首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spontaneous contractions of cultured chick skeletal muscle fibers were abolished by growth of cultures in the presence of tetrodotoxin (TTX). Inhibition of the contractile activity of cultured myofibers was associated with a marked reduction in the rate of azide-insensitive, ATP-dependent Ca2+ uptake by the total particulate fraction of cell homogenates and by purified sarcoplasmic reticulum. Myosin heavy chain (MHC) accumulation and azide-insensitive, ATP-dependent Ca2+ uptake into a total cell membrane fraction were measured simultaneously in the same culture dish. A decrease in the activity of the ATP-dependent Ca2+ uptake system preceded a significant reduction in MHC content of contraction-inhibited cultures. The reduced rate of Ca2+ uptake observed in the sarcoplasmic reticulum from TTX-treated cultures paralleled a decrease in the amount of enzymatically active Ca2+-transport ATPase. The cellular concentration of the ATPase was estimated from a measurement of the concentration of the Ca2+-dependent, hydroxylamine-sensitive, steady state level of phosphorylated intermediate formed in culture microsomes. In contrast to the changes observed in activity of the sarcoplasmic reticulum ATPase and MHC content of TTX-treated cultures, neither the specific activity of creatine kinase nor the accumulation of the MM isoenzyme were affected. It is therefore concluded that the contractile activity of muscle has a selective effect on the maintenance of the adult skeletal muscle phenotype.  相似文献   

2.
We tested the hypothesis that acetylcholinesterase (AChE)expression in skeletal muscle cells is increased by passive mechanical stimulation. To this end, primary cultures of myotubes were subjected to repeated cycles of stretch-relaxation for 5 min, 30 min, 3 h, and 24 h, using the Flexercell FX-2000 strain unit. Although mechanicalstimulation did not affect AChE expression at early time points, it ledto a significant increase (42%; P < 0.05) in total AChE activity at 24 h. This increase reflected a general elevation in the activity of all AChE molecular forms as opposed to apreferential increase in a specific form. Tetrodotoxin (TTX) treatmentdid not prevent the increase in AChE expression, whereas nifedipinepartially blocked it. These changes in enzyme expression wereaccompanied by increases in the levels of AChE mRNA, suggesting theinvolvement of pretranslational regulatory mechanisms. Together, theseresults illustrate that, in addition to neural activation and trophicfactors, passive mechanical forces modulate expression of AChE inskeletal muscle cells. Because TTX did not prevent the increase in AChEexpression, it appears that the effects of mechanical stimulation areindependent of electrical activity, which further indicates the use ofan alternate signaling pathway.

  相似文献   

3.
Primary cultures of avian muscle cells express both globular and asymmetric molecular forms of acetylcholinesterase (AChE) when grown in a simple defined culture medium. Under these conditions, we analyzed the role of various agents interfering with muscular activity: tetrodotoxin (TTX) and veratridine, as well as a depolarizing concentration of KCl. These treatments caused the complete cessation of contractions in mature myotubes. We observed no influence on cellular AChE activity. The paralyzing treatments induced different effects on AChE secretion: TTX increased the secretion by approximately 25%, whereas KCl and veratridine reduced it by approximately 30%. The proportions of secreted molecular forms (mostly hydrophilic G4 and G2) were not modified significantly. TTX did not affect the pattern of molecular forms of cellular AChE (in particular, the proportion of A forms was not changed). Depolarization by veratridine or KCl induced an increase in the proportion of A forms in mature myotubes by a factor of 2-3. Similar results were obtained with quail myotubes cultured under the same conditions. This study shows that, in avian muscle cultures, the ionic balance across myotube membranes, rather than muscular activity per se, can regulate the level of A forms and the rate of AChE secretion. These results do not exclude the possible involvement of other factors, such as Ca2+ and/or peptidic factors. In addition, taking together our results and data from the literature. we conclude that the expression of AChE molecular forms depends both on the species and on the culture conditions used.  相似文献   

4.
Syndecan-4 and integrins are involved in the cell migration and adhesion processes in several cell types. Syndecan-4, a transmembrane heparan sulfate proteoglycan, is associated to focal adhesions in adherent cells and has been described as a marker of satellite cells in skeletal muscle. In this tissue, β1 integrin forms heterodimers with α5 and α6 during myoblast differentiation and with α7 in adult muscle. Here, we show that the levels of these two cell surface membrane molecules are regulated by spontaneous electrical activity during the differentiation of rat primary myoblasts. Syndecan-4 and β1 integrin protein levels decrease after the inhibition of electrical activity using tetrodotoxin (TTX). Syndecan-4 also decreases substantially in denervated rat tibialis anterior muscle. Indirect immunofluorescence analysis shows that syndecan-4 and β1 integrin co-localize with vinculin, a molecular marker of costameres in skeletal muscle myofibers. Co-localization is lost in inactive myotubes adopting a diffuse pattern, suggesting that the costameric organization is disrupted in TTX-treated myotubes. Moreover, the inhibition of spontaneous electrical activity decreases myotube cell adhesion. In summary, this work shows that syndecan-4 and β1 integrin protein levels and their localization in costameric structures are regulated by electrical activity and suggests that this regulatory mechanism influences the adhesion properties of skeletal myotubes during differentiation.  相似文献   

5.
We have studied the appearance, distribution and regulation of acetylcholinesterase (AChE) and acetylcholine receptors (AChRs) in a mouse skeletal muscle cell line (C2), that was originally isolated and described by Yaffe & Saxel [54]. In culture, cells from this line form spontaneously contracting myotubes, with overshooting action potentials that are TTX-sensitive. After fusion of myoblasts into myotubes, there was a dramatic increase in the amount of both AChE and AChR. Three forms of AChE, distinguished by their sedimentation on sucrose gradients, were synthesized: 4-6S, 10S, and 16S. The 4-6S and 10S forms appeared 1 day after the cells began to fuse, whereas the 16S form appeared only 2 days after fusion began. Maximal levels of the 16S AChE form (25-30% of the total) were obtained by reducing the concentration of horse serum in the fusion medium. Prevention of myoblast fusion by reducing the calcium levels in the medium decreased the total AChE by 70%, and only the 4-6S form was synthesized. Blocking spontaneous contractile activity of the myotubes by tetrodotoxin (TTX) led to a 50% reduction in all three esterase forms. Thus, the 16S, or endplate form of AChE is not specifically regulated by electrical or contractile activity in the C2 cell line. After fusion the number of AChRs increased rapidly for 3-4 days and then stabilized. Receptor clusters, ranging from 10-30 micron in length, appeared 1 day after myoblast fusion began. When cells were grown in medium containing reduced Ca2+, the total number of AChRs was decreased by 20-50%. Reduction of Ca2+ after myotubes and AChR clusters had formed resulted in dispersal of AChR clusters. Inhibition of muscle contractions with TTX did not affect the number of AChRs or their distribution.  相似文献   

6.
The vast majority of newly synthesized acetylcholinesterase (AChE) molecules do not assemble into catalytically active oligomeric forms and are rapidly degraded intracellularly by the endoplasmic reticulum-associated protein degradation pathway. We have previously shown that AChE in skeletal muscle is regulated in part post-translationally by the availability of the noncatalytic subunit collagen Q, and others have shown that expression of a 17-amino acid N-terminal proline-rich attachment domain of collagen Q is sufficient to promote AChE tetramerization in cells producing AChE. In this study we show that muscle cells, or cell lines expressing AChE catalytic subunits, incubated with synthetic proline-rich attachment domain peptides containing the endoplasmic reticulum retrieval sequence KDEL take up and retrogradely transport them to the endoplasmic reticulum network where they induce assembly of AChE tetramers. The peptides act to enhance AChE folding thereby rescuing them from reticulum degradation. This enhanced folding efficiency occurs in the presence of inhibitors of protein synthesis and in turn increases total cell-associated AChE activity and active tetramer secretion. Pulse-chase studies of isotopically labeled AChE molecules show that the enzyme is rescued from intracellular degradation. These studies provide a mechanistic explanation for the large scale intracellular degradation of AChE previously observed and indicate that simple peptides alone can increase the production and secretion of this critical synaptic enzyme in muscle tissue.  相似文献   

7.
The pattern of acetylcholinesterase (AChE) molecular forms, obtained by sucrose gradient sedimentation, was studied at different in vitro developmental stages of myogenic cells isolated from adult mouse skeletal muscle. Only the globular forms were present in rapidly dividing satellite cells during the first days in culture. After myotube formation, a pattern similar to that described in mammalian fast-twitch skeletal muscle was observed. This pattern did not change during the following period in culture (up to 1 month) nor could it be modified by co-culturing with spinal cord motoneurons or by addition of brain-derived extracts. The internal-external localization of AChE molecular forms has been determined by the use of echothiophate iodide, a membrane-impermeant irreversible inhibitor of AChE. Echothiophate-treated cultures showed about 40% of both asymmetric and globular forms localized on the sarcolemma, with their active sites oriented outward. Analysis of culture medium from untreated cultures revealed the presence of both asymmetric and globular forms. When the same analysis was repeated on cultures of myoblasts derived from 16-day-old mouse embryos, the pattern of AChE forms was different. The myotubes derived from these cells exhibit a very small proportion of asymmetric form, which was not released into the medium. This pattern was not further modified during the following days of culture, nor by co-cultures with spinal cord motoneurons or by incubations with brain-derived extracts. Thus, the myotubes derived from myoblasts express in culture a clear phenotypic difference when compared to the corresponding myotubes from satellite cells, supporting the view that these two myogenic cells are endowed with different developmental programs.  相似文献   

8.
The role of electrical activity in the developmental regulation of cholinergic neurons was investigated in dissociated spinal cord--dorsal root ganglion (SC-DRG) cultures. Application of tetrodotoxin (TTX) during the first 6 days after plating had no effect on choline acetyltransferase (CAT) activity. Suppression of electrical activity during the 7th day decreased CAT to 68% of control. These decreases in CAT activity were still apparent 2 weeks after removal of the TTX. GABAergic neurons, as indicated by glutamic acid decarboxylase activity and high affinity [3H]GABA uptake, were not affected by TTX treatment. Addition of 8-bromo-cAMP or conditioned medium obtained from SC-DRG cultures at certain developmental periods produced dose-dependent increases in CAT levels on TTX-treated cultures as compared with those treated with TTX alone. Similar studies with 8-bromo-cGMP revealed no significant effects on CAT activity. Vasoactive intestinal peptide (VIP) produced a dose-dependent increase in CAT activity when added to cultures between days 12 and 14. Similar studies conducted on younger cultures (days 5-7) or older cultures (days 21-23) revealed no increases in CAT activity. Addition of 0.1 nM VIP to TTX-treated cultures resulted in CAT levels which were not significantly different from those of electrically active controls. These data suggest that cyclic AMP, VIP, and trophic substances in conditioned medium may have roles in the mechanism of cholinergic toxicity produced by electrical blockade of developing spinal cord neurons.  相似文献   

9.
The asymmetric (20S) form of acetylcholinesterase (AChE) in 1-day-old chick muscle is a hybrid enzyme containing both AChE (110 kd) and butyrylcholinesterase (BuChE, 72 kd) catalytic subunits. However, we now report that the asymmetric AChE extracted or immunopurified from older adult chicken muscles, where it is the endplate form, shows a progressive developmental loss of the BuChE subunit and its activities, centred around 4 weeks of age, while the AChE and collagenous subunits remain. In confirmation, using differential labelling and co-sedimentation it was shown that the hybrid 20S AChE/BuChE form of 1-day chick muscle is gradually and completely replaced during muscle maturation by a 21.3S form, also collagen-tailed but otherwise homogeneous in AChE catalytic subunits. Two other changes occur concomitantly. Firstly, the AChE catalytic subunit of the adult form has a lower apparent mol. wt in gel electrophoresis, by 5 kd, than the same subunit in the 1-day hybrid enzyme; this difference does not reside in the carbohydrate attachments. Secondly, the collagen tail changes, in that some conformation-dependent epitopes on it disappear in the same period. Hence, a major reorganization of the asymmetric AChE, involving all three types of subunit, occurs in the course of muscle development.  相似文献   

10.
Half of congenital muscular dystrophy cases arise from laminin alpha2 (merosin) deficiency, and merosin-deficient mice (Lama2dy) exhibit a dystrophic phenotype. The abnormal development of thymus in Lama2dy mice, the occurrence of acetylcholinesterase (AChE) in the gland and the impaired distribution of AChE molecules in skeletal muscle of the mouse mutant prompted us to compare the levels of AChE mRNAs and enzyme species in thymus of control and Lama2dy mice. AChE activity in normal thymus (mean +/- SD 1.42 +/- 0.28 micromol acetylthiocholine/h/mg protein, U/mg) was decreased by approximately 50% in dystrophic thymus (0.77 +/- 0.23 U/mg) (p = 0.007), whereas butyrylcholinesterase activity was little affected. RT-PCR assays revealed variable levels of R, H and T AChE mRNAs in thymus, bone marrow and spinal cord. Control thymus contained amphiphilic AChE dimers (G2A, 64%) and monomers (G1A, 19%), as well as hydrophilic tetramers (G4H, 9%) and monomers (G1H, 8%). The dimers consisted of glycosylphosphatidylinositol-anchored H subunits. Western blot assays with anti-AChE antibodies suggested the occurrence of inactive AChE in mouse thymus. Despite the decrease in AChE activity in Lama2dy thymus, no differences between thymuses from control and dystrophic mice were observed in the distribution of AChE forms, phosphatidylinositol-specific phospholipase C sensitivity, binding to lectins and size of AChE subunits.  相似文献   

11.
We have previously communicated that heparin released asymmetric acetylcholinesterase (AChE) from cholinergic synapses. Here we report studies showing that heparin, besides releasing asymmetric AChE from the skeletal muscle extracellular matrix (ECM), specifically solubilizes a dermatan sulfate proteoglycan (DSPG) which accounts for more than 95% of the 35S-released material. The co-solubilization of AChE and the proteoglycan opens up the possibility that both macromolecules could be involved in the formation of the soluble AChE complex observed after incubation of muscle homogenate with heparin. Our results suggest a possible association between asymmetric AChE and DSPG at the muscle ECM, moreover this work is the first report of the existence of DSPG at the skeletal muscle cell surface.  相似文献   

12.
1. We have analyzed the behavior of two types of asymmetric molecular forms (A forms) of acetylcholinesterase (AChE) during development of chick hindlimb muscle, in vivo and in cell culture, and upon irreversible inactivation of peroneal muscle AChE with diisopropylfluorophosphate (DFP) in vivo. 2. In agreement with previous developmental studies on chick muscle, globular forms of AChE (G forms) are predominant in chick hindlimb at early embryonic ages, being gradually replaced by A forms as hatching (and, therefore, onset of locomotion) approaches. Of the two A-form types, AI appears and accumulates significantly earlier than AII, so that A/G and II/I ratios higher than 1 are attained only at about hatching time. 3. Cultures prepared from 11-day chick embryo hindlimb myoblasts express both types of A forms, with a combined activity of 27% of total AChE after 12 days in culture. AI forms appear again earlier and are much more abundant than type II asymmetric species through the life span of cultures. 4. All AChE activity in the peroneal muscle is irreversibly inactivated by injection of DFP in vivo. The recovery of A forms follows the same sequence described for normal development, with a delayed and slower recovery of AII forms as compared with AI. 5. Several hypotheses involving tail polypeptides or tissue target molecules, or posttranslational interconversion, are proposed to help explain the earlier appearance and accumulation of AI forms in chick muscle.  相似文献   

13.
Factors present in neural extracts or in media conditioned by neurons have been shown by others to increase both the number of acetylcholine receptors (AChRs) and the number of receptor clusters in cultures of embryonic skeletal muscle. We have recently shown that the glycoprotein, sciatin, exerts trophic effects on developing muscle in vitro. In the present study, we investigated the effect of sciatin on AChRs in aneural cultures of chick skeletal muscle. Sciatin caused a significant increase in the number of AChRs/dish as measured by binding of 125I-α-bungarotoxin (α-Btx) and in acetylcholinesterase (AChE) activity/dish in differentiating muscle cells. The increase in AChRs elicited by sciatin was due solely to increased receptor synthesis and incorporation. The rate of AChR synthesis in sciatin-treated cultures was as much as five times the control rate and was significantly reduced by cycloheximide (10 μM). AChR degradation was unaffected by the myotrophic protein. Although the number of AChRs/dish was increased by sciatin during myogenesis, AChR specific activity, expressed as picomoles 125I-α-Btx bound/mg cell protein, was only transiently increased by the myotrophic protein. This contrasted with AChE specific activity in sciatin-treated cultures which remained elevated throughout differentiation. Autoradiographs of 125I-α-Btx-labeled cultures showed that sciatin caused an increase in the number and size of AChR “hot spots” and maintained the integrity of these AChR clusters in aneural muscle cultures for up to 5 weeks. At this time control cultures had completely degenerated. The mechanism by which sciatin enhanced the synthesis of AChRs appeared to be distinct from that of tetrodotoxin (TTX), an agent which abolishes muscle activity. However, like theophylline, sciatin might evoke increased synthesis of AChRs via regulation of cyclic AMP since the myotrophic protein increased cAMP both in cells and in conditioned medium. The results of this study suggest that sciatin may be related to the diffusible factor(s) from motor neurons described by others which has trophic effects on AChRs. Furthermore, we suggest that this myotrophic protein may be responsible for the clustering of AChRs and maintenance of receptor clusters at neuromuscular junctions in developing avian muscle.  相似文献   

14.
The expression of acetylcholinesterase (AChE) in skeletal muscle is regulated by muscle activity; however, the underlying molecular mechanisms are incompletely understood. We show here that the expression of the synaptic collagen-tailed AChE form (ColQ-AChE) in quail muscle cultures can be regulated by muscle activity post-translationally. Inhibition of thiol oxidoreductase activity decreases expression of all active AChE forms. Likewise, primary quail myotubes transfected with protein disulfide isomerase (PDI) short hairpin RNAs showed a significant decrease of both the intracellular pool of all collagen-tailed AChE forms and cell surface AChE clusters. Conversely, overexpression of PDI, endoplasmic reticulum protein 72, or calnexin in muscle cells enhanced expression of all collagen-tailed AChE forms. Overexpression of PDI had the most dramatic effect with a 100% increase in the intracellular ColQ-AChE pool and cell surface enzyme activity. Moreover, the levels of PDI are regulated by muscle activity and correlate with the levels of ColQ-AChE and AChE tetramers. Finally, we demonstrate that PDI interacts directly with AChE intracellularly. These results show that collagen-tailed AChE form levels induced by muscle activity can be regulated by molecular chaperones and suggest that newly synthesized exportable proteins may compete for chaperone assistance during the folding process.  相似文献   

15.
Whether nerve activity and active contraction of myotubes are essential for the assembly and initial differentiation of muscle spindles was investigated by paralyzing fetal rats with tetrodotoxin (TTX) from embryonic day 16 (E16) to E21, prior to and during the period when spindles typically form. TTX-treated soleus muscles were examined by light and electron microscopy for the presence of spindles and expression of myosin heavy chain (MHC) isoforms by the intrafusal fibers. Treatment with TTX did not inhibit the formation of a spindle capsule or the expression of a slow-tonic MHC isoform characteristic of intrafusal fibers, but did retard development of spindles. Spindles of TTX-treated E21 muscles usually consisted of one intrafusal fiber (bag2) only rather than two fibers (bag1 and bag2) typically present in untreated (control) E21 spindles. Intrafusal fibers of TTX-treated spindles also had only one sensory region supplied by multiple afferents, and were devoid of motor innervation. These features are characteristic of spindles in normal E18-E19 muscles. Thus, nerve and/or muscle activity is not essential for the assembly of muscle spindles, formation of a spindle capsule, and transformation of undifferentiated myotubes into the intrafusal fibers containing spindle-specific myosin isoforms. However, activity may promote the maturation of intrafusal bundles, as well as the maturation of afferent and efferent nerve supplies to intrafusal fibers.  相似文献   

16.
The effects of skeletal muscle extract on the development of CAT, ACh synthesis, high affinity choline uptake, and AChE activities were studied in dissociated ventral spinal cord cultures prepared from 14-day gestational rat embryos. In the absence of muscle extract, the development of CAT and AChE follow biphasic time courses in which they show initial declines followed by periods of steadily increasing activity. In contrast, ACh synthesis and high affinity choline uptake both gradually increase throughout the entire culture period. The presence of muscle extract both prevents the initial decline of CAT and AChE as well as stimulates the rates of development of all four cholinergic markers; however, the degrees and time courses of stimulation differ markedly. The effects of muscle extract on the kinetic and pharmacological properties of ACh synthesis and choline uptake in rat ventral cord cultures were also investigated. Cells treated with muscle extract for 2 days express both high affinity (Km = 1.6 microM) and low affinity (Km = 22 microM) choline uptake mechanisms. Control cells, on the other hand, express only low affinity uptake at this stage but develop a high affinity uptake mechanism by Day 7. During this time both ACh synthesis and high affinity choline uptake become increasingly sensitive to inhibition by hemicholinium-3. These results demonstrate that skeletal muscle factors enhance the development of cholinergic properties in embryonic spinal cord cultures. However, differences in sensitivity to muscle extract concentration, time courses of development, and degrees of stimulation suggest that these changes may involve distinct cellular mechanisms which are differentially affected by skeletal muscle factors.  相似文献   

17.
The asymmetric forms of cholinesterases are synthesized only in differentiated muscular and neural cells of vertebrates. These complex oligomers are characterized by the presence of a collagen-like tail, associated with one, two or three tetramers of catalytic subunits. The collagenic tail is responsible for ionic interactions, explaining the insertion of these molecules in extracellular basal lamina, e.g. at neuromuscular endplates. We report the cloning of a collagenic subunit from Torpedo marmorata acetylcholinesterase (AChE). The predicted primary structure contains a putative signal peptide, a proline-rich domain, a collagenic domain, and a C-terminal domain composed of proline-rich and cysteine-rich regions. Several variants are generated by alternative splicing. Apart from the collagenic domain, the AChE tail subunit does not present any homology with previously known proteins. We show that co-expression of catalytic AChE subunits and collagenic subunits results in the production of asymmetric, collagen-tailed AChE forms in transfected COS cells. Thus, the assembly of these complex forms does not depend on a specific cellular processing, but rather on the expression of the collagenic subunits.  相似文献   

18.
Summary Whether nerve activity and active contraction of myotubes are essential for the assembly and initial differentiation of muscle spindles was investigated by paralyzing fetal rats with tetrodotoxin (TTX) from embryonic day 16 (E16) to E21, prior to and during the period when spindles typically form. TTX-treated soleus muscles were examined by light and electron microscopy for the presence of spindles and expression of myosin heavy chain (MHC) isoforms by the intrafusal fibers. Treatment with TTX did not inhibit the formation of a spindle capsule or the expression of a slow-tonic MHC isoform characteristic of intrafusal fibers, but did retard development of spindles. Spindles of TTX-treated E21 muscles usually consisted of one intrafusal fiber (bag2) only rather than two fibers (bag1 and bag2) typically present in untreated (control) E21 spindles. Intrafusal fibers of TTX-treated spindles also had only one sensory region supplied by multiple afferents, and were devoid of motor innervation. These features are characteristic of spindles in normal E18–E19 muscles. Thus, nerve and/or muscle activity is not essential for the assembly of muscle spindles, formation of a spindle capsule, and transformation of undifferentiated myotubes into the intrafusal fibers containing spindle-specific myosin isoforms. However, activity may promote the maturation of intrafusal bundles, as well as the maturation of afferent and efferent nerve supplies to intrafusal fibers.  相似文献   

19.
20.
Rat skeletal muscle cells release in culture a macromolecule which stimulates by 25-100 fold the development of choline acetyltransferase (CAT) in cultures of new-born rat sympathetic neurons. This "cholinergic factor" impaired the development of three norepinephrine synthesizing enzymes and of acetylcholinesterase (AChE) in these cultures. The 16S form of AChE failed to develop in cultures grown with the factor, but amounted to 30-40% in 3-week old cultures grown in its absence. Using the development of CAT activity in sympathetic neuron cultures as an assay, the cholinergic factor has been partially purified in 6 steps, and its hydrodynamic parameters determined. The effects of this factor on sympathetic neurotransmitter choice were qualitatively reproduced by 1-10 mM Na butyrate. The cholinergic factor increased CAT activity and decreased AChE in neuron cultures from new-born rat nodose ganglia. The factor also stimulated CAT activity in rat embryo (E14) spinal cord cultures, but stimulated the development of AChE in these cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号