首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The liquid–liquid phase separation (LLPS) of Tau has been postulated to play a role in modulating the aggregation property of Tau, a process known to be critically associated with the pathology of a broad range of neurodegenerative diseases including Alzheimer''s Disease. Tau can undergo LLPS by homotypic interaction through self‐coacervation (SC) or by heterotypic association through complex‐coacervation (CC) between Tau and binding partners such as RNA. What is unclear is in what way the formation mechanisms for self and complex coacervation of Tau are similar or different, and the addition of a binding partner to Tau alters the properties of LLPS and Tau. A combination of in vitro experimental and computational study reveals that the primary driving force for both Tau CC and SC is electrostatic interactions between Tau‐RNA or Tau‐Tau macromolecules. The liquid condensates formed by the complex coacervation of Tau and RNA have distinctly higher micro‐viscosity and greater thermal stability than that formed by the SC of Tau. Our study shows that subtle changes in solution conditions, including molecular crowding and the presence of binding partners, can lead to the formation of different types of Tau condensates with distinct micro‐viscosity that can coexist as persistent and immiscible entities in solution. We speculate that the formation, rheological properties and stability of Tau droplets can be readily tuned by cellular factors, and that liquid condensation of Tau can alter the conformational equilibrium of Tau.  相似文献   

2.
Neuronal inclusions of aggregated RNA‐binding protein fused in sarcoma (FUS) are hallmarks of ALS and frontotemporal dementia subtypes. Intriguingly, FUS's nearly uncharged, aggregation‐prone, yeast prion‐like, low sequence‐complexity domain (LC) is known to be targeted for phosphorylation. Here we map in vitro and in‐cell phosphorylation sites across FUS LC. We show that both phosphorylation and phosphomimetic variants reduce its aggregation‐prone/prion‐like character, disrupting FUS phase separation in the presence of RNA or salt and reducing FUS propensity to aggregate. Nuclear magnetic resonance spectroscopy demonstrates the intrinsically disordered structure of FUS LC is preserved after phosphorylation; however, transient domain collapse and self‐interaction are reduced by phosphomimetics. Moreover, we show that phosphomimetic FUS reduces aggregation in human and yeast cell models, and can ameliorate FUS‐associated cytotoxicity. Hence, post‐translational modification may be a mechanism by which cells control physiological assembly and prevent pathological protein aggregation, suggesting a potential treatment pathway amenable to pharmacologic modulation.  相似文献   

3.
The RNA‐binding protein fused in sarcoma (FUS) assembles via liquid–liquid phase separation (LLPS) into functional RNA granules and aggregates in amyotrophic lateral sclerosis associated neuronal inclusions. Several studies have demonstrated that posttranslational modification (PTM) can significantly alter FUS phase separation and aggregation, particularly charge‐altering phosphorylation of the nearly uncharged N‐terminal low complexity domain of FUS (FUS LC). However, the occurrence and impact of N‐terminal acetylation on FUS phase separation remains unexplored, even though N‐terminal acetylation is the most common PTM in mammals and changes the charge at the N‐terminus. First, we find that FUS is predominantly acetylated in two human cell types and stress conditions. Next, we show that recombinant FUS LC can be acetylated when co‐expressed with the NatA complex in Escherichia coli. Using NMR spectroscopy, we find that N‐terminal acetylated FUS LC (FUS LC Nt‐Ac) does not notably alter monomeric FUS LC structure or motions. Despite no difference in structure, Nt‐Ac‐FUS LC phase separates more avidly than unmodified FUS LC. More importantly, N‐terminal acetylation of FUS LC reduces aggregation. Our findings highlight the importance of N‐terminal acetylation of proteins that undergo physiological LLPS and pathological aggregation.  相似文献   

4.
In Parkinson''s disease with dementia, up to 50% of patients develop a high number of tau‐containing neurofibrillary tangles. Tau‐based pathologies may thus act synergistically with the α‐synuclein pathology to confer a worse prognosis. A better understanding of the relationship between the two distinct pathologies is therefore required. Liquid–liquid phase separation (LLPS) of proteins has recently been shown to be important for protein aggregation involved in amyotrophic lateral sclerosis, whereas tau phase separation has been linked to Alzheimer''s disease. We therefore investigated the interaction of α‐synuclein with tau and its consequences on tau LLPS. We find α‐synuclein to have a low propensity for both, self‐coacervation and RNA‐mediated LLPS at pH 7.4. However, full‐length but not carboxy‐terminally truncated α‐synuclein efficiently partitions into tau/RNA droplets. We further demonstrate that Cdk2‐phosphorylation promotes the concentration of tau into RNA‐induced droplets, but at the same time decreases the amount of α‐synuclein inside the droplets. NMR spectroscopy reveals that the interaction of the carboxy‐terminal domain of α‐synuclein with the proline‐rich region P2 of tau is required for the recruitment of α‐synuclein into tau droplets. The combined data suggest that the concentration of α‐synuclein into tau‐associated condensates can contribute to synergistic aSyn/tau pathologies.  相似文献   

5.
Liquid–liquid phase separation (LLPS) facilitates the formation of membraneless compartments in a cell and allows the spatiotemporal organization of biochemical reactions by concentrating macromolecules locally. In plants, LLPS defines cellular reaction hotspots, and stimulus‐responsive LLPS is tightly linked to a variety of cellular and biological functions triggered by exposure to various internal and external stimuli, such as stress responses, hormone signaling, and temperature sensing. Here, we provide an overview of the current understanding of physicochemical forces and molecular factors that drive LLPS in plant cells. We illustrate how the biochemical features of cellular condensates contribute to their biological functions. Additionally, we highlight major challenges for the comprehensive understanding of biological LLPS, especially in view of the dynamic and robust organization of biochemical reactions underlying plastic responses to environmental fluctuations in plants.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the accumulation of protein aggregates in motor neurons. Recent discoveries of genetic mutations in ALS patients promoted research into the complex molecular mechanisms underlying ALS. FUS (fused in sarcoma) is a representative ALS-linked RNA-binding protein (RBP) that specifically recognizes G-quadruplex (G4)-DNA/RNAs. However, the effects of ALS-linked FUS mutations on the G4-RNA-binding activity and the phase behavior have never been investigated. Using the purified full-length FUS, we analyzed the molecular mechanisms of multidomain structures consisting of multiple functional modules that bind to G4. Here we succeeded to observe the liquid–liquid phase separation (LLPS) of FUS condensate formation and subsequent liquid-to-solid transition (LST) leading to the formation of FUS aggregates. This process was markedly promoted through FUS interaction with G4-RNA. To further investigate, we selected a total of eight representative ALS-linked FUS mutants within multidomain structures and purified these proteins. The regulation of G4-RNA-dependent LLPS and LST pathways was lost for all ALS-linked FUS mutants defective in G4-RNA recognition tested, supporting the essential role of G4-RNA in this process. Noteworthy, the P525L mutation that causes juvenile ALS exhibited the largest effect on both G4-RNA binding and FUS aggregation. The findings described herein could provide a clue to the hitherto undefined connection between protein aggregation and dysfunction of RBPs in the complex pathway of ALS pathogenesis.  相似文献   

7.
8.
The transition between soluble intrinsically disordered tau protein and aggregated tau in neurofibrillary tangles in Alzheimer's disease is unknown. Here, we propose that soluble tau species can undergo liquid–liquid phase separation (LLPS) under cellular conditions and that phase‐separated tau droplets can serve as an intermediate toward tau aggregate formation. We demonstrate that phosphorylated or mutant aggregation prone recombinant tau undergoes LLPS, as does high molecular weight soluble phospho‐tau isolated from human Alzheimer brain. Droplet‐like tau can also be observed in neurons and other cells. We found that tau droplets become gel‐like in minutes, and over days start to spontaneously form thioflavin‐S‐positive tau aggregates that are competent of seeding cellular tau aggregation. Since analogous LLPS observations have been made for FUS, hnRNPA1, and TDP43, which aggregate in the context of amyotrophic lateral sclerosis, we suggest that LLPS represents a biophysical process with a role in multiple different neurodegenerative diseases.  相似文献   

9.
Intraneuronal neurofibrillary tangles composed of Tau aggregates have been widely accepted as an important pathological hallmark of Alzheimer''s disease. A current therapeutic avenue for treating Alzheimer''s disease is aimed at inhibiting Tau accumulation with small molecules such as natural flavonoids. Liquid–liquid phase separation (LLPS) of Tau can lead to its aggregation, and Tau aggregates can then be degraded by autophagy. However, it is unclear whether natural flavonoids modulate the formation of phase-separated Tau droplets or promote autophagy and Tau clearance. Here, using confocal microscopy and fluorescence recovery after photobleaching assays, we report that a natural antioxidant flavonoid compound myricetin slows LLPS of full-length human Tau, shifting the equilibrium phase boundary to a higher protein concentration. This natural flavonoid also significantly inhibits pathological phosphorylation and abnormal aggregation of Tau in neuronal cells and blocks mitochondrial damage and apoptosis induced by Tau aggregation. Importantly, using coimmunoprecipitation and Western blotting, we show that treatment of cells with myricetin stabilizes the interaction between Tau and autophagy-related protein 5 (ATG5) to promote clearance of phosphorylated Tau to indirectly limit its aggregation. Consistently, this natural flavonoid inhibits mTOR pathway, activates ATG5-dependent Tau autophagy, and almost completely suppresses Tau toxicity in neuronal cells. Collectively, these results demonstrate how LLPS and abnormal aggregation of Tau are inhibited by natural flavonoids, bridging the gap between Tau LLPS and aggregation in neuronal cells, and also establish that myricetin could act as an ATG5-dependent autophagic activator to ameliorate the pathogenesis of Alzheimer''s disease.  相似文献   

10.
Rationally and efficiently modifying the amino-acid sequence of proteins to control their ability to undergo liquid–liquid phase separation (LLPS) on demand is not only highly desirable, but can also help to elucidate which protein features are important for LLPS. Here, we propose a computational method that couples a genetic algorithm to a sequence-dependent coarse-grained protein model to evolve the amino-acid sequences of phase-separating intrinsically disordered protein regions (IDRs), and purposely enhance or inhibit their capacity to phase-separate. We validate the predicted critical solution temperatures of the mutated sequences with ABSINTH, a more accurate all-atom model. We apply the algorithm to the phase-separating IDRs of three naturally occurring proteins, namely FUS, hnRNPA1 and LAF1, as prototypes of regions that exist in cells and undergo homotypic LLPS driven by different types of intermolecular interaction, and we find that the evolution of amino-acid sequences towards enhanced LLPS is driven in these three cases, among other factors, by an increase in the average size of the amino acids. However, the direction of change in the molecular driving forces that enhance LLPS (such as hydrophobicity, aromaticity and charge) depends on the initial amino-acid sequence. Finally, we show that the evolution of amino-acid sequences to modulate LLPS is strongly coupled to the make-up of the medium (e.g. the presence or absence of RNA), which may have significant implications for our understanding of phase separation within the many-component mixtures of biological systems.  相似文献   

11.
12.
Protein liquid-liquid phase separation drives the dynamic assembly of membraneless organelles for fulfilling different physiological functions. Under diseased condition, protein may undergo liquid-to-solid condensation to form pathological amyloid aggregates closely associated with neurodegenerative diseases. Chemical probe serves as an important chemical tool not only for exploring the basic principle of the dynamic assembly of different protein condensates in vitro and in cell but also for clinical diagnosis and therapeutics of the related diseases. In this review, we first introduce chemical probes to image and regulate protein condensates. Then, we summarized three different categories of chemical probes including general amyloid dye, selective positron emission tomography tracer, and disaggregating binder, which feature distinct interaction pattern and activity upon binding to different pathological amyloid fibrillar aggregates. Next, we discuss the development of chemical probes for tracking protein amorphous aggregates in cells. Finally, we point out future direction in expanding the probes’ chemical space and applications.  相似文献   

13.
Prion-like self-perpetuating conformational conversion of proteins is involved in both transmissible neurodegenerative diseases in mammals and non-Mendelian inheritance in yeast. The transmissibility of amyloid-like aggregates is dependent on the stoichiometry of chaperones such as heat shock proteins (Hsps), including disaggregases. To provide the mechanistic underpinnings of the formation and persistence of prefibrillar amyloid seeds, we investigated the role of substoichiometric Hsp104 on the in vitro amyloid aggregation of the prion domain (NM-domain) of Saccharomyces cerevisiae Sup35. At low substoichiometric concentrations, we show Hsp104 exhibits a dual role: it considerably accelerates the formation of prefibrillar species by shortening the lag phase but also prolongs their persistence by introducing unusual kinetic halts and delaying their conversion into mature amyloid fibers. Additionally, Hsp104-modulated amyloid species displayed a better seeding capability compared to NM-only amyloids. Using biochemical and biophysical tools coupled with site-specific dynamic readouts, we characterized the distinct structural and dynamical signatures of these amyloids. We reveal that Hsp104-remodeled amyloidogenic species are compositionally diverse in prefibrillar aggregates and are packed in a more ordered fashion compared to NM-only amyloids. Finally, we show these Hsp104-remodeled, conformationally distinct NM aggregates display an enhanced autocatalytic self-templating ability that might be crucial for phenotypic outcomes. Taken together, our results demonstrate that substoichiometric Hsp104 promotes compositional diversity and conformational modulations during amyloid formation, yielding effective prefibrillar seeds that are capable of driving prion-like Sup35 propagation. Our findings underscore the key functional and pathological roles of substoichiometric chaperones in prion-like propagation.  相似文献   

14.
15.
Liquid–liquid phase separation (LLPS) of proteins and RNAs has emerged as the driving force underlying the formation of membrane-less organelles. Such biomolecular condensates have various biological functions and have been linked to disease. The protein Fused in Sarcoma (FUS) undergoes LLPS and mutations in FUS have been causally linked to the motor neuron disease Amyotrophic Lateral Sclerosis (ALS-FUS). LLPS followed by aggregation of cytoplasmic FUS has been proposed to be a crucial disease mechanism. However, it is currently unclear how LLPS impacts the behaviour of FUS in cells, e.g. its interactome. Hence, we developed a method allowing for the purification of LLPS FUS-containing droplets from cell lysates. We observe substantial alterations in the interactome, depending on its biophysical state. While non-LLPS FUS interacts mainly with factors involved in pre-mRNA processing, LLPS FUS predominantly binds to proteins involved in chromatin remodelling and DNA damage repair. Interestingly, also mitochondrial factors are strongly enriched with LLPS FUS, providing a potential explanation for the observed changes in mitochondrial gene expression in mouse models of ALS-FUS. In summary, we present a methodology to investigate the interactomes of phase separating proteins and provide evidence that LLPS shapes the FUS interactome with implications for function and disease.  相似文献   

16.
17.
Alzheimer''s disease is a progressive fatal neurodegenerative disease with no cure or effective treatments. The hallmarks of disease include extracellular plaques and intracellular tangles of aggregated protein. The intracellular tangles consist of the microtubule associated protein tau. Preventing the pathological aggregation of tau may be an important therapeutic approach to treat disease. In this study we show that small heat shock protein 22 kDa (Hsp22) can prevent the aggregation of tau in vitro. Additionally, tau can undergo liquid–liquid phase separation (LLPS) in the presence of crowding reagents which causes it to have an increased aggregation rate. We show that Hsp22 can modulate both the aggregation and LLPS behavior of tau in vitro.  相似文献   

18.
19.
SARS‐CoV‐2 nucleocapsid (N) protein plays essential roles in many steps of the viral life cycle, thus representing a key drug target. N protein contains the folded N‐/C‐terminal domains (NTD/CTD) and three intrinsically disordered regions, while its functions including liquid–liquid phase separation (LLPS) depend on the capacity in binding various viral/host‐cell RNA/DNA of diverse sequences. Previously NTD was established to bind various RNA/DNA while CTD to dimerize/oligomerize for forming high‐order structures. By NMR, here for the first time we decrypt that CTD is not only capable of binding S2m, a specific probe derived from SARS‐CoV‐2 gRNA but with the affinity even higher than that of NTD. Very unexpectedly, ATP, the universal energy currency for all living cells with high cellular concentrations (2–16 mM), specifically binds CTD with Kd of 1.49 ± 0.28 mM. Strikingly, the ATP‐binding residues of NTD/CTD are identical in the SARS‐CoV‐2 variants while ATP and S2m interplay in binding NTD/CTD, as well as in modulating LLPS critical for the viral life cycle. Results together not only define CTD as a novel binding domain for ATP and nucleic acid, but enforce our previous proposal that ATP has been evolutionarily exploited by SARS‐CoV‐2 to complete its life cycle in the host cell. Most importantly, the unique ATP‐binding pockets on NTD/CTD may offer promising targets for design of specific anti‐SARS‐CoV‐2 molecules to fight the pandemic. Fundamentally, ATP emerges to act at mM as a cellular factor to control the interface between the host cell and virus lacking the ability to generate ATP.  相似文献   

20.
Soluble amyloid-β oligomers (AβOs) are proposed to instigate and mediate the pathology of Alzheimer’s disease, but the mechanisms involved are not clear. In this study, we reported that AβOs can undergo liquid–liquid phase separation (LLPS) to form liquid-like droplets in vitro. We determined that AβOs exhibited an α-helix conformation in a membrane-mimicking environment of SDS. Importantly, SDS is capable of reconfiguring the assembly of different AβOs to induce their LLPS. Moreover, we found that the droplet formation of AβOs was promoted by strong hydrated anions and weak hydrated cations, suggesting that hydrophobic interactions play a key role in mediating phase separation of AβOs. Finally, we observed that LLPS of AβOs can further promote Aβ to form amyloid fibrils, which can be modulated by (−)-epigallocatechin gallate. Our study highlights amyloid oligomers as an important entity involved in protein liquid-to-solid phase transition and reveals the regulatory role of LLPS underlying amyloid protein aggregation, which may be relevant to the pathological process of Alzheimer’s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号