首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
This study was designed to examine the developmental ability of porcine embryos after somatic cell nuclear transfer. Porcine fibroblasts were isolated from fetuses at Day 40 of gestation. In vitro-matured porcine oocytes were enucleated and electrically fused with somatic cells. The reconstructed eggs were activated using electrical stimulus and cultured in vitro for 6 days. Nuclear-transferred (NT) embryos activated at a field strength of 120 V/mm (11.6 +/- 1.6%) showed a higher developmental rate as compared to the 150-V/mm group (6.5 +/- 2.3%) (P: < 0.05), but the mean cell numbers of blastocysts were similar between the two groups. Rates of blastocyst development from NT embryos electrically pulsed at different times (2, 4, and 6 h) after electrofusion were 11.6 +/- 2.9, 6.6 +/- 2.3, and 8.1 +/- 3.3%, respectively. The mean cell numbers of blastocysts developed from NT embryos were gradually decreased (30.4 +/- 10.4 > 24.6 +/- 10.1 > 16.5 +/- 7.4 per blastocyst) as exposure time (2, 4, and 6 h) of nuclei to oocyte cytoplast before activation was prolonged. There was a significant difference in the cell number between the 2- and 6-h groups (P: < 0. 05). Nuclear-transferred embryos (9.4 +/- 0.9%) had a lower developmental rate than in vitro fertilization (IVF)-derived (21.4 +/- 1.9%) or parthenogenetic embryos (22.4 +/- 7.2%) (P: < 0.01). The mean cell number (28.9 +/- 11.4) of NT-derived blastocysts was smaller than that (38.6 +/- 10.4) of IVF-derived blastocysts (P: < 0. 05) and was similar to that (29.9 +/- 12.1) of parthenogenetic embryos. Our results suggest that porcine NT eggs using somatic cells after electrical activation have developmental potential to the blastocyst stage, although with smaller cell numbers compared to IVF embryos.  相似文献   

4.
Melatonin secreted from the mammalian pineal gland is a free-radical scavenger that protects tissues from cell damage. The present study examined the effects of addition of melatonin to the culture medium on the developmental potential of parthenogenetic and somatic cell nuclear-transferred (SCNT) porcine oocytes. Supplementation of the maturation medium with melatonin did not increase the maturation rate, the proportion of oocytes that cleaved and developed into blastocysts after parthenogenetic activation, or the blastocyst cell number compared to controls. When 10-7 M melatonin was added to the culture medium, the proportion of parthenogenetic oocytes that developed to the 2-cell and 4-cell stages was significantly higher than that of controls. The potential of melatonin-treated oocytes to develop into blastocysts was high but not significantly different from that of controls. The addition of 10-7 M melatonin to the culture medium did not increase the preimplantation development of SCNT oocytes. Melatonin treatment significantly reduced the levels of reactive oxygen species in 4-cell parthenogenetic and SCNT embryos, but did not reduce the proportion of apoptotic cells in parthenogenetic and SCNT blastocysts. Although the results indicated that parthenogenetic and SCNT melatonin -treated embryos had significantly lower levels of reactive oxygen species than controls, the potential of melatonin-treated embryos to develop into blastocysts was not significantly higher than that of controls, in contrast to previous reports. The beneficial effects of melatonin on the developmental potential of oocytes might depend on the culture conditions.  相似文献   

5.
Parthenogenetic embryos are invariably lost in mid-gestation, possibly due to the lack of the paternal genome and the consequent induction of aberrant gene expression. Wnt signaling is essential for embryonic development; however, the studies of this pathway in porcine parthenogenetic embryos have been limited. Here, the role of Wnt signaling in porcine parthenogenetic embryos was studied. In vivo embryos were used as controls. Single cell quantitative real-time PCR showed that Wnt signaling was down-regulated in porcine parthenogenetic embryos. Furthermore, immunofluorescence staining and real-time PCR demonstrated that porcine parthenogenetic embryo development was largely unaffected by the inhibition of Wnt signaling with IWP-2, but blastocyst hatching and trophectoderm development was blocked. In addition, parthenogenetic blastocyst hatching was improved by the activation of Wnt signaling by BIO. However, the developmental competency of porcine embryos, including blastocyst hatching, was impaired and apoptosis was induced upon the excessive activation of Wnt signaling. These findings constitute novel evidence that Wnt signaling is important for porcine pre-implantation development and that its down-regulation may lead to the low hatching rate of porcine parthenogenetic blastocysts.  相似文献   

6.
7.
The present study examined the effect of elevated Ca(2+) concentration in fusion/activation medium on the fusion and development of fetal fibroblast nuclear transfer (NT) porcine embryos. Frozen-thawed and serum starved fetal fibroblasts were transferred into the perivitelline space of enucleated oocytes. Cell fusion and activation were induced simultaneously with electric pulses in 0.3 M mannitol-based medium containing 0.1 or 1.0 mM CaCl(2). Some fused embryos were further activated 1 hr after the fusion treatment by exposure to an electric pulse. The NT embryos were cultured in vitro for 6 days. Fusion and blastocyst formation rates were significantly (P<0.05) increased by increasing the Ca(2+) concentration from 0.1 mM (67.1 and 6.3%) to 1.0 mM (84.7 and 15.8%). However, no difference in the number of cells in blastocysts was observed between the two groups. A higher percentage of blastocyst was also observed when control oocytes were parthenogenetically activated in the presence of elevated Ca(2+) (19.3% vs. 32.4%, P<0.05). When the reconstituted oocytes were fused in the medium containing 1.0 mM CaCl(2), increasing the number of pulses from 2 to 3 or an additional activation treatment did not enhance the blastocyst formation rate or cell number in blastocysts. These results demonstrate that increasing the Ca(2+) concentration in the fusion/activation medium can enhance the fusion and blastocyst formation rates of fetal fibroblast NT porcine embryos without an additional activation treatment.  相似文献   

8.
9.
We examined whether porcine nuclear transfer (NT) embryos carrying somatic cells have a developmental potential and NT embryos carrying transformed fibroblasts express transgenes in the preimplantation stages. In Experiment 1, different activation methods were applied to NT embryos and the development rates were examined. Relative to A23187 only or A23187/6-DMAP, electrical pulse made a significant increase in both cleavage rate (58.1+/-13.9 or 60.7+/-6.3 vs. 74.9+/-7.5%) and development rate of NT embryos to the blastocyst stage (2.2+/-2.8 or 2.2+/-1.5 vs. 11.0+/-4.1%). In Experiment 2, in vitro developmental competence of NT embryos was investigated. The developmental rate to the blastocyst stage of NT embryos (9.9+/- 2.4% for cumulus cells and 9.8+/-1.6% for fibroblast cells) was significantly lower than that (22.9+/-3.5%) of IVF-derived embryos (P<0.01). NT blastocysts derived from either cumulus (28.9+/-11.4, n = 26) or fibroblast cells (30.2+/-9.9, n = 27) showed smaller mean nuclei numbers than IVF-derived blastocysts (38.6+/-10.4, n = 62) (P<0.05). In Experiment 3, nuclear transfer of porcine fibroblasts expressing the GFP (green fluorescent protein) gene resulted in green blastocysts without losing developmental potential. These results suggest that porcine embryos reconstructed by somatic cell nuclear transfer are capable of developing to preimplantation stage. We conclude that somatic cells expressing exogenous genes can be used as nuclei donors in the production of NT-mediated transgenic pig.  相似文献   

10.
11.
The effect of simple and sequential embryo culture media on the preimplantation development of mouse nuclear transfer (NT) embryos reconstructed with cumulus cell nuclei using a mechanical NT technique was studied. Blastocyst formation rate was evaluated using CZB medium and the sequential media G1/G2 and KSOM/G2. Arrested two- and three-cell NT embryos were Hoechst-stained to check for nuclear abnormalities. Nonmanipulated and sham-manipulated parthenogenetic embryos served as controls for, respectively, the medium and the handling technique. Rates of blastocyst formation for medium and handling control embryos were similar in CZB (58% and 61%), in G1/G2 (94% and 85%), and in KSOM/G2 (88% and 84%). Development of NT embryos was significantly impaired from the two-cell stage onwards, reaching the blastocyst stage at a rate of 5% in CZB, 14% in G1/G2, and 28% in KSOM/G2. Arrested two- and three-cell stage NT embryos showed a high rate of binucleation. These data demonstrate not only that NT embryos are more sensitive to in vitro culture conditions than parthenogenetic control embryos but also that selection of culture media can influence the preimplantation development of NT embryos.  相似文献   

12.
Koo DB  Kang YK  Park JS  Park JK  Chang WK  Lee KK  Han YM 《Theriogenology》2004,62(5):779-789
The structural integrity of blastocyst stage embryos, consisting of the inner cell mass (ICM) and trophectoderm (TE) cells, is a prerequisite for normal development after implantation in mammals. In this study, allocation of nuclear transfer (NT)-derived porcine blastocysts to the ICM and to the TE cells was examined and compared with IVF- and in vivo-derived embryos. NT-derived embryos had a lower developmental competence to the blastocyst stage than IVF-derived embryos (P < 0.05). Total cell number of NT-derived blastocysts was inferior to that of IVF-derived embryos (P < 0.05), although no difference was detected between the two groups in the ratio of ICM to total cells. However, in vivo-derived blastocysts had a higher proportion of ICM to total cells compared with in vitro-produced embryos (P < 0.01). To investigate what proportions of in vitro-produced porcine embryos represent normal structural integrity, differentially-stained blastocysts were individually classified into three presumptive groups (I: <20%; II: 20-40%; III: >40%) according to the ratio of ICM to total cells. Low proportions of NT- (12.5%, 7/56) and IVF-derived blastocysts (15.8%, 9/57) were assigned to Group II, presumptively having a normal range of structural integrity, whereas, almost all in vivo-derived embryos (97.5%, 39/40) were allocated to Group II. In conclusion, limited structural integrity may lead to the poor survival to term of NT- or IVF-derived porcine embryos produced in vitro.  相似文献   

13.
14.
The major objective of this study was to improve the development rate of parthenogenetic porcine embryos. In this study, the anti-oxidative and anti-apoptotic effects of three antioxidants, β-mercaptoethanol (β-ME), α-tocopherol, and extracellular superoxide dismutase (EC-SOD), were examined on the development of parthenogenetic porcine embryos. The development rate of parthenogenetic porcine embryos to the blastocyst stage was 8.1% for control; 19.1%, 14.6%, and 5.0% for 1, 3, and 5 μM β-ME; 17.2% and 17.5% for 50 and 100 μM α-tocopherol and 12.0% and 4.0% for EC-SOD transgenic mouse embryonic fibroblast (Tg-MEF) and EC-SOD non-transgenic mouse embryonic fibroblast (NTg-MEF) conditioned medium at day 3, respectively. Here, β-ME, α-tocopherol, and EC-SOD Tg-MEF conditioned medium increased the development rate of parthenogenetic porcine embryos to the blastocyst stage (P?<?0.05). The average number of total cells and apoptotic cells at the blastocyst was analyzed at the optimal conditions of the three antioxidants. The three antioxidants increased the average number of total cells at the blastocyst, and they decreased apoptotic cells at the blastocyst as compared to control without supplementation (P?<?0.05). When the reactive oxygen species levels in two-cell embryos after 1 μM β-ME and 100 μM α-tocopherol treatment were examined, those were lower than control group (P?<?0.05). In conclusion, it was found that the three antioxidants, β-mercaptoethanol, α-tocopherol, and EC-SOD Tg-MEF, conditioned medium can play a role as a strong stimulator in the development of parthenogenetic porcine embryos.  相似文献   

15.
16.
Androgenetic embryos are useful model for investigating the contribution of the paternal genome to embryonic development. Little work has been done with androgenetic embryo production in domestic animals. The aim of this study was the production of diploid androgenetic sheep embryos. In vitro matured sheep oocytes were enucleated and fertilized in vitro; parthenogenetic and normally fertilized embryos were also produced as a control. Fifteen hours after in vitro fertilization (IVF), presumptive zygotes were centrifuged and scored for the number of pronucleus. IVF, parthenogenetic, and androgenetic embryos (haploid, diploid, and triploid) were cultured in SOFaa medium with bovine serum albumin (BSA). The proportion of oocytes with polyspermic fertilization increased linearly with increasing sperm concentration. After IVF, there was no significant difference in early cleavage and morula formation rates between the groups, while there was a significant difference on blastocyst development between IVF, parthenogenetic, and androgenetic embryos, the last ones displaying poor developmental potential (IVF, parthenogenetic, and haploid, diploid, and triploid androgenetic embryos: 43%, 38%, 0%, 2%, and 2%, respectively). In order to boost androgenetic embryonic development, we produced diploid androgenetic embryos through pronuclear transfer. Single pronuclei were aspirated with a bevelled pipette from haploid or diploid embryos and transferred into the perivitelline space of other haploid embryos, and the zygotes were reconstructed by electrofusion. Fusion rates approached 100%. Pronuclear transfer significantly increased blastocyst development (IVF, parthenogenetic, androgenetic: Diploid into Haploid, and Haploid into Haploid: 42%, 42%, 19%, and 3%, respectively); intriguingly, the Haploid + Diploid group showed the highest development to blastocyst stage. The main findings of our study are: (1) sheep androgenetic embryos display poor developmental ability compared with IVF and parthenogenetic embryos; (2) diploid androgenetic embryos produced by pronuclear exchange developed in higher proportion to blastocyst stage, particularly in the Diploid-Haploid group. In conclusion, pronuclear transfer is an effective method to produce sheep androgenetic blastocysts.  相似文献   

17.
In the present study, we investigated the effect of melatonin on the preimplantation development of porcine parthenogenetic and somatic cell nuclear transfer (SCNT) embryos. Parthenogenetic embryos were cultured in mNCSU-23 supplemented with various concentrations of melatonin for 7 days. The results revealed that 100 pM was the optimal concentration, which resulted in significantly increased cleavage and blastocyst formation rates. Additionally, 100 pM melatonin provided the highest increase in total cell number of blastocysts. Therefore, the subsequent experiments were performed with 100 pM melatonin. ROS level in 2-8 cell stage embryos in the presence or absence of melatonin was evaluated. Embryos cultured with melatonin showed significantly decreased ROS. Blastocysts cultured with melatonin for 7 days were analyzed by the TUNEL assay. It was observed that melatonin not only increased (P < 0.05) the total cell number but also decreased (P < 0.05) the rate of apoptotic nuclei. Blastocysts cultured with melatonin were assessed for the expression of apoptosis-related genes Bcl-xl and Bax, and of pluripotency marker gene Oct-4 by real-time quantitative PCR. Analysis of data showed that the expression of Bcl-xl was higher (1.7-fold) compared to the control while the expression of Bax was significantly decreased relative to the control (0.7-fold) (P < 0.05). Moreover, the expression of Oct-4 was 1.7-fold higher than the control. These results indicated that melatonin had beneficial effects on the development of porcine parthenogenetic embryos. Based on the findings of parthenogenetic embryos, we investigated the effect of melatonin on the development of porcine SCNT embryos. The results also demonstrated increased cleavage and blastocyst formation rates, and the total cell numbers in blastocysts were significantly higher when the embryos were cultured with melatonin. Therefore, these data suggested that melatonin may have important implications for improving porcine preimplantation SCNT embryo development.  相似文献   

18.
The purpose of this study was to evaluate the ability of hyaluronic acid to improve the development of 1- and 2-cell porcine embryos to the blastocyst stage in a simple medium. In Experiment 1, we confirmed the ability of Whitten's medium supplemented with 15 mg/ml BSA to support the development of porcine embryos to the blastocyst stage under our experimental conditions. Embryos collected from oviducts were cultured at 38.5 degrees C in an atmosphere of 5% CO(2) in humidified air up to 6 d. After 2 d of culture, 82 and 78% of embryos reached the 4-cell stage or beyond in TCM199 supplemented with 10% fetal calf serum (FCS) and in Whitten's medium with BSA, respectively. However, no embryo developed to the morula stage in TCM199 after 6 d of culture. On the other hand, 26 and 15% of embryos developed to the morula and the blastocyst stage in Whitten's medium, respectively. In Experiment 2, we determined whether supplementation of hyaluronic acid in Whitten's medium would improve the development of porcine embryos to the blastocyst stage. After 6 d of culture, development of the embryos to the blastocyst stage was best supported in Whitten's medium with 4 mg/ml BSA and 0.5 mg/ml hyaluronic acid (70%). The proportion of degenerated embryos was lower in the presence than in the absence of hyaluronic acid. These results indicate that the supplementation of Whitten's medium with hyaluronic acid improves the development of 1- and 2-cell porcine embryos to the blastocyst stage.  相似文献   

19.
Wu GQ  Jia BY  Li JJ  Fu XW  Zhou GB  Hou YP  Zhu SE 《Theriogenology》2011,76(5):785-793
The objective was to determine whether adding L-carnitine in IVM/IVC medium enhanced maturation and developmental competence of porcine oocytes in vitro. Oocyte maturation rates did not differ significantly among groups supplemented with 0, 0.25, 0.5, or 1 mg/mL of L-carnitine added during IVM (although 2 mg/mL of L-carnitine reduced maturation rate). Compared with control oocytes, those treated with 0.5 mg/mL of L-carnitine during IVM had greater (P < 0.05) rates of blastocyst formation after parthenogenetic activation, and these blastocysts had less (P < 0.05) apoptosis. Adding 0.5 mg/mL of L-carnitine during IVM also significantly reduced intracellular reactive oxygen species (ROS), and increased glutathione (GSH) concentrations. With or without glucose supplementation, 0.5 mg/mL of L-carnitine in the IVM medium significantly hastened nuclear maturation of oocytes. Moreover, supplementing the IVM medium with either glucose or L-carnitine increased (P < 0.05) percentages of oocytes that reached the metaphase II (MII) stage, relative to a control group. Final maturation rates in IVM medium containing either glucose or L-carnitine were not significantly different. Adding L-carnitine (0 to 2 mg/mL) to IVC medium for activated porcine oocytes did not significantly affect development. However, 0.5 mg/mL of L-carnitine in IVC medium significantly reduced reactive oxygen species levels and apoptosis in activated blastocysts, although glutathione concentrations were not significantly altered. In conclusion, adding L-carnitine during IVM/IVC improved developmental potential of porcine oocytes, and also the quality of parthenogenetic embryos, probably by accelerating nuclear maturation, and preventing oxidative damage and apoptosis.  相似文献   

20.
Successful in vitro development of embryos is dependent upon maintenance of cellular function in the embryonic microenvironment. However, the molecular aspects involved in the thermoprotection of embryos, against heat and cold stress it is not clear. The aim of this study was to determine the effects of heat and cold shock on the viability and development of porcine diploid parthenotes developing in vitro. Exposure of two-cell stage embryos to 41 degrees C did not affect further cleavage. However, prolonged heat shock, greater than 12h, reduced the percentage of blastocysts that developed from two-cell stage parthenotes, as well as the total number of nuclei in the blastocysts that formed. Furthermore, the degree of apoptosis was increased (P<0.05) in these blastocyst stage parthenotes. In contrast, exposure of two-cell parthenotes to cold (30 degrees C) for 24h did not affect the cleavage rates, development to blastocyst, nor the total cell numbers per blastocyst. Real time PCR revealed that quantitative expression of the Bcl-xL gene was not different, but amounts of HSP 70.2, Bak, and Caspase 3mRNA were significantly increased in the heat shocked embryos, as compared with untreated controls. These results suggest that porcine embryos are more tolerant to cold shock than to heat shock. Heat stress seems to induce apoptosis related gene expression in porcine parthenotes developing in vitro, which results in diminished parthenote viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号