in oxidative metabolism. They are relevant to estimates of health risks from exposures to space radiation and the emergence of second malignancies after radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号