首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antifreeze proteins (AFPs) share two related properties: the ability to depress the freezing temperature below the melting point of ice (thermal hysteresis; TH); and the ability to inhibit the restructuring of ice into larger crystals. Since the ‘hyperactive’ AFPs, which have been more recently discovered, show an order of magnitude more TH than previously characterized AFPs, we have now determined their activities in ice restructuring inhibition (IrI) assays. IrI activities of three TH-hyperactive AFPs and three less TH-active AFPs varied over an 8-fold range. There was no obvious correlation between high TH activity and high IrI activity. However, the use of mutant AFPs demonstrated that severe disruption of ice-binding residues diminished both TH and IrI similarly, revealing that that the same ice-binding residues are crucial for both activities. In addition, bicarbonate ions, which are known to enhance the TH activity of AFPs, also enhanced their IrI activity. We suggest that these seemingly contradictory observations can be partially explained by differences in the coverage of ice by TH-hyperactive and non-hyperactive AFPs, and by differences in the stability of AFP-bound ice under supercooled and recrystallization conditions.  相似文献   

2.
The grass Lolium perenne produces an ice-binding protein (LpIBP) that helps this perennial tolerate freezing by inhibiting the recrystallization of ice. Ice-binding proteins (IBPs) are also produced by freeze-avoiding organisms to halt the growth of ice and are better known as antifreeze proteins (AFPs). To examine the structural basis for the different roles of these two IBP types, we have solved the first crystal structure of a plant IBP. The 118-residue LpIBP folds as a novel left-handed beta-roll with eight 14- or 15-residue coils and is stabilized by a small hydrophobic core and two internal Asn ladders. The ice-binding site (IBS) is formed by a flat beta-sheet on one surface of the beta-roll. We show that LpIBP binds to both the basal and primary-prism planes of ice, which is the hallmark of hyperactive AFPs. However, the antifreeze activity of LpIBP is less than 10% of that measured for those hyperactive AFPs with convergently evolved beta-solenoid structures. Whereas these hyperactive AFPs have two rows of aligned Thr residues on their IBS, the equivalent arrays in LpIBP are populated by a mixture of Thr, Ser and Val with several side-chain conformations. Substitution of Ser or Val for Thr on the IBS of a hyperactive AFP reduced its antifreeze activity. LpIBP may have evolved an IBS that has low antifreeze activity to avoid damage from rapid ice growth that occurs when temperatures exceed the capacity of AFPs to block ice growth while retaining the ability to inhibit ice recrystallization.  相似文献   

3.
Type III antifreeze protein (AFP) is a 7-kDa globular protein with a flat ice-binding face centered on Ala 16. Neighboring hydrophilic residues Gln 9, Asn 14, Thr 15, Thr 18 and Gln 44 have been implicated by site-directed mutagenesis in binding to ice. These residues have the potential to form hydrogen bonds with ice, but the tight packing of side chains on the ice-binding face limits the number and strength of possible hydrogen bond interactions. Recent work with alpha-helical AFPs has emphasized the hydrophobicity of their ice-binding sites and suggests that hydrophobic interactions are important for antifreeze activity. To investigate the contribution of hydrophobic interactions between type III AFP and ice, Leu, Ile and Val residues on the rim of the ice-binding face were changed to alanine. Mutant AFPs with single alanine substitutions, L19A, V20A, and V41A, showed a 20% loss in activity. Doubly substituted mutants, L19A/V41A and L10A/I13A, had less than 50% of the activity of the wild type. Thus, side chain substitutions that leave a cavity or undercut the contact surface are almost as deleterious to antifreeze activity as those that lengthen the side chain. These mutations emphasize the importance of maintaining a specific surface contour on the ice-binding face for docking to ice.  相似文献   

4.
The spruce budworm, Choristoneura fumiferana, produces antifreeze protein (AFP) to assist in the protection of the overwintering larval stage. AFPs are thought to lower the freezing point of the hemolymph, noncolligatively, by interaction with the surface of ice crystals. Previously, we had identified a cDNA encoding a 9-kDa AFP with 10-30 times the thermal hysteresis activity, on a molar basis, than that shown by fish AFPs. To identify important residues for ice interaction and to investigate the basis for the hyperactivity of the insect AFPs, six new spruce budworm AFP cDNA isoforms were isolated and sequenced. They differ in amino-acid identity as much as 36% from the originally characterized AFP and can be divided into three classes according to the length of their 3' untranslated regions (UTRs). The new isoforms have at least five putative 'Thr-X-Thr' ice-binding motifs and three of the new isoforms encode larger, 12-kDa proteins. These appear to be a result of a 30 amino-acid insertion bearing two additional ice-binding motifs spaced 15 residues apart. Molecular modeling, based on the NMR structure of a short isoform, suggests that the insertion folds into two additional beta-helix loops with their Thr-X-Thr motifs in perfect alignment with the others. The first Thr of the motifs are often substituted by Val, Ile or Arg and a recombinantly expressed isoform with both Val and Arg substitutions, showed wild-type thermal hysteresis activity. The analysis of these AFP isoforms suggests therefore that specific substitutions at the first Thr in the ice binding motif can be tolerated, and have no discernible effect on activity, but the second Thr appears to be conserved. The second Thr is thus likely important for the dynamics of initial ice contact and interaction by these hyperactive antifreezes.  相似文献   

5.
In order to survive under extremely cold environments, many organisms produce antifreeze proteins (AFPs). AFPs inhibit the growth of ice crystals and protect organisms from freezing damage. Fish AFPs can be classified into five distinct types based on their structures. Here we report the structure of herring AFP (hAFP), a Ca(2+)-dependent fish type II AFP. It exhibits a fold similar to the C-type (Ca(2+)-dependent) lectins with unique ice-binding features. The 1.7 A crystal structure of hAFP with bound Ca(2+) and site-directed mutagenesis reveal an ice-binding site consisting of Thr96, Thr98 and Ca(2+)-coordinating residues Asp94 and Glu99, which initiate hAFP adsorption onto the [10-10] prism plane of the ice lattice. The hAFP-ice interaction is further strengthened by the bound Ca(2+) through the coordination with a water molecule of the ice lattice. This Ca(2+)-coordinated ice-binding mechanism is distinct from previously proposed mechanisms for other AFPs. However, phylogenetic analysis suggests that all type II AFPs evolved from the common ancestor and developed different ice-binding modes. We clarify the evolutionary relationship of type II AFPs to sugar-binding lectins.  相似文献   

6.
Antifreeze proteins (AFPs) are found in cold-adapted organisms and have the unusual ability to bind to and inhibit the growth of ice crystals. However, the underlying molecular basis of their ice-binding activity is unclear because of the difficulty of studying the AFP-ice interaction directly and the lack of a common motif, domain or fold among different AFPs. We have formulated a generic ice-binding model and incorporated it into a physicochemical pattern-recognition algorithm. It successfully recognizes ice-binding surfaces for a diverse range of AFPs, and clearly discriminates AFPs from other structures in the Protein Data Bank. The algorithm was used to identify a novel AFP from winter rye, and the antifreeze activity of this protein was subsequently confirmed. The presence of a common and distinct physicochemical pattern provides a structural basis for unifying AFPs from fish, insects and plants.  相似文献   

7.
Park KS  Do H  Lee JH  Park SI  Kim Ej  Kim SJ  Kang SH  Kim HJ 《Cryobiology》2012,64(3):286-296
Previously, we reported the ice-binding protein (LeIBP) from the Arctic yeast Leucosporidium sp. AY30. In this study we provide physicochemical characterization of this IBP, which belongs to a class of IBPs that exhibited no significant similarity in primary structure to other known antifreeze proteins (AFPs). We compared native, glycosylated and non-glycosylated recombinant LeIBPs. Interestingly, size-exclusion chromatography and analytical ultracentrifugation revealed that LeIBP self-associates with a reversible dimer with K(d) values in the range 3.45-7.24×10(-6) M. Circular dichroism (CD) spectra showed that LeIBP, glycosylated or non-glycosylated, is predominantly composed of β-strand secondary structural elements (54.6%), similar to other β-helical antifreeze proteins (AFPs). In thermal hysteresis (TH) activity measurements, native LeIBP was twice more active (0.87 °C at 15 mg/mL) than that of the recombinant IBPs (0.43-0.42 °C at 10.8 mg/mL). This discrepancy is probably due to uncharacterized enhancing factors carried over during ice affinity purification, because glycosylated and non-glycosylated recombinant proteins displayed similarly low activity. Ice recrystallization inhibition (RI) activities of the native and recombinant LeIBPs were comparable. Measurements of CD, TH activity, and RI showed that glycosylation does not cause structural changes and is not required for function. An ice-etching experiment using green fluorescent protein-tagged IBP revealed that LeIBP binds, just as hyperactive AFPs, to both basal and pyramidal prism planes of the ice crystal. Taken together, our results indicate that LeIBP, structurally similar to hyperactive AFPs, is moderately active and that a reversible dimer has no effect on its activity.  相似文献   

8.
Antifreeze proteins (AFPs) play an important role in the psychrophilic adaptation of polar organisms. AFPs encoded by an Antarctic chlorophyte, identified as Pyramimonas gelidicola, were isolated and characterized. Two AFP isoforms were found from cDNAs and their deduced molecular weights were estimated to be 26.4 kDa (Pg-1-AFP) and 27.1 kDa (Pg-2-AFP). Both AFP cDNAs were cloned and expressed in Escherichia coli. The purified recombinant Pg-1-rAFP and Pg-2-rAFP both showed antifreeze activity based on the measurement of thermal hysteresis (TH) and morphological changes to single ice crystals. Pg-1-rAFP shaped ice crystals into a snowflake pattern with a TH value of 0.6?±?0.02 °C at ~15 mg/ml. Single ice crystals in Pg-2-rAFP showed a dendritic morphology with a TH value of 0.25?±?0.02 °C at the same protein concentration. Based on in silico protein structure predictions, the three-dimensional structures of P. gelidicola AFPs match those of their homologs found in fungi and bacteria. They fold as a right-handed β-helix flanked by an α-helix. Unlike the hyperactive insect AFPs, the proposed ice-binding site on one of the flat β-helical surfaces is neither regular nor well-conserved. This might be a characteristic of AFPs used for freeze tolerance as opposed to freeze avoidance. A role for P. gelidicola AFPs in freeze tolerance is also consistent with their relatively low TH values.  相似文献   

9.
A theoretical model of a plant antifreeze protein from Lolium perenne.   总被引:16,自引:0,他引:16       下载免费PDF全文
Antifreeze proteins (AFPs), found in certain organisms enduring freezing environments, have the ability to inhibit damaging ice crystal growth. Recently, the repetitive primary sequence of the AFP of perennial ryegrass, Lolium perenne, was reported. This macromolecular antifreeze has high ice recrystallization inhibition activity but relatively low thermal hysteresis activity. We present here a theoretical three-dimensional model of this 118-residue plant protein based on a beta-roll domain with eight loops of 14-15 amino acids. The fold is supported by a conserved valine hydrophobic core and internal asparagine ladders at either end of the roll. Our model, which is the first proposed for a plant AFP, displays two putative, opposite-facing, ice-binding sites with surface complementarity to the prism face of ice. The juxtaposition of the two imperfect ice-binding surfaces suggests an explanation for the protein's inferior thermal hysteresis but superior ice recrystallization inhibition activity and activity when compared with fish and insect AFPs.  相似文献   

10.
Lin FH  Davies PL  Graham LA 《Biochemistry》2011,50(21):4467-4478
Inchworm larvae of the pale beauty geometer moth, Campaea perlata, exhibit strong (6.4 °C) freezing point depression activity, indicating the presence of hyperactive antifreeze proteins (AFPs). We have purified two novel Thr- and Ala-rich AFPs from the larvae as small (~3.5 kDa) and large (~8.3 kDa) variants and have cloned the cDNA sequences encoding both. They have no homology to known sequences in current BLAST databases. However, these proteins and the newly characterized AFP from the Rhagium inquisitor beetle both contain stretches rich in alternating Thr and Ala residues. On the basis of these repeats, as well as the discontinuities between them, a detailed structural model is proposed for the 8.3 kDa variant. This 88-residue protein is organized into an extended parallel-stranded β-helix with seven strands connected by classic β-turns. The alternating β-strands form two β-sheets with a thin core composed of interdigitating Ala and Ser residues, similar to the thin hydrophobic core proposed for some silks. The putative ice-binding face of the protein has a 4 × 5 regular array of Thr residues and is remarkably flat. In this regard, it resembles the nonhomologous Thr-rich AFPs from other moths and some beetles, which contain two longer rows of Thr in contrast to the five shorter rows in the inchworm protein. Like that of some other hyperactive AFPs, the spacing between these ice-binding Thr residues is a close match to the spacing of oxygen atoms on several planes of ice.  相似文献   

11.
Antifreeze proteins (AFPs), found in certain vertebrates, plants, fungi and bacteria have the ability to permit their survival in subzero environments by thermal hysteresis mechanism. However, the exact mechanism of ice growth inhibition is still not clearly understood. Here, four long explicit molecular dynamics (MD) simulations have been carried out at two different temperatures (277 and 298 K) with and without glycan to study the conformational rigidity of the Ocean pout type III antifreeze protein in aqueous medium and the structural arrangements of water molecules hydrating its ice-binding surface. It is found that irrespective of the temperature the ice-binding surface (IBS) of the protein is relatively more rigid than its non ice-binding surface (NonIBS) in its native and glycosylated form. Hydrophilic residues N14, T18 and Q44 are essential to antifreeze activity. Radial distribution, density distribution function and nearest neighbor orientation plots with respect to individual two surfaces confirm that density of water molecule near these binding surface in native and glycosylated form are relatively more than the nonbinding surface. The glycosylated form shows a strong peak than the native one. From rotational auto correlation function of water molecules around ice-binding sites, it is prominent that with increase in temperature, strong interaction between the water oxygen and the hydrogen bond acceptor group on the protein-binding surface decreases. This provides a possible molecular reason behind the ice-binding activity of ocean pout at the prism plane of ice.  相似文献   

12.
很多越冬的生物会产生抗冻蛋白,这些抗冻蛋白能够吸附到冰晶的表面改变冰晶形态并抑制冰晶的生长.抗冻蛋白在很多生物体内都被发现,不同的抗冻蛋白结构差异非常大.目前的一些研究揭示了几种抗冻蛋白的结构,并提出了抗冻蛋白与冰晶的结合模型,但是还没有一种机制能解释所有抗冻蛋白的作用机理.抗冻蛋白能被广泛的应用到农业、水产业和低温储藏器官、组织和细胞,利用转基因技术提高植物的抗冻性具有重要应用价值.而抗冻蛋白基因的表达调控则有待进一步阐明.  相似文献   

13.
Antifreeze proteins (AFPs) are produced to prevent freezing in many fish species that are exposed to icy seawater. There are a number of nonhomologous types of AFPs, diverse in both sequence and structure, which share the function of binding to ice and inhibiting its growth. We recently discovered a hyperactive AFP in the winter flounder and related species that is many-fold more active than other fish AFPs. Like the 3-4-kDa type I AFPs, it is alanine-rich and highly helical, but this 17-kDa protein is considerably larger and forms a dimer. We have sequenced the cDNA encoding this new AFP to gain insight into its structure and evolutionary relationship to the type I AFP family. The gene is clearly homologous to the righteye flounder type I AFP genes. Thus we have designated this protein "hyperactive type I AFP" (hyp-type I). The sequence of hyp-type I AFP supports a structural model in which two extended 195-amino acid alpha-helices form an amphipathic homodimer with a series of linked Ala- and Thr-rich patches on the surface of the dimer, each of which resembles ice-binding sites of type I AFPs. The superior activity of hyp-type I AFP may derive from the large combined surface area of the ice-binding sites, recognition of multiple planes of ice, and protection of the basal plane from ice growth.  相似文献   

14.
Antifreeze proteins (AFPs) prevent the growth of ice, and are used by some organisms that live in sub-zero environments for protection against freezing. All AFPs are thought to function by an adsorption inhibition process. In order to elucidate the ice-binding mechanism, the structures of several AFPs have been determined, and have been shown to consist of different folds. Recently, the first structures of the highly active insect AFPs have been characterized. These proteins have a beta-helix structure, which adds yet another fold to the AFP family. The 90-residue spruce budworm (Choristoneura fumiferana) AFP consists of a beta-helix with 15 residues per coil. The structure contains two ranks of aligned threonine residues (known as the TXT motif), which were shown by mutagenesis experiments to be located in the ice-binding face. In our previous NMR study of this AFP at 30 degrees C, we found that the TXT face was not optimally defined because of the broadening of NMR resonances potentially due to weak oligomerization. We present here a structure of spruce budworm AFP determined at 5 degrees C, where this broadening is reduced. In addition, the 1H-15N NMR dynamics of the protein were examined at 30 degrees C and 5 degrees C. The results show that the spruce budworm AFP is more structured at 5 degrees C, and support the general observation that AFPs become more rigid as the temperature is lowered.  相似文献   

15.
抗冻蛋白与植物低温胁迫反应   总被引:3,自引:1,他引:2  
植物抗冻蛋白是从许多抗冻植物中分离的、参与植物抵御冻害反应的一类新型蛋白.这类抗冻蛋白具有多个亲水性缚冰域,能直接作用于冰晶,阻止冰晶在细胞间隙形成和再结晶.一些植物抗冻蛋白与致病相关蛋白有序列同源性,具有抗冻和抗病双重活性.植物抗冻蛋白的表达和积累,既受控于发育及转录因子调节,又受到低温、短日照、脱水及乙烯等因素的影响.异源超表达抗冻蛋白基因能赋予敏感宿主植物抗冻能力.文中论述了有关植物抗冻蛋白特性和鉴定,抗冻机制和表达调控,以及遗传转化等方面的研究进展.  相似文献   

16.
Cheng Y  Yang Z  Tan H  Liu R  Chen G  Jia Z 《Biophysical journal》2002,83(4):2202-2210
Many organisms living in cold environments can survive subzero temperatures by producing antifreeze proteins (AFPs) or antifreeze glycoproteins. In this paper we investigate the ice-binding surface of type II AFP by quantum mechanical methods, which, to the best of our knowledge, represents the first time that molecular orbital computational approaches have been applied to AFPs. Molecular mechanical approaches, including molecular docking, energy minimization, and molecular dynamics simulation, were used to obtain optimal systems for subsequent quantum mechanical analysis. We selected 17 surface patches covering the entire surface of the type II AFP and evaluated the interaction energy between each of these patches and two different ice planes using semi-empirical quantum mechanical methods. We have demonstrated the weak orbital overlay phenomenon and the change of bond orders in ice. These results consistently indicate that a surface patch containing 19 residues (K37, L38, Y20, E22, Y21, I19, L57, T56, F53, M127, T128, F129, R17, C7, N6, P5, G10, Q1, and W11) is the most favorable ice-binding site for both a regular ice plane and an ice plane where water O atoms are randomly positioned. Furthermore, for the first time the computation results provide new insights into the weakening of the ice lattice upon AFP binding, which may well be a primary factor leading to AFP-induced ice growth inhibition.  相似文献   

17.
Mutation of residues at the ice-binding site of type III antifreeze protein (AFP) not only reduced antifreeze activity as indicated by the failure to halt ice crystal growth, but also altered ice crystal morphology to produce elongated hexagonal bipyramids. In general, the c axis to a axis ratio of the ice crystal increased from approximately 2 to over 10 with the severity of the mutation. It also increased during ice crystal growth upon serial dilution of the wild-type AFP. This is in marked contrast to the behavior of the alpha-helical type I AFPs, where neither dilution nor mutation of ice-binding residues increases the c:a axial ratio of the ice crystal above the standard 3.3. We suggest that the ice crystal morphology produced by type III AFP and its mutants can be accounted for by the protein binding to the prism faces of ice and operating by step growth inhibition. In this model a decrease in the affinity of the AFP for ice leads to filling in of individual steps at the prism surfaces, causing the ice crystals to grow with a longer c:a axial ratio.  相似文献   

18.
Antifreeze proteins in higher plants   总被引:12,自引:0,他引:12  
Atici O  Nalbantoglu B 《Phytochemistry》2003,64(7):1187-1196
Overwintering plants produce antifreeze proteins (AFPs) having the ability to adsorb onto the surface of ice crystals and modify their growth. Recently, several AFPs have been isolated and characterized and five full-length AFP cDNAs have been cloned and characterized in higher plants. The derived amino acid sequences have shown low homology for identical residues. Theoretical and experimental models for structure of Lolium perenne AFP have been proposed. In addition, it was found that the hormone ethylene is involved in regulating antifreeze activity in response to cold. In this review, it is seen that the physiological and biochemical roles of AFPs may be important to protect the plant tissues from mechanical stress caused by ice formation.  相似文献   

19.
Mao Y  Ba Y 《Biophysical journal》2006,91(3):1059-1068
The primary sequences of type I antifreeze proteins (AFPs) are Ala rich and contain three 11-residue repeat units beginning with threonine residues. Their secondary structures consist of alpha-helices. Previous activity study of side-chain mutated AFPs suggests that the ice-binding side of type I AFPs comprises the Thr side chains and the conserved i + 4 and i + 8 Ala residues, where i indicates the positions of the Thrs. To find structural evidence for the AFP's ice-binding side, a variable-temperature dependent (13)C spin lattice relaxation solid-state NMR experiment was carried out for two Ala side chain (13)C labeled HPLC6 isoforms of the type I AFPs each frozen in H(2)O and D(2)O, respectively. The first one was labeled on the equivalent 17th and 21st Ala side chains (i + 4, 8), and the second one on the equivalent 8th, 19th, and 30th Ala side chains (i + 6). The two kinds of labels are on the opposite sides of the alpha-helical AFP. A model of Ala methyl group rotation/three-site rotational jump combined with water molecular reorientation was tested to probe the interactions of the methyl groups with the proximate water molecules. Analysis of the T(1) data shows that there could be 10 water molecules closely capping an i + 4 or an i + 8 methyl group within the range of van der Waals interaction, whereas the surrounding water molecules to the i + 6 methyl groups could be looser. This study suggests that the side of the alpha-helical AFP comprising the i + 4 and i + 8 Ala methyl groups could interact with the ice surface in the ice/water interface.  相似文献   

20.
Two sets of variants of type I antifreeze protein have been synthesized to investigate the role of Leu and Asn in the activity of this 37-residue alpha-helix. Leu and Asn flank the central two of four regularly spaced ice-binding Thr in the i-1 and i + 3 positions, respectively. All three residues project from the same side of the helix to form the protein's putative ice-adsorption site and are considered in some models to act together as an "ice-binding motif". Replacement of Asn by residues with shorter side chains resulted in either a small loss (Ala) or gain (Thr) of antifreeze activity. However, substitution of Asn by its slightly larger homologue (Gln) abolished thermal hysteresis activity. The Gln-containing peptide was very soluble, largely monomeric, and fully helical. Of the three variants in which Leu was replaced by Ala, two of the three were more active than their Leu-containing counterparts, but all three variants began to precipitate as the peptide concentration increased. None of the seven variants tested showed dramatic differences in ice crystal morphology from that established by the wild type. These results are consistent with a primary role for Leu in preventing peptide aggregation at the antifreeze protein concentrations (10 mg/mL) normally present in fish serum. Similarly the role for Asn may have more to do with enhancing the solubility of these rather hydrophobic peptides than of making a stereospecific hydrogen-bonding match to the ice lattice as traditionally thought. Nevertheless, the dramatic loss of activity in the Asn-to-Gln replacement demonstrates the steric restriction on residues in or near the ice-binding site of the peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号