首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have determined the location of cis-acting elements that are important for the expression of RPO21 and RPO22, genes that encode the two largest subunits of RNA polymerase II (RNAPII) in Saccharomyces cerevisiae. A series of 5'-end deletions and nucleotide substitutions in the upstream regions of RPO21 and RPO22 were tested for their effect on the expression of lacZ fusions of these genes. Deletion of sequences from -723 to -693 in RPO21, which disrupted two Reb1p-binding sites and an Abf1p-binding site, resulted in a 10-fold decrease in expression. A T-rich region downstream of these sites was also important for expression. Deletion of sequences from -437 to -392 in the RPO22-upstream, which resulted in a 30-fold decrease in expression, indicated that the Reb1p- and Abf1p-binding sites in this region were important for RPO22 expression, as was a T-rich sequence immediately downstream of these sites. The RPO21 and RPO22 upstream regions were capable of interacting in vitro (gel-mobility-shift assays) with Reb1p and Abf1p. The similarities in the type and organization of elements in the upstream regions of RPO21 and RPO22 suggest that expression of these genes may be regulated coordinately.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Three independent, recessive, temperature-sensitive (Ts-) conditional lethal mutations in the largest subunit of Saccharomyces cerevisiae RNA polymerase II (RNAP II) have been isolated after replacement of a portion of the wild-type gene (RPO21) by a mutagenized fragment of the cloned gene. Measurements of cell growth, viability, and total RNA and protein synthesis showed that rpo21-1, rpo21-2, and rpo21-3 mutations caused a slow shutoff of RNAP II activity in cells shifted to the nonpermissive temperature (39 degrees C). Each mutant displayed a distinct phenotype, and one of the mutant enzymes (rpo21-1) was completely deficient in RNAP II activity in vitro. RNAP I and RNAP III in vitro activities were not affected. These results were consistent with the notion that the genetic lesions affect RNAP II assembly or holoenzyme stability. DNA sequencing revealed that in each case the mutations involved nonconservative amino acid substitutions, resulting in charge changes. The lesions harbored by all three rpo21 Ts- alleles lie in DNA sequence domains that are highly conserved among genes that encode the largest subunits of RNAP from a variety of eucaryotes; one mutation lies in a possible Zn2+ binding domain.  相似文献   

11.
12.
13.
The yeast gene RNA1 has been defined by the thermosensitive rna1-1 lesion. This lesion interferes with the processing and production of all major classes of RNA. Each class of RNA is affected at a distinct and presumably unrelated step. Furthermore, RNA does not appear to exit the nucleus. To investigate how the RNA1 gene product can pleiotropically affect disparate processes, we undertook a structural analysis of wild-type and mutant RNA1 genes. The wild-type gene was found to contain a 407-amino-acid open reading frame that encodes a hydrophilic protein. No clue regarding the function of the RNA1 protein was obtained by searching banks for similarity to other known gene products. Surprisingly, the rna1-1 lesion was found to code for two amino acid differences from wild type. We found that neither single-amino-acid change alone resulted in temperature sensitivity. The carboxy-terminal region of the RNA1 open reading frame contains a highly acidic domain extending from amino acids 334 to 400. We generated genomic deletions that removed C-terminal regions of this protein. Deletion of amino acids 397 to 407 did not appear to affect cell growth. Removal of amino acids 359 to 397, a region containing 24 acidic residues, caused temperature-sensitive growth. This allele, rna1-delta 359-397, defines a second conditional lesion of the RNA1 locus. We found that strains possessing the rna1-delta 359-397 allele did not show thermosensitive defects in pre-rRNA or pre-tRNA processing. Removal of amino acids 330 to 407 resulted in loss of viability.  相似文献   

14.
15.
16.
《Molecular cell》2021,81(17):3576-3588.e6
  1. Download : Download high-res image (149KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
Treatment of Saccharomyces cerevisiae and human cells with DNA-damaging agents such as UV light or 4-nitroquinoline-1-oxide induces polyubiquitylation of the largest RNA polymerase II (Pol II) subunit, Rpb1, which results in rapid Pol II degradation by the proteasome. Here we identify a novel role for the yeast Elc1 protein in mediating Pol II polyubiquitylation and degradation in DNA-damaged yeast cells and propose the involvement of a ubiquitin ligase, of which Elc1 is a component, in this process. In addition, we present genetic evidence for a possible involvement of Elc1 in Rad7-Rad16-dependent nucleotide excision repair (NER) of lesions from the nontranscribed regions of the genome and suggest a role for Elc1 in increasing the proficiency of repair of nontranscribed DNA, where as a component of the Rad7-Rad16-Elc1 ubiquitin ligase, it would promote the efficient turnover of the NER ensemble from the lesion site in a Rad23-19S proteasomal complex-dependent reaction.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号