首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Summary In a greenhouse study the influence of alternate flooded and nonflooded conditions on the N2-ase activity of rice rhizosphere soil was investigated by C2H2 reduction assay. The soil fraction attached to roots represent the rhizosphere soil. Soil submergence always accelerated N2-ase and this effect was more pronounced in planted system. Moreover, rice plant exhibited phase-dependent N2-ase with a maximum activity at 60 days after transplanting. The alternate flooded and nonflooded regimes resulted in alterations of the N2-ase activity. Thus, the N2-ase activity increased following a shift from nonflooded to flooded conditions, but the activity decreased when the flooded soil was returned to nonflooded condition by draining. However, the differential influence of the water regime on N2-ase was not marked in prolonged flooded-nonflooded cycles. Microbial analysis indicated the stimulation of different groups of free-living and associative N2-fixing microorganisms depending on the water regime.  相似文献   

2.
Mineralization of Carbofuran by a Soil Bacterium   总被引:3,自引:1,他引:2       下载免费PDF全文
A bacterium, tentatively identified as an Arthrobacter sp., was isolated from flooded soil that was incubated at 35°C and repeatedly treated with carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl N-methylcarbamate). This bacterium exhibited an exceptional capacity to completely mineralize the ring-labeled 14C in carbofuran to 14CO2 within 72 to 120 h in a mineral salts medium as a sole source of carbon and nitrogen under aerobic conditions. Mineralization was more rapid at 35°C than at 20°C. No degradation of carbofuran occurred even after prolonged incubation under anaerobic conditions. The predicted metabolites of carbofuran, 7-phenol (2,3-dihydro-2,2-dimethyl-7-benzofuranol) and 3-hydroxycarbofuran, were also metabolized rapidly. 7-Phenol, although formed during carbofuran degradation, never accumulated in large amounts, evidently because of its further metabolism through ring cleavage. The bacterium readily hydrolyzed carbaryl (1-naphthyl N-methylcarbamate), but its hydrolysis product, 1-naphthol, resisted further degradation by this bacterium.  相似文献   

3.
An elevated atmospheric CO2 concentration ([CO2]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open‐air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor‐pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m2 m?2, can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2] and 1.17 at elevated [CO2]. This study provides the first direct measurement of the effects of elevated [CO2] on rice canopy evapotranspiration under open‐air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields.  相似文献   

4.
Many techniques for quantifying microbial biodegradation of 14C-labeled compounds use soil-water slurries and trap mineralization-derived 14CO2 in solution wells suspended within the incubation flasks. These methods are not satisfactory for studies of arid-region soils that are highly calcareous and unsaturated because (i) slurries do not simulate unsaturated conditions and (ii) the amount of CO2 released from calcareous soils exceeds the capacity of the suspended well. This report describes simple, inexpensive methodological modifications for quantifying microbial degradation of [14C]benzene and 1,2-dichloro[U-14C]ethane in calcareous soils under unsaturated conditions. Soils at 50% water holding capacity were incubated with labeled contaminants for periods up to 10 weeks, followed by acidification of the soil and trapping of the evolved CO2 in a separate container of 2 N NaOH. The CO2 was transferred from the incubation flask to the trap solution by a gas transfer shunt containing activated charcoal to remove any volatilized labeled organics. The amount of 14CO2 in the trap solution was measured by scintillation counting (disintegrations per minute). The method was tested by using two regional unamended surface soils, a sandy aridisol and a clay-rich riparian soil. The results demonstrated that both [14C]benzene and 1,2-dichloro[U-14C]ethane were mineralized to release substantial amounts of 14CO2 within 10 weeks. Levels of mineralization varied with contaminant type, soil type, and aeration status (anaerobic vs. aerobic); no significant degradation was observed in abiotic control samples. Methodological refinements of this technique resulted in total 14CO2 recovery efficiency of approximately 90%.  相似文献   

5.
Kim  In Seon  Beaudette  Lee A.  Han Shim  Jae  Trevors  Jack T  Tack Suh  Yong 《Plant and Soil》2002,239(2):321-331
Environmental fate of the triazole fungicide propiconazole, 1-[[2(2,4-dichlorophenyl)-4-propyl-1,3-diox olane-2-yl]methyl]1H-1,2,4-triazole, in soil was investigated using lysimeters simulating a rice-paddy-soil conditions. Two lysimeters composed of different soil types, a sandy loam (lysimeter A) and silty clay (lysimeter B), were used. Propiconazole (Tilt 250R EC) plus [U-14C]-propiconazole was applied over a two-year period to the soil surface of the lysimeters. Propiconazole fate in the lysimeters was assessed by measuring total radioactivity in the leachate, evolved 14CO2, and 14C-residues in the soil and rice plants. The amounts of applied 14C in the leachate from lysimeter A were 4.4 and 5.2% in the first and second year, respectively. A background level of (0.00005% of applied) 14C in the leachate from lysimeter B was detected, suggesting negligible movement of the fungicide to groundwater in the silty clay soil. The amount of 14CO2 evolved from lysimeter A accounted for 7.8 and 12.2% of applied 14C in the first and second year, respectively, whereas those from lysimeter B were 5.7 and 7.1%. Total 14C detected in the rice plants grown in lysimeter A were 7.3 and 9.8% of applied 14C in the first and second year, respectively, which compared to 3.0 and 7.6% in lysimeter B. Most of the applied 14C was detected in the top 10 cm soil layer, suggesting that propiconazole remains close to the soil surface after application in soil. Degradation products of propiconazole identified in the lysimeter soils were 1-[[2(2,4-dichlorophenyl)-2-(1,2,4-triazole -1-yl) ketone (DP-1), 1-(2,4-dichlorophenyl)-2-(1,2,4-triazole-1- yl) ethanol (DP-2) and 1-[[2(2,4-dichlorophenyl)-4-hydroxypropyl-1,3-dioxolane-2-yl]methyl]1H-1,2,4-triazole (DP-3 and DP-4).  相似文献   

6.
Summary Response of direct seeded rice (cv. Bluebelle) to Zn was studied in flooded and nonflooded (field capacity) Crowley soil (pH 7.6) maintained at soil temperatures of 18 and 30°C. Urea and (NH4)2SO4 were compared as sources of N to determine their effect on plant uptake of Zn from ZnSO4 either mixed or surface applied to the soil. Grain yields were slightly higher from nonflooded than from flooded soil. Higher dry matter production at 30 than at 18°C was not related to Zn nutrition. Urea and (NH4)2SO4 resulted in similar yields and Zn uptake by flooded rice, but (NH4)2SO4 was superior for nonflooded rice in the absence of applied Zn. More fixation of mixed Zn by the limed Crowley soil probably caused its lower effectiveness, as compared to surface-applied Zn.  相似文献   

7.
A polymer of ring-labeled [14C]o-methoxyphenol ([14C]guaiacol) was prepared by peroxidase-H2O2-catalyzed oxidation of the 14C-labeled monomeric compound. The ring-labeled [14C]polyguaiacol contained 67.71% carbon, 5.09% hydrogen, 27.49% oxygen, 25.44% methoxyl, and 8.60% phenolic hydroxyl. The polymer had an average molecular weight of between 5,000 and 15,000, as determined by gel chromatography. A schematic representation of the polymer, similar to previously published structures of polyguaiacols, was devised to meet these and other analytical parameters. The polymer is primarily composed of o-o and p-p-linked guaiacol moieties, with an occasional o-p-biphenyl link and some p-diphenoquinone structures. An approximate molecular formula is [C49O14H31]n, where n 5.8. Its C6 formula is C6H2.3O0.3carbonyl (OH)0.7(OCH3)1.0. Polyguaiacol has many of the characteristics of a synthetic lignin. It is easier and less expensive to prepare than standard synthetic lignins (dehydrogenation polymers of coniferyl alcohol). It is degraded ([14C]polyguaiacol → 14CO2) by the lignolytic system of the white-rot fungus Phanaerochaete chrysosporium. It is suggested that [14C]polyguaiacol may be of value as a substrate for lignin biodegradation research.  相似文献   

8.
The persistence and degradation of isoxathion 14C-labeled at the 5-position of the isoxazole ring were studied in three soil types under laboratory conditions. Persistence was influenced by soil type and moisture content; approx. half life at 30 ppmw dose level varied from 15 to 40 days in nonflooded models. In a flooded model isoxathion disappeared much faster. Isoxathion underwent biodegradation to a number of products with concomitant release of 14CO2. 3-Hydroxy-5-phenylisoxazole, 5-phenyl-4-oxazolin-2-one, benzoylacetamide and benzoic acid were the unequivocally identified metabolites; oxon derivative of isoxathion, 3-methoxy-5-phenylisoxazole, 2-methyl-5-phenyl-4-isoxazolin-3-one, 2-acetyl-5-phenyl-4-isoxazolin-3-one, 2, 5-diphenylpyrazine and acetophenone were tentatively identified as the minor products. None of these major products was persistent in soils. 3-Hydroxy-5-phenylisoxazole, the initial metabolite or hydrolyzate of isoxathion, was adsorbed to soil to a much greater extent than isoxathion, which explains the rapid disappearance of its fungicidal activity in soil.  相似文献   

9.
To elucidate the flow of C assimilated by rice plants into soil C, soil biomass C, and emitted CH4 at different rice growth stages, 13C pulse-labeling was conducted at the maximum-tiller-number (first experiment), booting (second experiment), and milky stages (third experiment) for potted rice grown outdoors under flooded conditions. The distribution of the assimilated C into each fraction was traced during a 14-day period. The atom-13C% excess of shoots was the highest just after the 6 h feeding of 13CO2 and decreased until days 14, 7, and 3 in the first, second, and third experiments, respectively. Translocation of the assimilated C into roots was largest in the first experiment, 13%, while that into ears was more than 50% in the third experiment. The proportion of the rice-assimilated C recovered in soil organic matter increased with time after labeling and reached 3.4%, 3.0%, and 1.7% on day 14 in the first, second, and third experiments, respectively. Incorporation of the rice-assimilated C was faster into soil microbial biomass than into gross soil organic matter or the 0.5 M K2SO4-extractable fraction. Although the percent of labeled soil C that is in the microbial biomass on day 0 was much larger at the maximum-tiller-number stage (42%) than at the milky stage (5%), its variation among growth stages was small on day 14 (10 to 15%). The percent of the rice-assimilated C emitted as CH4 during the 14-day period at the maximum-tiller-number, booting, and milky stages was 0.003%, 0.26%, and 0.30%, respectively.  相似文献   

10.
The role of nitrification-denitrification in the loss of nitrogen from urea applied to puddled soils planted to rice and subjected to continuous and intermittent flooding was evaluated in three greenhouse pot studies. The loss of N via denitrification was estimated indirectly using the15N balance, after either first accounting for NH3 volatilization or by analyzing the15N balance immediately before and after the soil was dried and reflooded. When urea was broadcast and incorporated the loss of15N from the soil-plant systems depended on the soil, being about 20%–25% for the silt loams and only 10%–12% for the clay. Ammonia volatilization accounted for an average 20% of the N applied in the silt loam. Denitrification losses could not account for more than 10% of the applied N in any of the continuously flooded soil-plant systems under study and were most likely less than 5%. Intermittent flooding of soil planted to rice did not increase the loss of N. Denitrification appeared to be an important loss mechanism in continuously flooded fallow soils, accounting for the loss of approximately 40% of the applied15N. Loss of15N was not appreciably enhanced in fallow soils undergoing intermittent flooding. Apparently, nitrate formed in oxidized zones in the soil was readily denitrified in the absence of plant roots. Extensive loss (66%) of15N-labeled nitrate was obtained when 100 mg/pot of nitrate-N was applied to the surface of nonflooded soil prior to reflooding. This result suggests that rice plants may not compete effectively with denitrifiers if large quantities of nitrate were to accumulate during intermittent dry periods.  相似文献   

11.
The degradation of the herbicide [14C]-diclofopmethyl was investigated in moist parabrown podzol soil at 22°C. Radiochemical procedures were used to monitor the herbicide breakdown. The mineralization of the uniformly labelled aromatic ring was pursued by trapping the14CO2 generated for 96 days. Diclofop-methyl was rapidly degraded in the soil with a half-life of about 8 days. The major breakdown product was the corresponding acid-diclofop, formed by a very rapid hydrolysis of the esterbond. With time the acid appeared to undergo strong binding or complexing to the soil. An intermediate 4-(2,4-dichlorophenoxy) phenol was recovered from the treated soil. Concentration of the phenoxyphenol increased upto 6 days followed by quick decline. Insecticide combination of parathion + Demeton-Smethylsulphoxide partially inhibited diclofop degradation in the soil  相似文献   

12.
The cell suspension of Leishmania donovani incorporates 14CO2 resulting in the formation of [14C]-succinic acid under anaerobic conditions. The results showed that the [14C]-succinate formation from [1-14C]-glucose is much greater than that from [6-14C]-glucose. [14C-pyruvate] takes part in the production of succinic acid under anaerobic conditions without decarboxylation. The anaerobic formation of succinate appears to involve the production of malate, which is then converted to succinate via the reduction of fumarate by the reversal of the tricarboxylic acid cycle. Evidence indicated that the active species in this carboxylation reaction was CO2 although HCO3 was active to some extent.  相似文献   

13.
Summary The incidence of H2-oxidizing chemolithotrophic bacteria associated with rice grown under continuous wetland, upland, and rainfed wetland conditions was studied by14C-autoradiographic technique in a neutral soil at IRRI (Maahas) and an acid rainfed wetland soil (Luisiana).In Maahas soil, H2-oxidizing chemolithotrophic bacteria were not detected in the endorhizosphere, rhizosphere, and nonrhizosphere soil of rice grown under dryland conditions. Under continuously flooded conditions a very large population of these bacteria were found in the endorhizosphere but not in the oxidized and reduced soil.A very low population of these bacteria were found in the endorhizosphere and basal culm of rice grown under rainfed wetland conditions at Luisiana. Bacteria isolated from Maahas wetland rice and inoculated to rice seedling planted in Luisiana soil failed to establish.Both Maahas and Luisiana soils consumed externally supplied H2 and produced H2 and CH4 almost at the same rate when they were amended with rice straw or sucrose. This paper discusses possible causes of variation in the number of these bacteria and their distribution in rice grown under different cultural and soil conditions.  相似文献   

14.
Summary A water-extractable factor that developed in a flooded soil amended with 0.5% glucose or rice straw inhibited the biological hydrolysis of parathion. In glucose-amended flooded soil, the factor was removed by filtration of the standing water through a Millipore filter. Apparently, glucose application enhanced the proliferation of micro-organisms detrimental to parathionhydrolyzing agents. On the other hand, the toxic factor formed in rice straw-amended soil under flooded conditions passed through a Millipore membrane and was not inactivated by steam treatment. The toxicity developed within 36 h after flooding of rice straw-amended soil and persisted for 90 days or more under continued flooding. These studies indicated that a heat-resistant and stable factor with ability to block the hydrolysis of parathion developed in rice straw-amended soil under flooded conditions.  相似文献   

15.
Partitioning of 14C was assessed in sweet chestnut seedlings (Castanea sativa Mill.) grown in ambient and elevated atmospheric [CO2] environments during two vegetative cycles. The seedlings were exposed to 14CO2 atmosphere in both high and low [CO2] environments for a 6-day pulse period under controlled laboratory conditions. Six days after exposure to 14CO2, the plants were harvested, their dry mass and the radioactivity were evaluated. 14C concentration in plant tissues, root-soil system respiratory outputs and soil residues (rhizodeposition) were measured. Root production and rhizodeposition were increased in plants growing in elevated atmospheric [CO2]. When measuring total respiration, i.e. CO2 released from the root/soil system, it is difficult to separate CO2 originating from roots and that coming from the rhizospheric microflora. For this reason a model accounting for kinetics of exudate mineralization was used to estimate respiration of rhizospheric microflora and roots separately. Root activity (respiration and exudation) was increased at the higher atmospheric CO2 concentration. The proportion attributed to root respiration accounted for 70 to 90% of the total respiration. Microbial respiration was related to the amount of organic carbon available in the rhizosphere and showed a seasonal variation dependent upon the balance of root exudation and respiration. The increased carbon assimilated by plants grown under elevated atmospheric [CO2] stayed equally distributed between these increased root activities. ei]H Lambers  相似文献   

16.
Numerous xenobiotic compounds, including the organophosphate insecticides O, O-diethyl-O-(2-isopropyl-6-methyl-4-pyrimidinyl) phosphorothioate (diazinon) and O, O-diethyl-O-p-nitrophenyl phosphorothioate (parathion), appear to be degraded in the soil environment by an initial cometabolic attack. Comparing the mineralization rates of radiolabeled diazinon and parathion in root-free and in rhizosphere soil, we tested our hypothesis that, because of the presence of root exudates, the rhizosphere is an especially favorable environment for such co-metabolic transformations. The insecticides were added individually at 5 μg/g to sealed flasks containing either soil permeated by the root system of a bush bean plant or identical soil without roots. Periodically, the flask atmospheres were flushed through traps and the evolved 14CO2 was quantitated. Bush bean plant roots without associated rhizosphere microorganisms failed to produce a significant amount of 14CO2. During 1 month of incubation, rhizosphere flasks mineralized 12.9 and 17.9% of the added diazinon and parathion radiocarbon, respectively, compared to 5.0 and 7.8% by the soil without roots. The mineralization of parathion but not of diazinon was stimulated in a similar manner when soil without roots was repeatedly irrigated with a root exudate produced in aseptic solution culture. Viable counts of microorganisms on soil extract agar were not significantly altered by root permeation or by root exudate treatment of the soil, leaving population selection and/or enhanced cometabolic activity as the most plausible interpretations for the observed stimulatory effects. Rhizosphere interactions may substantially shorten the predicted half-lives of some xenobiotic compounds in soil.  相似文献   

17.
Phenanthrene biodegradation was investigated at different soil water contents [0.11, 0.22, 0.33, 0.44 g H2O (g soil)?1] to determine the effects of water availability on biodegradation rate. A subsurface horizon of Kennebec silty loam soil was used in this study. [9-14C] phenanthrene was dissolved in a mixture of organic contaminants that consisted of 76% decane, 6% ρ-xylene, 6% phenanthrene, 6% pristane, and 6% naphthalene, and then added to the soil. The highest rate of mineralization, in which 0.23% of the [9-14C] phenanthrene degraded to 14CO2 after 66 days of incubation, was observed at the soil water content of 0.44 g H2O/g dry soil. Most of the 14C remained in the soil as the parent compound or as nonextractable compounds by acetonitrile at the highest water content. Concentrations of nonextractable compounds increased with water content, but residual extractable phenanthrene decreased significantly with increasing water content, which presumably indicates that bio-transformation occurred. The mineralization analysis of radiolabeled 9th carbon in phenanthrene underestimated phenanthrene biodegradation. The strong adsorption and low solubility of phenanthrene contributed to the low mineralization of phenanthrene 9th carbon. The other components were subject to higher biological and abiotic dissipation processes with increasing soil water content.  相似文献   

18.
Microbial reductive dechlorination of [1,2-14C]trichloroethene to [14C]cis-dichloroethene and [14C]vinyl chloride was observed at 4°C in anoxic microcosms prepared with cold temperature-adapted aquifer and river sediments from Alaska. Microbial anaerobic oxidation of [1,2-14C]cis-dichloroethene and [1,2-14C]vinyl chloride to 14CO2 also was observed under these conditions.  相似文献   

19.
Summary Extensive biodegradation of [14C]-2,4,5-trichlorophenoxyacetic acid ([14C]-2,4,5-T) by the white rot fungus Phanerochaete chrysosporium was demonstrated in nutrient nitrogen-limited aqueous cultures and in [14C]-2,4,5-T-contaminated soil inoculated with this fungus and supplemented with ground corn cobs. After incubation of [14C]-2,4,5-T with aqueous cultures of the fungus for 30 days, 62.0%±2.0% of the [14C]-2,4,5-T initially present was degraded to 14CO2. Mass balance analysis demonstrated that water soluble metabolites were formed during degradation, and HPLC and thin layer chromatography (TLC) of methylene chloride-extractable material revealed the presence of polar and non-polar [14C]-2,4,5-T metabolites. It was also shown that only 5% of the [14C]-2,4,5-T initially present in cultures remained as undegraded [14C]-2,4,5-T. In incubations composed of [14C]-2,4,5-T-contaminated soil, ground corn cobs, and 40% (w/w) water, 32.5%±3.6% of the [14C]-2,4,5-T initially present was converted to 14CO2 after 30 days of incubation. These results suggest that it may be possible to develop practical systems based on the use of this fungus to detoxify 2,4,5-T-contaminated water and soil.  相似文献   

20.
Rising air temperatures are projected to reduce rice yield and quality, whereas increasing atmospheric CO2 concentrations ([CO2]) can increase grain yield. For irrigated rice, ponded water is an important temperature environment, but few open‐field evaluations are available on the combined effects of temperature and [CO2], which limits our ability to predict future rice production. We conducted free‐air CO2 enrichment and soil and water warming experiments, for three growing seasons to determine the yield and quality response to elevated [CO2] (+200 μmol mol?1, E‐[CO2]) and soil and water temperatures (+2 °C, E‐T). E‐[CO2] significantly increased biomass and grain yield by approximately 14% averaged over 3 years, mainly because of increased panicle and spikelet density. E‐T significantly increased biomass but had no significant effect on the grain yield. E‐T decreased days from transplanting to heading by approximately 1%, but days to the maximum tiller number (MTN) stage were reduced by approximately 8%, which limited the panicle density and therefore sink capacity. On the other hand, E‐[CO2] increased days to the MTN stage by approximately 4%, leading to a greater number of tillers. Grain appearance quality was decreased by both treatments, but E‐[CO2] showed a much larger effect than did E‐T. The significant decrease in undamaged grains (UDG) by E‐[CO2] was mainly the result of an increased percentage of white‐base grains (WBSG), which were negatively correlated with grain protein content. A significant decrease in grain protein content by E‐[CO2] accounted in part for the increased WBSG. The dependence of WBSG on grain protein content, however, was different among years; the slope and intercept of the relationship were positively correlated with a heat dose above 26 °C. Year‐to‐year variation in the response of grain appearance quality demonstrated that E‐[CO2] and rising air temperatures synergistically reduce grain appearance quality of rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号