首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parasporins represent a new functional class of Cry (crystal protein) toxins produced by the bacterium Bacillus thuringiensis (Bt). Unlike Cry toxins that demonstrate activity mainly against some insect cells, parasporins are characterized as being non-hemolytic, yet capable of preferentially killing some human cancer cells. Globally, six different parasporin types, PS1–PS6, based on protein sequence homology, have been identified in only four countries (Japan, Vietnam, India, and Canada). Herein we report the results of a screening study of 160 Bt isolates collected from the Caribbean island of Trinidad. One isolate (strain 64-1-94) was shown to kill human cancer cells and to contain one ps6 and two ps1 parasporin genes. The two ps1 genes were located approximately 6 kb apart from each other, sharing a similar spatial arrangement, and high sequence homology, with two plasmid-located ps1 genes, ps1Aa6 and ps1Ad1, recently isolated from a Japanese strain. Evidence is also presented that a parasporin gene reported previously for a Canadian strain, ps1Aa2, is most likely derived from a recombination event between these same two genes found in the Trinidadian and Japanese strains. Notably, all three strains share a ps6 parasporin gene, presumably located on a separate plasmid. These data suggest that the global population of ps1 genes may be have originated from a single pair of parasporin genes. Given the large geographical distance between the collection sites, which are located on both continental land masses and islands at sea, ps1 genes are able to retain a remarkable level of homology not easily explained.  相似文献   

2.
Metabolic reprogramming is a hallmark of cancer cells, but the mechanisms are not well understood. The mammalian target of rapamycin complex 2 (mTORC2) controls cell growth and proliferation and plays a critical role in metabolic reprogramming in glioma. mTORC2 regulates cellular processes such as cell survival, metabolism, and proliferation by phosphorylation of AGC kinases. Components of mTORC2 are shown to localize to the nucleus, but whether mTORC2 modulates epigenetic modifications to regulate gene expression is not known. Here, we identified histone H3 lysine 56 acetylation (H3K56Ac) is regulated by mTORC2 and show that global H3K56Ac levels were downregulated on mTORC2 knockdown but not on mTORC1 knockdown. mTORC2 promotes H3K56Ac in a tuberous sclerosis complex 1/2 (TSC1/2) mediated signaling pathway. We show that knockdown of sirtuin6 (SIRT6) prevented H3K56 deacetylation in mTORC2 depleted cells. Using glioma model consisting of U87EGFRvIII cells, we established that mTORC2 promotes H3K56Ac in glioma. Finally, we show that mTORC2 regulates the expression of glycolytic genes by regulating H3K56Ac levels at the promoters of these genes in glioma cells and depletion of mTOR leads to increased recruitment of SIRT6 to these promoters. Collectively, these results identify mTORC2 signaling pathway positively promotes H3K56Ac through which it may mediate metabolic reprogramming in glioma.  相似文献   

3.
Bai L  Singh M  Pitt L  Sweeney M  Brutnell TP 《Genetics》2007,175(3):981-992
The maize transposable element Activator (Ac) has been exploited as an insertional mutagen to disrupt, clone, and characterize genes in a number of plant species. To develop an Ac-based mutagenesis platform for maize, a large-scale mutagenesis was conducted targeting the pink scutellum1 locus. We selected 1092 Ac transposition events from a closely linked donor Ac, resulting in the recovery of 17 novel ps1 alleles. Multiple phenotypic classes were identified corresponding to Ac insertions in the 5'-UTR and coding region of the predicted Ps1 gene. To generate a stable allelic series, we employed genetic screens and identified 83 germinally heritable ps1 excision alleles. Molecular characterization of these excision alleles revealed a position-dependent bias in excision allele frequencies and the predominance of 7- and 8-bp footprint products. In total, 19 unique ps1 excision alleles were generated in this study, including several that resulted in weak mutant phenotypes. The analysis of footprint alleles suggests a model of Ac excision in maize that is consistent with recent in vitro studies of hAT element excision. Importantly, the genetic and molecular methods developed in this study can be extended to generate novel allelic variation at any Ac-tagged gene in the genome.  相似文献   

4.
为探讨膀胱癌相关蛋白磷酸酶2A催化亚单位(BCAPP2Ac)新基因在膀胱癌组织中的表达及其对膀胱癌细胞增殖的影响,通过合成抗原多肽免疫家兔获得抗BCAPP2Ac多克隆抗体及通过慢病毒感染方式获得稳定表达BCAPP2Ac的膀胱癌细胞.采用实时PCR及免疫组化染色方法检测BCAPP2Ac mRNA和蛋白在膀胱癌组织、癌旁组织及其它多种肿瘤组织中的表达;用细胞增殖实验检测BCAPP2Ac对膀胱癌细胞增殖的影响.实时PCR及免疫组化结果显示,BCAPP2Ac mRNA及蛋白在膀胱癌组织较癌旁组织表达明显下调;过表达BCAPP2Ac能抑制膀胱癌EJ、T24细胞的增殖, 蛋白磷酸酶2A催化结构域缺失(△PP2Ac)能逆转BCAPP2Ac的增殖抑制作用.研究结果提示,新基因BCAPP2Ac能抑制膀胱癌细胞的增殖,PP2Ac结构域在其抑制细胞增殖作用中发挥重要作用.  相似文献   

5.
We have analyzed the structures of glycosphingolipids and intracellular free glycans in human cancers. In our previous study, trace amounts of free N-acetylneuraminic acid (Neu5Ac)-containing complex-type N-glycans with a single GlcNAc at each reducing terminus (Gn1 type) was found to accumulate intracellularly in colorectal cancers, but were undetectable in most normal colorectal epithelial cells. Here, we used cancer glycomic analyses to reveal that substantial amounts of free Neu5Ac-containing complex-type N-glycans, almost all of which were α2,6-Neu5Ac-linked, accumulated in the pancreatic cancer cells from three out of five patients, but were undetectable in normal pancreatic cells from all five cases. These molecular species were mostly composed of five kinds of glycans having a sequence Neu5Ac-Gal-GlcNAc-Man-Man-GlcNAc and one with the following sequence Neu5Ac-Gal-GlcNAc-Man-(Man-)Man-GlcNAc. The most abundant glycan was Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3Manβ1-4GlcNAc, followed by Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6Manβ1-4GlcNAc. This is the first study to show unequivocal evidence for the occurrence of free Neu5Ac-linked N-glycans in human cancer tissues. Our findings suggest that free Neu5Ac-linked glycans may serve as a useful tumor marker.  相似文献   

6.
7.
Sialic acids participate in many important biological recognition events, yet eukaryotic sialic acid biosynthetic genes are not well characterized. In this study, we have identified a novel human gene based on homology to the Escherichia coli sialic acid synthase gene (neuB). The human gene is ubiquitously expressed and encodes a 40-kDa enzyme. The gene partially restores sialic acid synthase activity in a neuB-negative mutant of E. coli and results in N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) production in insect cells upon recombinant baculovirus infection. In vitro the human enzyme uses N-acetylmannosamine 6-phosphate and mannose 6-phosphate as substrates to generate phosphorylated forms of Neu5Ac and KDN, respectively, but exhibits much higher activity toward the Neu5Ac phosphate product.  相似文献   

8.
Two novel parasporin (PS) genes were cloned from Bacillus thuringiensis B0462 strain. One was 100 % identical even in nucleotide sequence level with that of parasporin-1Aa (PS1Aa1) from B. thuringiensis A1190 strain. The other (PS1Ac2) showed significant homology (99 % identity) to that of PS1Ac1 from B. thuringiensis 87-29 strain. The 15 kDa (S113–R250) and 60 kDa (I251–S777) fragments consisting of an active form of PS1Ac2 were expressed as His-tag fusion. Upon purification under denaturing condition and refolding, the recombinant polypeptides were applied to cancer cells to analyze their cytotoxicities. 3-(4,5-Dimethyl-2-thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide assay revealed that either of 15 or 60 kDa polypeptide exhibited no cytotoxicity to HeLa cells, but they became cytotoxic upon mixed together. Our results suggested that PS1Ac2 was responsible for the cytotoxicity of B. thuringiensis B0462 strain, and that the formation of hetero-dimer of 15 and 60 kDa polypeptide was required for their cytotoxicity.  相似文献   

9.
10.
The initiation of angiogenesis can mark the transition from tumor dormancy to active growth and recurrence. Mechanisms that regulate recurrence in human cancers are poorly understood, in part because of the absence of relevant models. The induction of ARHI (DIRAS3) induces dormancy and autophagy in human ovarian cancer xenografts but produces autophagic cell death in culture. The addition of VEGF to cultures maintains the viability of dormant autophagic cancer cells, thereby permitting active growth when ARHI is downregulated, which mimics the “recurrence” of growth in xenografts. Two inducible ovarian cancer cell lines, SKOv3-ARHI and Hey-ARHI, were used. The expression level of angiogenesis factors was evaluated by real-time PCR, immunohistochemistry, immunocytochemistry and western blot; their epigenetic regulation was measured by bisulfite sequencing and chromatin immunoprecipitation. Six of the 15 angiogenesis factors were upregulated in dormant cancer cells (tissue inhibitor of metalloproteinases-3, TIMP3; thrombospondin-1, TSP1; angiopoietin-1; angiopoietin-2; angiopoietin-4; E-cadherin, CDH1). We found that TIMP3 and CDH1 expression was regulated epigenetically and was related inversely to the DNA methylation of their promoters in cell cultures and in xenografts. Increased H3K9 acetylation was associated with higher TIMP3 expression in dormant SKOv3-ARHI cells, while decreased H3K27me3 resulted in the upregulation of TIMP3 in dormant Hey-ARHI cells. Elevated CDH1 expression during dormancy was associated with an increase in both H3K4me3 and H3K9Ac in two cell lines. CpG demethylating agents and/or histone deacetylase inhibitors inhibited the re-growth of dormant cancer cells, which was associated with the re-expression of anti-angiogenic genes. The expression of the anti-angiogenic genes TIMP3 and CDH1 is elevated during dormancy and is reduced during the transition to active growth by changes in DNA methylation and histone modification.  相似文献   

11.
12.
13.
14.
15.
We previously identified ps20 protein as a secreted growth inhibitor and purified the protein from fetal rat prostate urogenital sinus mesenchymal cell conditioned medium. The rat cDNA was subsequently cloned, and ps20 was found to contain a WAP-type four-disulfide core motif, indicating it may function as a protease inhibitor. We now report cloning and characterization of the mouse ps20 gene (designated Wfdc1), the human homolog cDNA, and the human gene (designated WFDC1). Both the mouse and human WFDC1 genes consist of seven exons and encode respective ps20 proteins sharing 79.1% identity and nearly identical WAP motifs in exon 2. The WFDC1 gene was mapped by FISH analysis to human Chromosome (Chr) 16q24, an area of frequent loss of heterozygosity (LOH) previously identified in multiple cancers including prostate, breast, hepatocellular, and Wilms' tumor. Identification and characterization of the WFDC1 gene may aid in better understanding the potential role of this gene and ps20 in prostate biology and carcinogenesis.  相似文献   

16.
This study explores the signaling transduction cascade of ERK and p38 MAPK on regulating MAPK phosphatase-1 (MKP-1) and protein phosphatase 2A catalytic subunit α (PP2Acα) expression in caffeine-treated human leukemia U937 cells. Caffeine induced an increase in the intracellular Ca2 + concentration and ROS generation leading to p38 MAPK activation and ERK inactivation, respectively. Caffeine treatment elicited MKP-1 down-regulation and PP2Acα up-regulation. The transfection of constitutively active MEK1 or pretreatment with SB202190 (p38 MAPK inhibitor) abolished the caffeine effect on MKP-1 and PP2Acα expression. Caffeine repressed ERK-mediated c-Fos phosphorylation but evoked p38 MAPK-mediated CREB phosphorylation. Knockdown of c-Fos and CREB by siRNA showed that c-Fos and CREB were responsible for MKP-1 and PP2Acα expression, respectively. Promoter and chromatin immunoprecipitating assay supported the role of c-Fos and CREB in regulating MKP-1 and PP2Acα expression. Moreover, transfection of dominant negative MKP-1 cDNA led to p38 MAPK activation and PP2Acα down-regulation in U937 cells, while PP2A inhibitor attenuated caffeine-induced ERK inactivation and MKP-1 down-regulation. Taken together, our data indicate that a reciprocal relationship between ERK-mediated MKP-1 expression and p38 MAPK-mediated PP2Acα expression crucially regulates ERK and p38 MAPK phosphorylation in U937 cells.  相似文献   

17.
An escape mutant of human parainfluenza virus type 1 (hPIV1), which was selected by serial passage in the presence of a sialidase inhibitor, 4-O-thiocarbamoylmethyl-2-deoxy-2,3-didehydro-N-acetylneur-aminic acid (TCM-Neu5Ac2en), exhibited remarkable syncytium formation and virus-induced cell death in LLC-MK2 cells but no difference in susceptibility for the sialidase inhibitor TCM-Neu5Ac2en from that of wild-type hPIV1 strain C35 (WT). The mutant virus also had higher replication and plaque formation abilities. The mutant virus acquired two amino acid mutations, Glu to Gly at position 170 and Ala to Glu 442 in fusion (F) glycoprotein, but no mutations in haemaggulutinin-neuraminidase (HN) glycoprotein. Using cells co-expressing F and HN genes with site-specific mutagenesis, we demonstrated that a point mutation of Glu to Gly at position 170, which was estimated to be located in hPIV1 F glycoprotein heptad repeat 1, was required for obvious syncytium formation and caspase-3-dependent cell death. In contrast, wild-type F glycoprotein induced no synctium formation or cell death. The findings suggest that a single amino acid mutation of hPIV1 F glycoprotein promotes syncytium formation that is followed by caspase-3-dependent cell death.  相似文献   

18.
Herbal medicine has been utilized to treat a variety of diseases, including cancer. On the other hand, disturbance of apoptosis is often observed in cancer cells. It has been reported that protein kinase C (PKC) isoforms are involved in the signaling of apoptosis. In the present study, we investigate the antitumor effect and possible mechanism of a herbal-originated product, (Ac)(5)GP. We demonstrate that (Ac)(5)GP treatment results in DNA fragmentation of C6 glioma cells dose-dependently. Stimulated by (Ac)(5)GP, PKCdelta and PKCzeta were activated and translocated to the cell membrane fraction. Flow cytometry analysis showed that PKCdelta, but not PKCzeta inhibition blocks the (Ac)(5)GP-induced apoptosis by decreasing the cell population of sub G1 peak. However, the mRNA levels of PKCdelta and PKCzeta were not altered by (Ac)(5)GP-induced glioma cell apoptosis. These results suggested that the treatment of (Ac)(5)GP induces apoptosis of tumor cells through the activation but not the synthesis of PKCdelta.  相似文献   

19.
The expression of O-acetylated sialic acids in human colonic mucins is developmentally regulated, and a reduction of O-acetylation has been found to be associated with the early stages of colorectal cancer. Despite this, however, little is known about the enzymatic process of sialic acid O-acetylation in human colonic mucosa. Recently, we have reported on a human colon sialate-7(9)-O-acetyltransferase capable of incorporating acetyl groups into sialic acids at the nucleotide-sugar level [Shen et al., Biol. Chem. 383 (2002), 307-317]. In this report, we show that the CMP-N-acetyl-neuraminic acid (CMP-Neu5Ac) and acetyl-CoA (AcCoA) transporters are critical components for the O-acetylation of CMP-Neu5Ac in Golgi lumen, with specific inhibition of either transporter leading to a reduction in the formation of CMP-5-N-acetyl-9-O-acetyl-neuraminic acid (CMP-Neu5,9Ac2). Moreover, the finding that 5-N-acetyl-9-O-acetyl-neuraminic acid (Neu5,9Ac2 could be transferred from neo-synthesised CMP-Neu5,9Ac2 to endogenous glycoproteins in the same Golgi vesicles, together with the observation that asialofetuin and asialo-human colon mucin are much better acceptors for Neu5,9Ac2 than asialo-bovine submandibular gland mucin, suggests that a sialyltransferase exists that preferentially utilises CMP-Neu5,9Ac2 as the donor substrate, transferring Neu5,9Ac2 to terminal Galbeta1,3(4)R- residues.  相似文献   

20.
Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号