首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
This article describes the growth of the anuran pectoral girdle of Rana pipiens and compares skeletal development of the shoulder to that of long bones. The pectoral girdle chondrifies as two halves, each adjacent to a developing humerus. In each, the scapula and coracoid form as single foci of condensed chondrocytes that fuse, creating a cartilaginous glenoid bridge articulating with the humerus. Based on histological sections, both the dermal clavicle and cleithrum begin to ossify at approximately the same time as the periosteum forms around the endochondral bones. The dermal and endochondral bones of the girdle form immobile joints with neighboring girdle elements; however, the cellular organization and growth pattern of the scapula and coracoid closely resemble those of a long bone. Similar to a long bone epiphysis, distal margins of both endochondral elements have zones of hyaline, stratified, and hypertrophic cartilages. As a result, fused elements of the girdle can grow without altering the glenoid articulation with the humerus. Comparisons of anuran long bone and pectoral girdle growth suggest that different bones can have similar histology and development regardless of adult morphology.  相似文献   

2.
    
Why and how organisms differ in life‐history strategies across their range is a long‐standing topic of interest to evolutionary ecologists. Although many studies have addressed this issue for several life‐history traits, such as body size and clutch size, very few have been made for some others traits, including longevity. In the present study, we performed a comparative study aiming to develop general patterns of geographical variation in longevity of urodele and anuran amphibians using published information on demographic age derived from skeletochronology. We conducted within‐species meta‐analyses using datasets of two (ten urodele and 12 anuran species) and multiple (two urodele and nine anuran species) spatially‐separated populations and found that maturation, mean, and maximum age all increased with altitude but not with latitude in each sex of both amphibian groups. This geographical pattern held true across 33 urodele and 86 anuran species at common body sizes, independent of phylogeny. It is likely that metabolic rate, reproductive investment, and mortality risk, which are the key factors that affect longevity as suggested by ageing theory, vary systemically along altitudinal gradients but not along latitudinal gradients. The evolutionary causes behind these puzzling patterns deserve further investigation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 623–632.  相似文献   

3.
The first unequivocal postcranial remains of baphetids (= loxommatids) associated with skull roof and lower jaw material are reported from a specimen of Baphetes from the English Upper Carboniferous, Duckmantian. Characters of the mandible, including the incorporation in the symphysis of paired parasymphysial plates, permit the identification of a previously indeterminate jaw from the Langsettian (Westphalian A) of Nova Scotia, as baphetid. The postcranial remains include vertebrae, pectoral and pelvic limb and limb girdle elements that present a combination of unique characters extending the diagnosis of the family Baphetidae, together with plesiomophic and derived characters which suggest that baphetids are primitive stem group tetrapods.  相似文献   

4.
Mammalian carnivores adhere to two different feeding strategies relative to their body masses. Large carnivores prey on animals that are the same size or larger than themselves, whereas small carnivores prey on smaller vertebrates and invertebrates. The Eurasian lynx (Lynx lynx) falls in between these two categories. Lynx descend from larger forms that were probably large prey specialists, but during the Pleistocene became predators of small prey. The modern Eurasian lynx may be an evolutionary reversal toward specializing in large prey again. We hypothesized that the musculoskeletal anatomy of lynx should show traits for catching large prey. To test our hypothesis, we dissected the forelimb muscles of six Eurasian lynx individuals and compared our findings to results published for other felids. We measured the bones and compared their dimensions to the published material. Our material displayed a well‐developed pectoral girdle musculature with some uniquely extensive muscle attachments. The upper arm musculature resembled that of the pantherine felids and probably the extinct sabertooths, and also the muscles responsible for supination and pronation were similar to those in large cats. The muscles controlling the pollex were well‐developed. However, skeletal indices were similar to those of small prey predators. Our findings show that lynx possess the topographic pattern of muscle origin and insertion like in large felids. J. Morphol. 277:753–765, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
  总被引:1,自引:0,他引:1  
  相似文献   

6.
    
Urodele amphibians are highly regenerative animals. After partial removal of the brain in urodeles, ependymal cells around the wound surface proliferate, differentiate into neurons and glias and finally regenerate the lost tissue. In contrast to urodeles, this type of brain regeneration is restricted only to the larval stages in anuran amphibians (frogs). In adult frogs, whereas ependymal cells proliferate in response to brain injury, they cannot migrate and close the wound surface, resulting in the failure of regeneration. Therefore frogs, in particular Xenopus, provide us with at least two modes to study brain regeneration. One is to study normal regeneration by using regenerative larvae. In this type of study, the requirement of reconnection between a regenerating brain and sensory neurons was demonstrated. Functional restoration of a regenerated telencephalon was also easily evaluated because Xenopus shows simple responses to the stimulus of a food odor. The other mode is to compare regenerative larvae and non-regenerative adults. By using this mode, it is suggested that there are regeneration-competent cells even in the non-regenerative adult brain, and that immobility of those cells might cause the failure of regeneration. Here we review studies that have led to these conclusions.  相似文献   

7.
8.
9.
本文比较了中国12属14种鲽形目鱼类的肩带骨及腰带骨,并参考了Ochiai(1963)有关日本钩嘴鳎等5属5种的研究;得知这些骨骼,特别是原始肩带骨与腰带骨,有退化趋势。这似因这些鱼类在向以体一侧侧卧,类似蝶泳姿势强化,偶鳍的功能逐渐变弱或消失,故支持偶鳍运动的这些骨骼也渐退化或消失。  相似文献   

10.
We report chondrocyte phenotype and ectopic ossification in a collagenase-induced patellar tendon injury model. Collagenase or saline was injected intratendinously in one limb. The patella tendon was harvested for assessment at different times. There was an increase in cellularity, vascularity, and loss of matrix organization with time after collagenase injection. The tendon did not heal histologically until week 32. Ectopic mineralization as indicated by von Kossa staining started from week 8. Tendon calcification was mediated by endochondral ossification, as shown by expression of type X collagen. viva CT imaging and polarization microscopy showed characteristic bony porous structures and collagen fiber arrangement, respectively, in the calcific regions. Marrow-like cells and blood vessels were observed inside calcific deposits. Chondrocyte-like cells as indicated by morphology, expression of type II collagen, and sox 9 were seen around and embedded inside the calcific deposits. Fibroblast-like cells expressed type II collagen and sox 9 at earlier times, suggesting that erroneous differentiation of healing tendon fibroblasts may account for failed healing and ossification in collagenase-induced tendon degeneration. Because this animal model replicates key histopathological changes in calcific tendinopathy, it can be used as a model for the study of its pathogenesis at the patellar tendon.  相似文献   

11.
12.
    
The configuration of the pectoral girdle bones and muscles of numerous catfishes was studied in detail and compared with that of other siluriforms, as well as of other teleosts, described in the literature. The pectoral girdle of catfishes is composed of only three bones, which probably correspond to the posttemporo-supracleithrum (posttemporal + supracleithrum), scapulo-coracoid (scapula + coracoid), and cleithrum of other teleosts. These latter two bones constitute the place of origin of the pectoral girdle muscles. Two of these muscles are related to the movements of the pectoral fin. These two muscles correspond, very likely, to the abductor superficialis and to the adductor superficialis of other teleostean fishes. In relation to the pectoral spine (thickened first pectoral fin ray), it is usually moved by three well-developed muscles, which are probably homologous with the arrector ventralis, arrector dorsalis, and abductor profundus of nonsiluriform teleosts. The morphological diversity and the plesiomorphic configuration of these muscles, as well as of the other catfish pectoral girdle structures, are discussed.  相似文献   

13.
    
The formation of cartilage from stem cells during development is a complex process which is regulated by both local growth factors and biomechanical cues, and results in the differentiation of chondrocytes into a range of subtypes in specific regions of the tissue. In fetal development cartilage also acts as a precursor scaffold for many bones, and mineralization of this cartilaginous bone precursor occurs through the process of endochondral ossification. In the endochondral formation of bones during fetal development the interplay between cell signalling, growth factors, and biomechanics regulates the formation of load bearing bone, in addition to the joint capsule containing articular cartilage and synovium, generating complex, functional joints from a single precursor anlagen. These joint tissues are subsequently prone to degeneration in adult life and have poor regenerative capabilities, and so understanding how they are created during development may provide useful insights into therapies for diseases, such as osteoarthritis, and restoring bone and cartilage lost in adulthood. Of particular interest is how these tissues regenerate in the mechanically dynamic environment of a living joint, and so experiments performed using 3D models of cartilage development and endochondral ossification are proving insightful. In this review, we discuss some of the interesting models of cartilage development, such as the chick femur which can be observed in ovo, or isolated at a specific developmental stage and cultured organotypically in vitro. Biomaterial and hydrogel‐based strategies which have emerged from regenerative medicine are also covered, allowing researchers to make informed choices on the characteristics of the materials used for both original research and clinical translation. In all of these models, we illustrate the essential importance of mechanical forces and mechanotransduction as a regulator of cell behavior and ultimate structural function in cartilage. Birth Defects Research (Part C) 105:19–33, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
The block to polyspermy in Xenopus laevis involves an interaction between a cortical granule lectin, released at fertilization, and a ligand located in the egg extracellular matrix. The egg extracellular matrix in X. laevis consists of a vitelline envelope and three distinct jelly layers, designated J1, J2 and J3. To localize cortical granule lectin ligand in the egg extracellular matrix, we used enzyme-linked lectin assays that showed that cortical granule lectin ligands were absent in J2, J3 and the vitelline envelope. Cortical granule lectin bound to a ligand(s) in J1 in a galactose-dependent fashion. In addition, we separated egg jelly macromolecules electrophoretically and, in conjunction with western blotting, have shown that J1 contains two major, high molecular weight ligands for cortical granule ligand. Finally, using confocal microscopy, we demonstrated that the ligand(s) for cortical granule lectin occupies a 20–30 μm thick band in a region of J1 just proximal to the vitelline envelope.  相似文献   

15.
16.
The development of the scapula was studied in embryonic and postnatal specimens of Monodelphis domestica and perinatal specimens of Philander opossum, Caluromys philander, and Sminthopsis virginiae using histological sections and 3D reconstructions. Additionally, macerated skeletons of postnatal M. domestica were examined. This study focused on the detachment of the scapulocoracoid from the sternum and on the acquisition of a supraspinous fossa, a supraspinatus muscle, and a scapular spine, all these events associated with the origin of the therian shoulder girdle. In none of the specimens is there a continuity of the cartilaginous scapulocoracoid with the sternum, even though the structures are in close proximity, especially in S. virginiae. At birth, the first rib laterally presents a pronounced boss that probably contacts the humerus during certain movements. Only the acromial portion of the scapular spine, which originates from the anterior margin of the scapular blade, is preformed in cartilage. The other portion is formed by appositional bone ("Zuwachsknochen"), which expands from the perichondral ossification of the scapula into an intermuscular aponeurosis between the supra- and infraspinous muscles. This intermuscular aponeurosis inserts more or less in the middle of the lateral surface of the developing scapula. Thus, the floor of the supraspinous fossa is present from the beginning of scapular development, simultaneously with the infraspinous fossa. The homology of the therian spine with the anterior border of the sauropsid and monotreme scapula is questioned. We consider the dorsal portion (as opposed to the ventral or acromial portion) of the scapular spine a neomorphic structure of therian mammals.  相似文献   

17.
The totally aquatic pipid frog Xenopus borealis produces long trains of click-like sound at high sound pressure levels (> 105 dB SPL) underwater at night. While X. borealis retains an essentially terrestrial respiratory tract, the larynx is highly modified in two ways. First, the cricoid cartilage is greatly expanded posteriorly to form a large 'box'. Portions of this cricoid box are composed of an unusual elastic cartilage. Second, portions of the arytenoid cartilages are elaborated into calcified rods with disc-like enlargements at their posterior ends. These discs are the only freely moveable components within the larynx–there are no vocal cords. Artificial stimulation of a pair of muscles controlling the discs and discrete lesions that impair their movement demonstrate that motion of the discs is both necessary and sufficient for click production. Unlike all other anurans, X borealis does not use a moving air column in sound production. A possible mechanism of click production involves two steps: (1) at first, the discs are held tighdy apposed in the midline by fluid adhesive forces, and contraction of bipennate muscles is isometric; (2) when the muscle tension exceeds the adhesive force, the discs separate with very high acceleration leaving a vacuum between them. Air rushing into the space at high speed (an implosion) produces the click. The cricoid box shapes the frequency spectrum of the clicks, and opening the box broadens the power spectrum. The power spectrum of clicks produced by males after breathing helium is unchanged.  相似文献   

18.
The pectoral girdle and forelimb of the Late Triassic drepanosauromorph reptile Megalancosaurus are redescribed and their function reinterpreted. The whole skeleton of this diapsid is highly specialised for arboreal life, and also the peculiarities of the shoulder girdle and forelimb were interpreted as adaptations for a limb-based locomotion using gap-bridging to move from one support to another, as in chameleons. Re-examination of the pectoral girdle and forelimb revealed the presence of clavicles fused into a furcula-like structure, a saddle-shaped glenoid and a tight connection between the radius and ulna that strengthened the forearm but hindered pronation and supination movements at that joint. The new information plus a reconstruction of the pectoral and forelimb musculature suggests that the forelimb was also specialised for grasping and raking in addition to climbing and thus prey capture may have been an important function for the forelimb. The new functional interpretation fits well with the overall body architecture of Megalancosaurus’ skeleton, suggesting that this reptile was an ambush predator that may have assumed a stable tripodal position, secured by the hooked tail and hind limbs, freeing its forelimbs to catch prey by sudden extension of the arm and firm grasping with the pincer-like digits.  相似文献   

19.
    
Cartilage patterning and differentiation are prerequisites for skeletal development through endochondral ossification (EO). Multipotential mesenchymal cells undergo a complex process of cell fate determination to become chondroprogenitors and eventually differentiate into chondrocytes. These developmental processes require the orchestration of cell-cell and cell-matrix interactions. In this review, we present limb bud development as a model for cartilage patterning and differentiation. We summarize the molecular and cellular events and signaling pathways for axis patterning, cell condensation, cell fate determination, digit formation, interdigital apoptosis, EO, and joint formation. The interconnected nature of these pathways underscores the effects of genetic and teratogenic perturbations that result in skeletal birth defects. The topics reviewed also include limb dysmorphogenesis as a result of genetic disorders and environmental factors, including FGFR, GLI3, GDF5/CDMP1, Sox9, and Cbfa1 mutations, as well as thalidomide- and alcohol-induced malformations. Understanding the complex interactions involved in cartilage development and EO provides insight into mechanisms underlying the biology of normal cartilage, congenital disorders, and pathologic adult cartilage.  相似文献   

20.
The evolution of vertebrate flight   总被引:1,自引:0,他引:1  
Flight–defined as the ability to produce useful aerodynamic forces by flapping the wings–is one of the most striking adaptations in vertebrates. Its origin has been surrounded by considerable controversy, due in part to terminological inconsistencies, in part to phylogenetic uncertainty over the sister groups and relationships of birds, bats and pterosaurs, and in part to disagreement over the interpretation of the available fossil evidence and over the relative importance of morphological, mechanical and ecological specializations. Study of the correlation between functional morphology and mechanics in contemporary birds and bats, and in particular of the aerodynamics of flapping wings, clarifies the mechanical changes needed in the course of the evolution of flight. This strongly favours a gliding origin of tetrapod flight, and on mechanical and ecological grounds the alternative cursorial and fluttering hypotheses (neither of which is at present well-defined) may be discounted. The argument is particularly strong in bats, but weaker in birds owing to apparent inconsistencies with the fossil evidence. However, study of the fossils of the Jurassic theropod dinosaur Archaeopteryx , the sister-group of the stem-group proto-birds, supports this view. Its morphology indicates adaptation for flapping flight at the moderately high speeds which would be associated with gliding, but not for the slow speeds which would be required for incipient flight in a running cursor, where the wingbeat is aerodynamically and kinematically considerably more complex. Slow flight in birds and bats is a more derived condition, and vertebrate flapping flight apparently evolved through a gliding stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号