首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ras-GRF1 exchange factor, which is regulated by increases in intracellular calcium and the release of G beta gamma subunits from heterotrimeric G proteins, plays a critical role in the activation of neuronal Ras. Activation of G protein-coupled receptors stimulates an increase in the phosphorylation of Ras-GRF1 at certain serine residues. The first of these sites to be identified, Ser(916) in the mouse sequence (equivalent to Ser(898) in the rat sequence), is required for full activation of the Ras exchange factor activity of Ras-GRF1 by muscarinic receptors. We demonstrate here that Ras-GRF1 is highly expressed in rat brain compared with the Sos exchange factor and that there is an increase in incorporation of (32)P into Ser(898) of brain Ras-GRF1 following activation of protein kinase A. Phosphorylation of Ras-GRF1 at Ser(916) is also required for maximal induction of Ras-dependent neurite outgrowth in PC12 cells. A novel antibody (termed 2152) that selectively recognizes Ras-GRF1 when it is phosphorylated at Ser(916/898) confirmed the regulated phosphorylation of Ras-GRF1 by Western blotting in both model systems of transfected COS-7 and PC12 cells and also of the endogenous protein in rat forebrain slices. Indirect confocal immunofluorescence of transfected PC12 cells using antibody 2152 demonstrated reactivity only under conditions in which Ras-GRF1 was phosphorylated at Ser(916/898). Confocal immunofluorescence of cortical slices of rat brain revealed widespread and selective phosphorylation of Ras-GRF1 at Ser(898). In the prefrontal cortex, there was striking phosphorylation of Ras-GRF1 in the dendritic tree, supporting a role for Ras activation and signal transduction in neurotransmission in this area.  相似文献   

2.
We have previously reported the Ras-dependent activation of the mitogen-activated protein kinases p44 and p42, also termed extracellular signal-regulated kinases (ERK)1 and 2 (ERK1/2), mediated through Gs-coupled serotonin receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Whereas Gi- and Gq-coupled receptors have been shown to activate Ras through the guanine nucleotide exchange factor (GEF) called Ras-GRF1 (CDC25Mm) by binding of Ca2+/calmodulin to its N-terminal IQ domain, the mechanism of Ras activation through Gs-coupled receptors is not fully understood. We report the endogenous expression of Ras-GRF1 in HEK293 cells. Serotonin stimulation of HEK293 cells transiently expressing Gs-coupled 5-HT7 receptors induced protein kinase A-dependent phosphorylation of the endogenous human Ras-GRF1 on Ser927 and of transfected mouse Ras-GRF1 on Ser916. Ras-GRF1 overexpression increased basal and serotonin-stimulated ERK1/2 phosphorylation. Mutations of Ser916 inhibiting (Ser916Ala) or mimicking (Ser916Asp/Glu) phosphorylation did not alter these effects. However, the deletion of amino acids 1-225, including the Ca2+/calmodulin-binding IQ domain, from Ras-GRF1 reduced both basal and serotonin-stimulated ERK1/2 phosphorylation. Furthermore, serotonin treatment of HEK293 cells stably expressing 5-HT7 receptors increased [Ca2+]i, and the serotonin-induced ERK1/2 phosphorylation was Ca2+-dependent. Therefore, both cAMP and Ca2+ may contribute to the Ras-dependent ERK1/2 activation after 5-HT7 receptor stimulation, through activation of a guanine nucleotide exchange factor with activity towards Ras.  相似文献   

3.
Activation of the Raf serine/threonine protein kinases is tightly regulated by multiple phosphorylation events. Phosphorylation of either tyrosine 340 or 341 in the catalytic domain of Raf-1 has been previously shown to induce the ability of the protein kinase to phosphorylate MEK. By using a combination of mitogenic and enzymatic assays, we found that phosphorylation of the adjacent residue, serine 338, and, to a lesser extent, serine 339 is essential for the biological and enzymatic activities of Raf-1. Replacement of S338 with alanine blocked the ability of prenylated Raf-CX to transform Rat-1 fibroblasts. Similarly, the loss of S338-S339 in Raf-1 prevented protein kinase activation in COS-7 cells by either oncogenic Ras[V12] or v-Src. Consistent with phosphorylation of S338-S339, acidic amino acid substitutions of these residues partially restored transforming activity to Raf-CX, as well as kinase activation of Raf-1 by Ras[V12] or v-Src. Two-dimensional phosphopeptide mapping of wild-type Raf-CX and Raf-CX[A338A339] confirmed the presence of a phosphoserine-containing peptide with the predicted mobility in the wild-type protein which was absent from the mutant. This peptide could be quantitatively precipitated by an antipeptide antibody specific for the 18-residue tryptic peptide containing S338-S339 and was demonstrated to contain only phosphoserine. Phosphorylation of this peptide in Raf-1 was significantly increased by coexpression with Ras[V12]. These data demonstrate that Raf-1 residues 338 to 341 constitute a unique phosphoregulatory site in which the phosphorylation of serine and tyrosine residues contributes to the regulation of Raf by Ras, Src, and Ras-independent membrane localization.  相似文献   

4.
Ras-GRF1 is a brain-specific guanine nucleotide exchange factor (GEF) for Ras, whose activity is regulated in response to Ca(2+) influx and G protein-coupled receptor signals. In addition, Ras-GRF1 acts as a GEF for Rac when tyrosine-phosphorylated following G protein-coupled receptor stimulation. However, the mechanisms underlying the regulation of Ras-GRF1 functions remain incompletely understood. We show here that activated ACK1, a nonreceptor tyrosine kinase that belongs to the focal adhesion kinase family, causes tyrosine phosphorylation of Ras-GRF1. On the other hand, kinase-deficient ACK1 exerted no effect. GEF activity of Ras-GRF1 toward Ha-Ras, as defined by in vitro GDP binding and release assays, was augmented after tyrosine phosphorylation by ACK1. In contrast, GEF activity toward Rac1 remained latent, implying that ACK1 does not represent a tyrosine kinase that acts downstream of G protein-coupled receptors. Consistent with enhanced Ras-GEF activity, accumulation of the GTP-bound form of Ras within the cell was shown through the use of Ras-binding domain pull-down assays. Furthermore, Ras-dependent activation of ERK2 by Ras-GRF1 was enhanced following co-expression of activated ACK1. These results implicate ACK1 as an upstream modulator of Ras-GRF1 and suggest a signaling cascade consisting of Cdc42, ACK1, Ras-GRF1, and Ras in neuronal cells.  相似文献   

5.
Negative regulation of Raf-1 by phosphorylation of serine 621.   总被引:13,自引:6,他引:7       下载免费PDF全文
The elevation of cyclic AMP (cAMP) levels in the cell downregulates the activity of the Raf-1 kinase. It has been suggested that this effect is due to the activation of cAMP-dependent protein kinase (PKA), which can directly phosphorylate Raf-1 in vitro. In this study, we confirmed this hypothesis by coexpressing Raf-1 with the constitutively active catalytic subunit of PKA, which could fully reproduce the inhibition previously achieved by cAMP. PKA-phosphorylated Raf-1 exhibits a reduced affinity for GTP-loaded Ras as well as impaired catalytic activity. As the binding to GTP-loaded Ras induces Raf-1 activation in the cell, we examined which mechanism is required for PKA-mediated Raf-1 inhibition in vivo. A Raf-1 point mutant (RafR89L), which is unable to bind Ras, as well as the isolated Raf-1 kinase domain were still fully susceptible to inhibition by PKA, demonstrating that the phosphorylation of the Raf-1 kinase suffices for inhibition. By the use of mass spectroscopy and point mutants, PKA phosphorylation site was mapped to a single site in the Raf-1 kinase domain, serine 621. Replacement of serine 621 by alanine or cysteine or destruction of the PKA consensus motif by changing arginine 618 resulted in the loss of catalytic activity. Notably, a mutation of serine 619 to alanine did not significantly affect kinase activity or regulation by activators or PKA. Changing serine 621 to aspartic acid yielded a Raf-1 protein which, when expressed to high levels in Sf-9 insect cells, retained a very low inducible kinase activity that was resistant to PKA downregulation. The purified Raf-1 kinase domain displayed slow autophosphorylation of serine 621, which correlated with a decrease in catalytic function. The Raf-1 kinase domain activated by tyrosine phosphorylation could be downregulated by PKA. Specific removal of the phosphate residue at serine 621 reactivated the catalytic activity. These results are most consistent with a dual role of serine 621. On the one hand, serine 621 appears essential for catalytic activity; on the other hand, it serves as a phosphorylation site which confers negative regulation.  相似文献   

6.
The Ras-GRF exchange factor can activate Ras-dependent responses following the activation of heterotrimeric G-protein and calcium signalling. In stable lines of NIH-3T3 fibroblasts that express Ras-GRF, the agonist lysophosphatidic acid (LPA) increases the phosphorylation state and activity of Ras-GRF. The stimulation of Ras-GRF can be demonstrated in vitro, in an assay using recombinant Ras substrate, and in situ, by a selective increase in the ability of LPA to stimulate mitogen-activated protein (MAP) kinase. The increase in Ras-GRF phosphorylation state, which occurs on serine residues, and the increase in exchange factor activity are blocked by pretreatment with pertussis toxin. Activation of Ras-GRF by LPA can also be inhibited by chelation of intracellular calcium and treatment of the Ras-GRF with protein phosphatase 1 (PP1), supporting a model in which Ras-GRF serves to integrate signals from multiple transduction pathways.  相似文献   

7.
Y Kim  J M Han  J B Park  S D Lee  Y S Oh  C Chung  T G Lee  J H Kim  S K Park  J S Yoo  P G Suh  S H Ryu 《Biochemistry》1999,38(32):10344-10351
Protein kinase C (PKC) is an important regulator of phospholipase D1 (PLD1). Currently there is some controversy about a phosphorylation-dependent or -independent mechanism of the activation of PLD1 by PKC. To solve this problem, we examined whether PLD1 is phosphorylated by PKC in vivo. For the first time, we have now identified multiple basal phophopeptides and multiple phorbol myristate acetate (PMA) induced phosphopeptides of endogenous PLD1 in 3Y1 cells as well as of transiently expressed PLD1 in COS-7 cells. Down regulation or inhibition of PKC greatly attenuated the PMA-induced phosphorylation as well as the activation of PLD1. In the presence of PMA, purified PLD1 from rat brain was also found to be phosphorylated by PKCalpha in vitro at multiple sites generating seven distinct tryptic phosphopeptides. Four phosphopeptides generated in vivo and in vitro correlated well with each other, suggesting direct phosphorylation of PLD1 by PKCalpha in the cells. Serine 2, threonine 147, and serine 561 were identified as phosphorylation sites, and by mutation of these residues to alanine these residues were proven to be specific phosphorylation sites in vivo. Interestingly, threonine 147 is located in the PX domain and serine 561 is in the negative regulatory "loop" region of PLD1. Mutation of serine 2, threonine 147, or serine 561 significantly reduced PMA-induced PLD1 activity. These results strongly suggest that phosphorylation plays a pivotal role in PLD1 regulation in vivo.  相似文献   

8.
Full activation of Raf-1 requires the interaction of its CRD with Ras. The serine/threonine-rich region, CR2, of Raf-1 was implicated in Raf-1 regulation, but the underlying mechanism was unclear. Here we show that CRD loses its Ras-binding activity when expressed in connection with CR2, suggesting that CR2 masks CRD. This masking effect is abolished by substitution of Asp or Ala for Ser-259, a growth factor- and TPA-induced phosphorylation site in CR2. Treatment of COS-7 cells expressing Ha-Ras(Val-12) and Raf-1 with TPA enhances the Ha-Ras(Val-12)-dependent Raf-1 kinase activity. In contrast, the Ha-Ras(Val-12)-dependent activities of the Raf-1(S259D) and Raf-1(S259A) mutants are comparable to that of wild-type Raf-1 stimulated by both Ha-Ras(Val-12) and TPA and cannot be further stimulated by TPA treatment. These results suggest that the in vivo phosphorylation of Ser-259 may comprise a crucial step for Ras-dependent Raf-1 activation by unmasking CRD and promoting its association with Ras.  相似文献   

9.
10.
Elevation of intracellular 8-bromo-cyclic AMP (cAMP) can activate certain steroid receptors and enhance the ligand-dependent activation of most receptors. During ligand-independent activation of the chicken progesterone receptor (cPR(A)) with the protein kinase A (PKA) activator, 8-bromo-cAMP, we found no alteration in cPR(A) phosphorylation (W. Bai, B. G. Rowan, V. E. Allgood, B. W. O'Malley, and N. L. Weigel, J. Biol. Chem. 272:10457-10463, 1997). To determine if other receptor-associated cofactors were targets of cAMP-dependent signaling pathways, we examined the phosphorylation of steroid receptor coactivator 1 (SRC-1). We detected a 1.8-fold increase in SRC-1 phosphorylation in transfected COS-1 cells incubated with 8-bromo-cAMP. Phosphorylation was increased on two mitogen-activated protein kinase (MAPK) sites, threonine 1179 and serine 1185. PKA did not phosphorylate these sites in vitro. However, blockage of PKA activity in COS-1 cells with the PKA inhibitor (PKI) prevented the 8-bromo-cAMP-mediated phosphorylation of these sites. Incubation of COS-1 cells with 8-bromo-cAMP resulted in activation of the MAPK pathway, as determined by Western blotting with antibodies to the phosphorylated (active) form of Erk-1/2, suggesting an indirect pathway to SRC-1 phosphorylation. Mutation of threonine 1179 and serine 1185 to alanine in COS-1 cells coexpressing cPR(A) and the GRE(2)E1bCAT reporter resulted in up to a 50% decrease in coactivation during both ligand-independent activation and ligand-dependent activation. This was due, in part, to loss of functional cooperation between SRC-1 and CREB binding protein for coactivation of cPR(A). This is the first demonstration of cross talk between a signaling pathway and specific phosphorylation sites in a nuclear receptor coactivator that can regulate steroid receptor activation.  相似文献   

11.
12.
The serine/threonine kinase Raf-1 functions downstream from Ras to activate mitogen-activated protein kinase kinase, but the mechanisms of Raf-1 activation are incompletely understood. To dissect these mechanisms, wild-type and mutant Raf-1 proteins were studied in an in vitro system with purified plasma membranes from v-Ras- and v-Src-transformed cells (transformed membranes). Wild-type (His)6- and FLAG-Raf-1 were activated in a Ras- and ATP-dependent manner by transformed membranes; however, Raf-1 proteins that are kinase defective (K375M), that lack an in vivo site(s) of regulatory tyrosine (YY340/341FF) or constitutive serine (S621A) phosphorylation, that do not bind Ras (R89L), or that lack an intact zinc finger (CC165/168SS) were not. Raf-1 proteins lacking putative regulatory sites for an unidentified kinase (S259A) or protein kinase C (S499A) were activated but with apparently reduced efficiency. The kinase(s) responsible for activation by Ras or Src may reside in the plasma membrane, since GTP loading of plasma membranes from quiescent NIH 3T3 cells (parental membranes) induced de novo capacity to activate Raf-1. Wild-type Raf-1, possessing only basal activity, was not activated by parental membranes in the absence of GTP loading. In contrast, Raf-1 Y340D, possessing significant activity, was, surprisingly, stimulated by parental membranes in a Ras-independent manner. The results suggest that activation of Raf-1 by phosphorylation may be permissive for further modulation by another membrane factor, such as a lipid. A factor(s) extracted with methanol-chloroform from transformed membranes or membranes from Sf9 cells coexpressing Ras and SrcY527F significantly enhanced the activity of Raf-1 Y340D or active Raf-1 but not that of inactive Raf-1. Our findings suggest a model for activation of Raf-1, wherein (i) Raf-1 associates with Ras-GTP, (ii) Raf-1 is activated by tyrosine and/or serine phosphorylation, and (iii) Raf-1 activity is further increased by a membrane cofactor.  相似文献   

13.
The multifunctional signal adapter protein Ras and Rab interactor 1 (RIN1) is a Ras effector protein involved in the regulation of epithelial cell processes such as cell migration and endocytosis. RIN1 signals via two downstream pathways, namely the activation of Rab5 and Abl family kinases. Protein kinase D (PKD) phosphorylates RIN1 at serine 351 in vitro, thereby regulating interaction with 14-3-3 proteins. Here, we report the identification of serine 292 in RIN1 as an in vivo PKD phosphorylation site. PKD-mediated phosphorylation at this site was confirmed with a phospho-specific antibody and by mass spectrometry. We demonstrate that phosphorylation at serine 292 controls RIN1-mediated inhibition of cell migration by modulating the activation of Abl kinases. We further provide evidence that RIN1 in vivo phosphorylation at serine 351 occurs independently of PKD. Collectively, our data identify a novel PKD signaling pathway through RIN1 and Abl kinases that is involved in the regulation of actin remodeling and cell migration.  相似文献   

14.
Raf-1 is an important effector of Ras mediated signaling and is a critical regulator of the ERK/MAPK pathway. Raf-1 activation is controlled in part by phosphorylation on multiple residues, including an obligate phosphorylation site at serine 338. Previously PAK1 and casein kinase II have been implicated as serine 338 kinases. To identify novel kinases that phosphorylate this site, we tested the ability of group II PAKs (PAKs 4-6) to control serine 338 phosphorylation. We observed that all group II PAKs were efficient serine 338 kinases, although only PAK1 and PAK5 significantly stimulated Raf-1 kinase activity. We also showed that PAK5 forms a tight complex with Raf-1 in the cell, but not A-Raf or B-Raf. Importantly, we also demonstrated that the association of Raf-1 with PAK5 targets a subpopulation of Raf-1 to mitochondria. These data indicate that PAK5 is a potent regulator of Raf-1 activity and may control Raf-1 dependent signaling at mitochondria.  相似文献   

15.
16.
The Son of sevenless proteins (Sos) are guanine nucleotide exchange factors involved in the activation of Ras by cytoplasmic and receptor tyrosine kinases. Growth factor stimulation rapidly induces the phosphorylation of Sos on multiple serine and threonine sites. Previous studies have demonstrated that growth factor-induced Sos phosphorylation occurs at the C-terminal region of the protein and is mediated, in part, by mitogen-activated protein (MAP) kinase. In this report, we describe the identification of five MAP kinase sites (S-1137, S-1167, S-1178, S-1193, and S-1197) on hSos1. We demonstrate that four of these sites, S-1132, S-1167, S-1178, and S-1193, become phosphorylated following growth factor stimulation. The MAP kinase phosphorylation sites are clustered within a region encompassing three proline-rich SH3-binding sites in the C-terminal domain of hSos1. Replacing the MAP kinase phosphorylation sites with alanine residues results in an increase in the binding affinity of Grb2 to hSos1. Interestingly, hSos2 contains only one MAP kinase phosphorylation site and, as demonstrated previously, has an increased affinity toward Grb2 compared with hSos1. These results suggest a role for MAP kinase in the regulation of Grb2-Sos interactions. Since the binding of Grb2 is important for Sos function, the phosphorylation-dependent modulation of Grb2-Sos association may provide a means of controlling Ras activation.  相似文献   

17.
TESK1 (testis-specific protein kinase 1) is a protein kinase with a structure composed of an N-terminal protein kinase domain and a C-terminal proline-rich domain. Whereas the 3.6-kilobase TESK1 mRNA is expressed predominantly in the testis, a faint 2.5-kilobase TESK1 mRNA is expressed ubiquitously. The kinase domain of TESK1 contains in the catalytic loop in subdomain VIB an unusual DLTSKN sequence, which is not related to the consensus sequence of either serine/threonine kinases or tyrosine kinases. In this study, we show that TESK1 has kinase activity with dual specificity on both serine/threonine and tyrosine residues. In an in vitro kinase reaction, the kinase domain of TESK1 underwent autophosphorylation on serine and tyrosine residues and catalyzed phosphorylation of histone H3 and myelin basic protein on serine, threonine, and tyrosine residues. Site-directed mutagenesis analyses revealed that Ser-215 within the "activation loop" of the kinase domain is the site of serine autophosphorylation of TESK1. Replacement of Ser-215 by alanine almost completely abolished serine autophosphorylation and histone H3 kinase activities. In contrast, replacement of Ser-215 by glutamic acid abolished serine autophosphorylation activity but retained histone H3 kinase activity. These results suggest that autophosphorylation of Ser-215 is an important step to positively regulate the kinase activity of TESK1.  相似文献   

18.
19.
Phosphorylation of the RAF-1 protooncogene product and activation of its associated serine/threonine kinase are common features of the response of cells to peptide growth factors. We have used wild-type and mutant epidermal growth factor (EGF) receptors to investigate mechanisms of RAF-1 phosphorylation. In vivo EGF treatment rapidly stimulated phosphorylation of RAF-1 exclusively on serine residues. Stimulation of RAF-1 phosphorylation occurred at 37 degrees C but not at 4 degrees C and persisted after dissociation of EGF from its receptor. EGF-induced RAF-1 serine phosphorylation required the intrinsic tyrosine kinase activity of the EGF receptor but was independent of EGF receptor self-phosphorylation and of ligand-induced receptor internalization. Down-regulation of protein kinase C did not affect the EGF-induced increase in RAF-1 phosphorylation. These data suggest that the activated tyrosine kinase activity of the EGF receptor enhances serine phosphorylation of RAF-1 via an intermediary molecule(s).  相似文献   

20.
We recently identified Vav as a Ras-activating guanine nucleotide exchange factor (GEF) stimulated by a T-cell antigen receptor-coupled protein tyrosine kinase (PTK). Here, we describe a novel, protein kinase-independent alternative pathway of Vav activation. Phorbol ester, 1,2-diacylglycerol, or ceramide treatment of intact T cells, Vav immunoprecipitates, or partially purified Vav generated by in vitro translation or COS-1 cell transfection stimulated the Ras exchange activity of Vav in the absence of detectable tyrosine phosphorylation. GEF activity of gel-purified Vav was similarly stimulated by phorbol myristate acetate (PMA). Stimulation was resistant to PTK and protein kinase C inhibitors but was blocked by calphostin, a PMA and diacylglycerol antagonist. In vitro-translated Vav lacking its cysteine-rich domain, or mutated at a single cysteine residue within this domain (C528A), was not stimulated by PMA but was fully activated by p56lck. This correlated with increased binding of radiolabeled phorbol ester to COS-1 cells expressing wild-type, but not C528A-mutated, Vav. Thus, Vav itself is a PMA-binding and -activated Ras GEF. Recombinant interleukin-1 alpha stimulated Vav via this pathway, suggesting that diglyceride-mediated Vav activation may couple PTK-independent receptors which stimulate production of lipid second messengers to Ras in hematopoietic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号