首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is shown by the use of Golgi's method in Antonova's modification that the neuronal structure of the periaqueductal gray matter (PGM) in the frontal plane is characterized by the presence of small and medium-sized cells of "reticular type," which can be subdivided into three types: fusiform, triangular, and multipolar. On the basis of the visual distribution of these types of neurons and also of statistical analysis of 800 identified neurons, two regions can be distinguished: medial, directly surrounding the aqueduct of Sylvius, containing small neurons, among which the fusiform kind predominate significantly (P<0.001), and a lateral region with larger neurons, with significantly (P<0.001) more triangular cells. Neurons in the medial region show a characteristic and strong (P<0.001) tendency for their dendrites to be oriented toward the lumen of the aqueduct, and through them the physiologically active substances of the CSF may influence the functional activity of neurons of PGM.Central Research Institute of Reflex Therapy, Moscow City Council Main Health Board, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 773–777, November–December, 1984.  相似文献   

2.
Stereotaxic microinjections of horseradish peroxidase (HP) were made into different parts of the rostral and caudal periaqueductal gray (PAG) in cats to study corticofugal projections to the PAG. The method of retrograde axonal transport of HP demonstrated labeled neurons in the I and II somatosensory areas, frontal, cingular and insular cortex of the brain. It was shown that the II somatosensory cortex projects to all the areas of the rostral and caudal PAG. The frontal cortex projects to the dorsolateral quadrant of the PAG. The findings obtained enabled the detection of the morphological substrate of the corticofugal effects on one of the antinociceptive brain structures--the PAG.  相似文献   

3.
The nucleoplasm of neurons in the nucleus lateralis of the periqueductal gray matter in the cat contains fibrillar structures which have no limiting membranes. These intranuclear bodies are associated with neither the nucleolus nor the nuclear membrane and have two characteristic forms. The first, the rodlet, is a compact bundle of fibrils 2 to 8 nm in diameter. It is usually elongated in shape although it appears spherical when sectioned transversely. This rod-like structure appears to correspond to Roncoroni's rodlet or the accessory body of Cajal in light microscopy. The second and more commonly observed form is a long slender bundle of five rows of parallel fibrils. Although similar intranuclear structures have frequently been observed in the highly differentiated neurons of the sympathetic ganglia and the retina, this is the first report of their pbesence in the undifferentiated neurons of the isodendritic core of the brainstem.  相似文献   

4.
M Gioia  R Bianchi  G Tredici 《Acta anatomica》1984,119(2):113-117
We studied the periaqueductal gray matter (PAG) in cresyl-violet-stained serial sections from 5 cats applying quantitative determinations. No significant variations were observed in the cytological aspects in the various sites examined (lateral, ventral and dorsal regions, and external and internal portions). The neuronal density was constant in the different regions, but showed a gradual and significant increase in the most external regions of the PAG. Our findings do not, therefore, confirm the existence in the PAG of subnuclei with a specific cytoarchitecture; this does not, however, rule out the possibility that there are specific regions for connections, histochemical properties or functions.  相似文献   

5.
M B Shaikh  A B Shaikh  A Siegel 《Peptides》1988,9(5):999-1004
The effects of the methionine-enkephalin analog [D-Ala2-Met5]-enkephalinamide (DAME) upon the threshold for affective defense behavior were determined following microinjections placed into midbrain periaqueductal gray sites from which this response was elicited. Affective defense behavior was elicited by electrical stimulation through a cannula electrode situated in the dorsal aspect of the midbrain periaqueductal gray. Dose-response curves characterizing the effects of DAME upon affective defense behavior were determined utilizing the following doses: 0.25, 0.5 and 1.0 microgram in 0.5 microliter saline, pH = 7.4 or vehicle control (saline). Response thresholds were tested 10-30, 30-60, 60-90, 120-150, 180-210, 1440-1470 and 2880-2910 min postinjection. The results obtained indicated that injections of DAME at a dose of 1.0 microgram/0.5 microliter produced significant, long duration elevations in affective defense thresholds, lasting up to 1440-1470 min postinjection. Lower doses of DAME (0.25 and 0.5 microgram/0.5 microliter) also resulted in significant increases in affective defense thresholds, but these effects were of shorter durations (60-90 and 120-150 min) postinjection, respectively. The suppressive effects of DAME were blocked when animals were pretreated with naloxone (10 micrograms/0.5 microliter) microinjected into the same midbrain periaqueductal gray site into which 0.25 microgram DAME was injected and affective defense behavior was elicited.  相似文献   

6.
7.
8.
Severe hemorrhage lowers arterial pressure by suppressing sympathetic activity. This study tested the hypothesis that the decompensatory phase of hemorrhage is mediated by the ventrolateral periaqueductal gray (vlPAG), a region importantly involved in the autonomic and behavioral responses to stress and trauma. Neuronal activity in the vlPAG was inhibited with either lidocaine or cobalt chloride 5 min before hemorrhage (2.5 ml/100 g body wt) was initiated in conscious, unrestrained rats. Bilateral injection of lidocaine (0.5 microl of a 2% or 1 microl of a 5% solution) into the caudal vlPAG delayed the onset and reduced the magnitude of the hypotension produced by hemorrhage significantly. In contrast, inactivation of the dorsolateral PAG with lidocaine was ineffective. Cobalt chloride (5 mM; 0.5 microl), which inhibits synaptic transmission but not axonal conductance, also attenuated hemorrhagic hypotension significantly. Microinjection of lidocaine or cobalt chloride into the vlPAG of normotensive, nonhemorrhaged rats did not influence cardiovascular function. These data indicate that the vlPAG plays an important role in the response to hemorrhage.  相似文献   

9.
Immunocytochemical and electron microscopic methods were used to study the GABAergic innervation in adult cat periaqueductal gray matter (PAG). A mouse monoclonal antibody against γ -aminobutyric acid (GABA) was used to visualize the inhibitory neuronal system of PAG. At light microscopy, GABA-immunopositive (GABAIP) neurons formed two longitudinally oriented columns in the dorsolateral and ventrolateral PAG that accounted for 36% of the neuronal population of both PAG columns; their perikaryal cross-sectional area was smaller than that of unlabeled (UNL) neurons found in the same PAG subdivisions. At electron microscopic level, patches of GABA immunoreactivity were readily detected in neuronal cell bodies, proximal and distal dendrites, axons and axon terminals. Approximately 35–36% of all terminals were GABAIP; they established symmetric synapses with dendrites (84.72% of the sample in the dorsolateral PAG and 86.09% of the sample in the ventrolateral PAG) or with cell bodies (7–10% of the sample). Moreover, 49.15% of GABAIP axon terminals in the dorsolateral and 52.16% in the ventrolateral PAG established symmetric synapses with GABAIP dendrites. Immunopositive axon terminals and unlabeled terminals were also involved in the formation of a complex synaptic arrangment, i.e. clusters of synaptic terminals in close contact between them that were often observed in the PAG neuropil. Moreover, a fair number of axo-axonic synapses between GABAIP and/or UNL axon terminals were present in both PAG subdivisions. Several dendro-dendritic synapses between labeled and unlabeled dendrites were also observed in both PAG subdivisions. These results suggest that in the cat PAG there exist at least two classes of GABArgic neurons. The first class could exert a tonic control on PAG projecting neurons, the second could act on those GABAergic neurons that in turn keep PAG projecting neurons under tonic inhibition. The functional implications of this type of GABAergic synapse organization are discussed in relation to the dishinibitory processes that take place in the PAG.  相似文献   

10.
11.
Unit activity in the midbrain periaqueductal gray matter (PGM) during an instrumental placing reflex, its extinction, differentiation, and conditioned inhibition, was studied in chronic experiments on cats. Spike responses 1–2 sec in duration in 69 (36.7%) of 182 neurons preceded by 400–800 msec the beginning of conditioned-reflex and voluntary intertrial movements. These advanced responses appeared 200 msec before the corresponding advance responses of motor cortical neurons. Fifty-eight neurons (30.9%) responded directly to acoustic stimulation with a latent period of 10–50 msec for 2–6 sec, 19 neurons (10.1%) generated double responses, linked with both the acoustic stimulus and subsequent conditioned-reflex movement, and 42 neurons (22.3%) did not respond to acoustic stimulation, although individual neurons of this group changed the level of their spontaneous activity in response to repeated conditioned stimulation, and this change was maintained for some tens of minutes. Extinction, differentiation, and conditioned inhibition all abolished conditioned-reflex movements, but each type of internal inhibition was accompanied by its own characteristic changes in the firing pattern of PGM neurons. Functional independence of neurons of the first and second groups was demonstrated during extinction and recovery of the conditioned-reflex. The results indicate the important role of PGM not only in the mechanism of the conditioned reflex, but also in the development of its internal inhibition.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 403–419, May–June, 1984.  相似文献   

12.
Responses of lumbar interneurons located in the most lateral regions of Rexed's laminae IV–VII to stimulation of the medial longitudinal bundle and gigantocellular reticular nucleus of medullary pyramids, red nucleus, and peripheral nerves were investigated in cats anesthetized with pentobarbital. Stimulation of the reticulospinal fibers evoked monosynaptic excitation of many interneurons specialized for transmitting activity of the lateral descending systems, but not of peripheral afferents. Convergence of excitatory influences of all three descending systems (cortico-, rubro-, and reticulospinal) was observed on some cells of this group. In addition, monosynaptic "reticular" E PSPs appeared in interneurons transmitting activity of group Ia muscle fibers and in some interneurons of the flexor reflex afferent system. Stimulation of reticulospinal fibers evoked IPSPs in some neurons of this last group. Neurons not exposed to reticulofugal influences (both specialized neurons and interneurons of segmental reflex arcs) were located chiefly in the dorsal zones of the region studied. Recordings were also obtained from single fibers of the lateral reticulospinal tracts (conduction velocity from 26 to 81 m/sec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 525–536, September–October, 1973.  相似文献   

13.
The midbrain periaqueductal gray matter (PAG) is an important brain region for the coordination of mu-opioid-induced pharmacological actions. The present study was designed to determine whether newly isolated mu-opioid peptide endomorphins can activate G proteins through mu-opioid receptors in the PAG by monitoring the binding to membranes of the non-hydrolyzable analog of GTP, guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS). An autoradiographic [(35)S]GTPgammaS binding study showed that both endomorphin-1 and -2 produced similar anatomical distributions of activated G proteins in the mouse midbrain region. In the mouse PAG, endomorphin-1 and -2 at concentrations from 0.001 to 10 microM increased [(35)S]GTPgammaS binding in a concentration-dependent manner and reached a maximal stimulation of 74.6+/-3.8 and 72.3+/-4.0%, respectively, at 10 microM. In contrast, the synthetic selective mu-opioid receptor agonist [D-Ala(2),NHPhe(4), Gly-ol]enkephalin (DAMGO) had a much greater efficacy and produced a 112.6+/-5.1% increase of the maximal stimulation. The receptor specificity of endomorphin-stimulated [(35)S]GTPgammaS binding was verified by coincubating membranes with endomorphins in the presence of specific mu-, delta- or kappa-opioid receptor antagonists. Coincubation with selective mu-opioid receptor antagonists beta-funaltrexamine or D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH(2) (CTOP) blocked both endomorphin-1 and-2-stimulated [(35)S]GTPgammaS binding. In contrast, neither delta- nor kappa-opioid receptor antagonist had any effect on the [(35)S]GTPgammaS binding stimulated by either endomorphin-1 or -2. These findings indicate that both endomorphin-1 and -2 increase [(35)S]GTPgammaS binding by selectively stimulating mu-opioid receptors with intrinsic activity less than that of DAMGO and suggest that these new endogenous ligands might be partial agonists for mu-opioid receptors in the mouse PAG.  相似文献   

14.
The periaqueductal gray (PAG) of the midbrain is involved in the autonomic regulation of the cardiovascular system. The purpose of this study was to determine if static contraction of the skeletal muscle, which increases arterial blood pressure and heart rate, activates neuronal cells in the PAG by examining Fos-like immunoreactivity (FLI). Muscle contraction was induced by electrical stimulation of the L7 and S1 ventral roots of the spinal cord in anesthetized cats. An intravenous infusion of phenylephrine (PE) was used to selectively activate arterial baroreceptors. Extensive FLI was observed within the ventromedial region (VM) of the rostral PAG, the dorsolateral (DL), lateral (L), and ventrolateral (VL) regions of the middle and caudal PAG in barointact animals with muscle contractions, and in barointact animals with PE infusion. However, muscle contraction caused a lesser number of FLI in the VM region of the rostral PAG, the DL, L, and VL regions of the middle PAG and the L and VL regions of the caudal PAG after barodenervation compared with barointact animals. Additionally, the number of FLI in the DL and L regions of the middle PAG was greater in barodenervated animals with muscle contraction than in barodenervated control animals. Thus these results indicated that both muscle receptor and baroreceptor afferent inputs activate neuronal cells in regions of the PAG during muscle contraction. Furthermore, afferents from skeletal muscle activate neurons in specific regions of the PAG independent of arterial baroreceptor input. Therefore, neuronal cells in the PAG may play a role in determining the cardiovascular responses during the exercise pressor reflex.  相似文献   

15.
褪黑素对大鼠中脑导水管周围灰质内阿片肽释放的影响   总被引:4,自引:0,他引:4  
Yu CX  Wu GC  Xu SF  Chen CH 《生理学报》2000,52(3):207-210
本文采用推挽灌流技术、放射免疫测定法,观察褪黑素(melatonin,MEL)对大鼠中脑导水管周围灰质(PAG)推挽灌流液中β-内啡肽(β-Ep)、亮氨酸脑啡肽(L-EK)含量的影响,以探讨MEL镇痛效应的中枢机制。结果显示,给药组大鼠腹腔注射(ip)MEL110mg/kg后30-50min,PAG灌流液中β-Ep含量显著增加,而L-EK含量未见显著变化;在推挽灌流同时用50℃热水刺激甩尾法测定痛  相似文献   

16.
Responses of neurons of the periaqueductal gray matter (PAG) were studied in chronic experiments on cats during formation and extinction of a defensive conditioned reflex to sound and its differential inhibition. In response to conditioned stimulation these neurons developed phasic-tonic spike responses up to 3 sec in duration. During combination of stimuli these responses were formed long before the conditioned reflex and disappeared long after the latter was extinguished. In the case of an established conditioned reflex, the onset of spike responses occurred 100–200 msec before the appearance of motor responses. An increase in spike activity of tonic character in neurons of PAG preceded voluntary movements by 100–500 msec. The responses of these neurons to presentation of a differential stimulus consisted of groups of spikes 150–200 msec in duration. They were formed with difficulty, and their manifestation was made even more difficult by an interruption during the experiment and by preceding positive stimuli. On the basis of the results a conditioned reflex can be regarded as the result of a multilevel hierarchic process of readjustment of unit activity, which begins in the nonspecific structures of the midbrain.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 15, No. 3, pp. 278–287, May–June, 1983.  相似文献   

17.
11 patients with chronic intractable pain of at least 3 years' duration underwent a morphine infusion test, the results of which suggested a syndrome of superimposed somatogenic and neurogenic pain components. They then underwent stereotactic implantation of a dual-channel brain stimulation system with two brain electrodes, one in the left periaqueductal gray matter (PAG) and the other in the sensory thalamus contralateral to the neurogenic pain. Using this system, all patients have obtained excellent simultaneous relief of both pain components (follow-up 12-36 months). The findings support a notion of two separate sensory modulating systems. They indicate that combined electrical stimulation of the PAG and sensory thalamus is a technically feasible and clinically satisfactory modality for the control of pain in humans, and they appear to indicate that better pain control is obtained by continuous, cycled stimulation of the PAG than by the conventional mode of stimulation.  相似文献   

18.
The pattern of Fos-like immunoreactivity (FLI) in the periaqueductal gray (PAG) associated with activation of arterial chemoreceptors versus baroreceptor afferents was examined in urethane-anesthetized rats. Chemoreflex responses elicited by repeat intravenous injections of potassium cyanide (KCN; 90 microg/kg) significantly increased FLI in all columns of the PAG relative to saline-injected animals. Pressor responses elicited by intravenous phenylephrine (PE) produced a similar pattern of increased FLI throughout the PAG except in the dorsomedial and lateral columns of the caudal PAG, where FLI was minimal. Chemoreflex responses were unaltered by blockade of excitatory amino acid receptors in the dorsomedial PAG, and < 10% of the neurons of the caudal PAG that expressed FLI after KCN stimulation were retrogradely labeled from the A5 region of the caudal ventrolateral pons. These results indicate that integration of chemoreceptor inputs occurs primarily in the dorsal and lateral columns of the caudal PAG, but these neurons have little direct descending influence over lower brain stem regions integral to the central arterial chemoreflex arc.  相似文献   

19.
Yang YM  Chung JM  Rhim H 《Life sciences》2006,79(18):1702-1711
The peptide cholecystokinin (CCK) is one of the major neurotransmitters modulating satiety, nociception, and anxiety behavior. Although many behavioral studies showing anti-analgesic and anxiogenic actions of CCK have been reported, less is known about its cellular action in the central nervous system (CNS). Therefore, we examined the action of CCK in rat dorsolateral periaqueductal gray (PAG) neurons using slice preparations and whole-cell patch-clamp recordings. Application of CCK-8S produced an inward current accompanied by increased spontaneous synaptic activities. The CCK-8S-induced inward current (I(CCK)) was recovered after washout and reproduced by multiple exposures. Current-voltage plots revealed that I(CCK) reversed near the equilibrium potential for K(+) ions with a decreased membrane conductance. When several K(+) channel blockers were used, application of CdCl(2), TEA, or apamin significantly reduced I(CCK). I(CCK) was also significantly reduced by the CCK(2) receptor antagonist, L-365,260, while it was not affected by the CCK(1) receptor antagonist, L-364,718. Furthermore, we examined the effects of CCK-8S on miniature excitatory postsynaptic currents (mEPSCs) in order to determine the mechanism of CCK-mediated increase on synaptic activities. We found that CCK-8S increased the frequency of mEPSCs, but had no effect on mEPSC amplitude. This presynaptic effect persisted in the presence of CdCl(2) or Ca(2+)-free bath solution, but was completely abolished by pre-treatment with BAPTA-AM, thapsigargin or L-365,260. Taken together, our results indicate that CCK can excite PAG neurons at both pre- and postsynaptic loci via the activation of CCK(2) receptors. These effects may be important for the effects of CCK on behavior and autonomic function that are mediated via PAG neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号