首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Triphenyltin salicylate (TPS) was tested against six bacteria, Escherichia coli, Staphylococcus aureus, Shigella flexneri, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella typhi and five fungi, Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Rhodotorula spp. and Saccharomyces spp. Sensitivity tests were determined with 5-500 microg/ml of TPS. All organisms were sensitive to the compound except Klebsiella pneumoniae, Pseudomonas aeruginosa, Rhodotorula spp. and Saccharomyces spp. The minimum dose of TPS that can kill 50% of the susceptible microorganisms is in the range 5-50 microg/ml. Membrane bound pyrophosphatase(s) from the organisms was non-competitively inhibited by 5 microM TPS with Ki values of 7.6, 18, 8.8 and 6.9 microM for Escherichia coli, Shigella flexneri, Aspergillus niger, and Aspergillus fumigatus, respectively. The physiological index of efficiency of the enzyme (Vmax/KM) for TPS susceptible organisms was reduced by 17-68% in the presence of 5-10 microM of the compound. In contrast the index for the non-susceptible organisms was unaffected. The mode of action of TPS is discussed.  相似文献   

2.
A series of new antibacterial and antifungal Schiff's bases derived from sulfonamides, as well as their transition metal complexes incorporating cobalt (II), copper (II), nickel (II) and zinc (II) were synthesized, characterized and screened for their in-vitro antibacterial activity against six Gram-negative (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi and Shigella dysentriae) and four Gram-positive (Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureous and Streptococcus pyogenes) bacterial strains and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, Candida glaberata. The results of these studies show the metal complexes to be more antibacterial and antifungal as compared to the uncomplexed Schiffs' bases. The brine shrimp bioassay was also carried out to study the in-vitro cytotoxic properties of these synthesized ligands and their complexes.  相似文献   

3.
Keflin (kefl) interacts with Co(II), Cu(II), Ni(II) and Zn(II) metal ions leading to complexes of the type M(kefl)2Cl2 and M(kefl)Cl2, which have been characterized by physicochemical and spectroscopic methods. Magnetic moment, IR, electronic spectral and elemental analyses data suggest that keflin behaves tridentately forming octahedral or trigonal bipyramidal complexes with the metal ions mentioned above. The new compounds have been screened in-vitro for antibacterial and cytotoxic activity against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysentriae, Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureus and Streptococcus pyogenes bacterial strains. Compounds, 4 and 8 showed promising activity (90%) against seven, compound 6 showed significant activity (52%) against four and, compounds 1 and 5 showed activity (40%) against three test bacterial strains at concentration of 10 microM.  相似文献   

4.
Thirty-four thiosemicarbazones and S-alkyl thiosemicarbazones, and some of their Zn(II) and Pd(II) complexes were obtained and purified to investigate antimicrobial activity. MIC values of the compounds were determined by the disc diffusion method against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, Staphylococcus aureus, S. epidermidis, and Candida albicans. The thiosemicarbazones show antibacterial and antifungal effects in free ligand and metal-complex form. Picolinaldehyde-S-methyl- and -S-benzylthiosemicarbazones did not affect the tested microorganisms but their Zn(II) complexes showed selective activity. The antimicrobial activity is relatively high in Me2SO, but the antimicrobial potential is changed in a certain range with Me2SO, HCONMe2, EtOH and CHCl3.  相似文献   

5.
We have synthesized two cobalt(II) 2 and copper(II) 3 complexes of valine-derived Schiff bases. The obtained complexes were characterized by elemental analysis, FT-IR and X-ray diffraction. Biological studies of complexes 2 and 3 had been carried out in vitro for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi. Compound 3 was proven to be a broad spectrum agent, showed a significant inhibition of the growth of Gram-positive bacteria (Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis, Micrococcus luteus), and pathogenic fungi (Candida spp., Cryptococcus neoformans, Rhodothece glutinis, Saccharomyces cerevisia, Aspergillus spp., Rhizopus nigricans) tested and a moderate activity against Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris and Enterobacter aerogenes) tested. The in vitro cytotoxicity of compound 3 was evaluated using hemolytic assay, in which the compound 3 was found to be non-toxic to human erythrocytes even at a concentration of 500mug/mL.  相似文献   

6.
Keflin (kefl) interacts with Co(II), Cu(II), Ni(II) and Zn(II) metal ions leading to complexes of the type M(kefl)2Cl2 and M(kefl)Cl2, which have been characterized by physicochemical and spectroscopic methods. Magnetic moment, IR, electronic spectral and elemental analyses data suggest that keflin behaves tridentately forming octahedral or trigonal bipyramidal complexes with the metal ions mentioned above. The new compounds have been screened in-vitro for antibacterial and cytotoxic activity against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysentriae, Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureus and Streptococcus pyogenes bacterial strains. Compounds, 4 and 8 showed promising activity (90%) against seven, compound 6 showed significant activity (52%) against four and, compounds 1 and 5 showed activity (40%) against three test bacterial strains at concentration of 10 μM.  相似文献   

7.
The crude extract and the hexane, CH(2)Cl(2), EtOAc, n-BuOH, and hydromethanolic fractions of the aerial parts of Mitracarpus frigidus were evaluated against promastigote forms of two species of Leishmania (L. chagasi and L. amazonensis), 11 strains of bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica sorovar Tythimurium, Shigella sonnei, Klebsiella pneumoniae, Escherichia coli, Micrococcus luteus, Enterococcus faecalis, Enterobacter cloacae, Streptococcus pyogenes and Bacillus cereus) and two yeasts (Candida albicans and Cryptococcus neoformans). The antioxidant activity (DPPH radical scavenging activity and reducing power), cytotoxicity against mammalian cells, and the contents of phenolics and flavonoids were determined. Phytochemical analysis of the major groups of phytoconstituents is also reported. All samples showed antioxidant activity which was positively correlated to the content of phenolic compounds. S. sonnei, B. cereus and C. neoformans were susceptible to all extracts tested, except for the n-BuOH and hydromethanolic fractions, which demonstrated no antimicrobial activity. The lowest MIC was recorded for the CH(2)Cl(2) fraction against C. neoformans (MIC of 10 microg/ml), followed by B. cereus, S. sonnei, and E. cloacae (MIC of 20, 39 and 39 microg/ml, respectively). The CH(2)Cl(2) fraction was the most effective against L. chagasi (IC(50) of 6.7 microg/ml), and the hydromethanolic fraction exhibited the best activity against L. amazonensis (IC(50) of 9 microg/ml). A cytotoxic effect on mammalian cells was observed only for the crude extract and CH(2)Cl(2) fraction at the concentrations of 130 and 31 microg/ml, respectively. These results suggest that M. frigidus has interesting antimicrobial, antileishmanial and antioxidant activities.  相似文献   

8.
Four compounds named L-BTrpPA, L-Trp-o-PA, L-Trp-m-PA and L-Trp-p-PA, pseudopeptides constructed from pyridine and tryptophan units, were synthesized and tested against the Gram-positive, Gram-negative strains of bacteria and human pathogenic fungi. L-Trp-o-PA proved to be a broad-spectrum antimicrobial agent, showing a significant inhibition of the growth of Gram-positive bacteria (Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis, Micrococcus luteus), and pathogenic fungi (Candida spp., Cryptococcus neoformans, Rhodotorula glutinis, Saccharomyces cerevisiae, Aspergillus spp., Rhizopus nigricans) tested and activity against Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Proteus vulgaris, Enterobacter aerogenes) tested. The in vitro cell cytotoxicity of L-Trp-o-PA was evaluated using haemolytic assay, in which the compound was found to have low lytic property, even up to the concentration of 4000 microg/mL, it only lysed 6-7% of erythrocytes, which was 100-fold greater than the MICs (minimum inhibitory concentration).  相似文献   

9.
Polymyxin B nonapeptide was able to sensitize Escherichia coli strains and strains of Salmonella typhimurium, Klebsiella spp., Enterobacter cloacae, Pseudomonas aeruginosa, and Haemophilus influenzae to the bactericidal action of fresh normal human serum. The degree of sensitization varied significantly within the strains. Strains of Proteus mirabilis, Neisseria gonorrhoeae, and N. meningitidis remained resistant.  相似文献   

10.
A number of nucleoside analogues have been synthesized and evaluated for their antibacterial and antifungal activities against Staphylococcus aureus, Group D Streptococcus, Pseudomonas aeruginosa, Proteus spp., Salmonella spp., Aspergillus fumigatus, Penicillium marneffei, Candida albicans, Cryptococcus neoformans, and Mucor spp. The compounds 1, 4, and 6 emerged as potent antibacterial agents with MIC values of 0.75, 0.38, and 0.19 microM, respectively, against group D Streptococcus. Further, the results suggest that the molecules 4, 6, and 7 would be potent antifungal agents as they show substantial degree of inhibition toward the growth of pathogenic fungi with MICs of 0.75, 0.38, and 0.38 microM, respectively.  相似文献   

11.
Fishmeal extract bile salt lactose agar (FEBLA), a new differential medium for enteric bacteria was developed and evaluated for its ability to grow and differentiate lactose fermenters (LF) from non-lactose fermenters (NLF) in comparison with MacConkeys agar. Performance of FEBLA was at par with the latter. On FEBLA medium, the contrast between LF and NLF colonies was pronounced and Klebsiella pneumoniae produced more mucoid colonies than on MacConkeys agar (Hi Media). Unlike MacConkeys agar, a 24 h culture of K. pneumoniae cells on FEBLA were longer and thicker with abundant capsular material around the bacilli. Escherichia coli produced long and thick cells but only after 48h. No change in cell morphology was evident with regard to Salmonella typhi, S. paratyphi A, Shigella flexneri, Pseudomonas aeruginosa, Proteus mirabilis, Proteus vulgaris, Citrobacter koseri and Acinetobacter baumannii. Performance of the medium was controlled using E. coli and S. flexneri. FEBLA is simple, cost effective and may be a suitable alternative in the preliminary identification of enteric bacteria.  相似文献   

12.
Two clerodane diterpenoids, Bafoudiosbulbins A 1, and B 2, together with five known compounds: tetracosanoic acid, 1-(tetracosanoyl)-glycerol, trans-tetracosanylferulate, beta-sitosterol and 3-O-beta-D-glucopyranosyl-beta-sitosterol were isolated from the tubers of Dioscorea bulbifera L. var sativa. Their structures were established by spectroscopic methods (1D and 2D-NMR, MS) and X-ray crystallographic diffraction analysis of compound 1. The CH2Cl2-soluble portion of the crude extract and the two clerodanes were screened for anti-bacterial activity using both agar diffusion and broth dilution techniques against Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella typhi, Salmonella paratyphi A and Salmonella paratyphi B. They both showed significant activities against P. aeruginosa, S. typhi, S. paratyphi A and S. paratyphi B.  相似文献   

13.
A novel series of thiazolidinone derivatives, namely 4-{4-dimethylamino-6-[4-oxo-2-phenyl-5-(4-pyridin-2-yl-piperazin-1-ylmethyl)-thiazolidin-3-yl]-[1,3,5]-triazin-2-yloxy}-1-methyl-1H-quinolin-2-ones, have been synthesized from the key intermediate 4-(4-amino-6-dimethylamino-[1,3,5]-triazin-2-yloxy)-1-methyl-1H-quinolin-2-one (5). Compound 5 was condensed with various aldehydes to give Schiff base derivatives, which after cyclization gave thiazolidinones that were linked with 1-pyridin-2-yl-piperazine to obtain the target compounds. The newly synthesized compounds were evaluated for their antimicrobial activity against eight bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhi, Proteus vulgaris, Shigella flexneri) and four fungi (Aspergillus niger, Candida albicans, Aspergillus fumigatus, Aspergillus clavatus).  相似文献   

14.
Six Gram-negative bacteria (Klebsiella pneumoniae, Erwinia chrysanthemi, Proteus vulgaris, Serratia marescens, Salmonella typhimurium, and Pseudomonas aeruginosa) were shown to contain an FA-type protein capable of activating aponitrate reductase, apotrimethylamine N-oxide reductase and apoformate dehydrogenase of Escherichia coli. Protein FA activity was highest in Erwinia chrysanthemi and lowest in Pseudomonas aeruginosa. All the species also contained the low-Mr (less than or equal to 1500) heat-resistant material previously reported to be necessary for the protein-FA-dependent activation of E. coli chlB nitrate reductase.  相似文献   

15.
研究实验条件下培养红菇菌丝和发酵液对几种肠道致病菌的抑菌活性。结果发现其对大肠埃希菌具有特异性抑制,对其他菌的抑制较弱。初步确定了最小抑菌活性,认为红菇多糖具有一定的抑菌潜力。  相似文献   

16.
2-(2-Pyridinyl)- (LI), 2-(6-methyl-2-pyridinyl)- (LII), 2-(6-methyl-2-pyridinyl)-5-methyl-(LIII), 2-(3-pyridinyl)- (LIV), 2-(3-pyridinyl)-5-methyl-1H-benzimidazoles (LV) and their complexes with Fe(NO3)3, Cu(NO3)2, Zn(NO3)2, and AgNO3 were synthesized and antibacterial activity of the compounds was tested toward Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, Proteus mirabilis and antifungal activity against Candida albicans. The methyl groups of LIII increase the antimicrobial activity. The AgI complexes have considerable activity toward the microorganisms. Some ZnII complexes show an antimicrobial effect against S. aureus and S. flexneri, although the ligands themselves have no effect. CuII complexes have a considerable antibacterial effect to S. aureus and S. epidermidis.  相似文献   

17.
Ten cardiovascular drugs were procured in pure form from their manufacturers in India and screened for antimicrobial property against fifteen known bacteria belonging to both gram-positive and gram-negative types. These bacteria were inhibited by the common antibiotics at 1-5 mg ml(-1) level through our earlier studies. Since most of the bacteria were moderate to highly responsive to amlodipine, this compound was further tested in vitro against 504 bacteria comprising 4 genera of gram-positive and 15 genera of gram-negative bacteria. Most of these were inhibited by the drug at 50-200 microg ml(-1) level and few strains were sensitive even at lower concentrations (10 microg ml(-1)). The bacteria could be arranged in the decreasing order of sensitivity towards amlodipine in the following manner: Staphylococcus aureus, Vibrio cholerae, Vibrio parahemolyticus, Shigella spp., Salmonella spp., Bacillus spp., whereas Escherichia coli, Klebsiella spp. and Pseudomonas aeruginosa were found to be resistant to the lower concentrations of the drug. Amlodipine was found to be bactericidal in nature when its mode of action was studied against S. aureus 6571, V. cholerae 14035 and Sh boydii 8 NCTC 254/66. The antibacterial activity of amlodipine could also be confirmed in vivo. When it was given to Swiss strain of white mice at different dosages (30 and 60 microg/mouse), it could significantly protect the animals challenged with 50 MLD of Salmonella typhimurium NCTC 74. According to Chi square test the in vivo data were highly significant (p<0.001).  相似文献   

18.
1,2-Bis-[2-(5-H/Me/Cl/NO2)-1H-benzimidazolyl]-1,2-ethanediols (L1-L4), 1,4-bis-[2-(5-H/Me/Cl)-1H-benzimidazolyl]-1,2,3,4-butanetetraols (L5-L7) and their complexes with ZnCl2, CdCl2 and HgCl2 were synthesized and antibacterial activity of the compounds was tested toward Staphylococcus aureus, S. epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, Proteus mirabilis and antifungal activity against Candida albicans. HgII complexes have a considerably higher antimicrobial activity against all microorganisms. Some HgII complexes show higher antifungal activity than clotrimazole toward C. albicans. Zn2(L3)Cl4, Zn2(L4)Cl4, and Cd(L3)Cl2 were moderately effective against S. aureus and S. epidermidis; Cd(L4)Cl2 exhibited a weak activity only against S. epidermidis.  相似文献   

19.
This study presents the synthesis and in vitro pharmacological evaluations of novel 2-(4-cyanophenyl amino)-4-(6-bromo-4-quinolinyloxy)-6-piperazinyl (piperidinyl)-1,3,5-triazines. The title compounds were assayed for their in vitro antimicrobial activity against eight bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhi, Proteus vulgaris, Shigella flexneria) and four fungi (Aspergillus niger, Aspergillus fumigatus, Aspergillus clavatus, Candida albicans) using paper disc diffusion and agar streak dilution method as well as against Mycobacterium tuberculosis H37Rv strain using BACTEC MGIT and Lowenstein-Jensen MIC method. The bioassay results indicate that nine compounds namely 5d, 5h, 5n, 5p, 5q, 5r, 5s, 5t and 5u could be considered as possible potential agents with dual antimicrobial and antimycobacterial activities. The structures of the compounds were elucidated with the aid of IR, (1)H NMR, (13)C NMR, (19)F NMR spectroscopy and CHN analysis.  相似文献   

20.
Thermosensitive H1 plasmids determining citrate utilization.   总被引:6,自引:0,他引:6  
Twelve thermosensitive H1 plasmids from strains of Salmonella typhi that had caused outbreaks of chloramphenicol-resistant typhoid fever in Vietnam, Thailand and India mediated citrate utilization (Cit+) in a prototrophic Escherichia coli K12 strain but not in the S. typhi strains from which they were derived. Four H1 plasmids from a similar outbreak in Mexico differed from the Far Eastern plasmids in not mediating citrate utlization but in mediating mercury resistance. H1 plasmids resembling the Far Eastern and the Mexican plasmids in regard to citrate utilization and mercury resistance were found in sewage in Britain. Citrate utilization was transferred to eight pathogenic strains of E. coli and to one strain each of Shigella flexneri and Shigella sonnei. Cultures of Cit+ bacteria grew more rapidly in citrate media at 28 degrees C than at 37 degrees C. Plasmid mutants that were more efficient at utilizing citrate were present in all such cultures--they grew equally well or better at 37 degrees C than at 28 degrees C. None of 222 strains of E. coli or Shigella that contained a variety of different plasmids were able to utilize citrate. This property was not transferred to the prototrophic E. coli K12 strain from Citrobacter (3 strains), Salmonella (39 strains), Proteus (44 strains), Klebsiella pneumoniae (33 strains) or Pseudomonas aeruginosa (44 strains).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号