首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanisms and functions of reversible colour change in arthropods are highly diverse despite, or perhaps due to, the presence of an exoskeleton. Physiological colour changes, which have been recorded in 90 arthropod species, are rapid and are the result of changes in the positioning of microstructures or pigments, or in the refractive index of layers in the integument. By contrast, morphological colour changes, documented in 31 species, involve the anabolism or catabolism of components (e.g. pigments) directly related to the observable colour. In this review we highlight the diversity of mechanisms by which reversible colour change occurs and the evolutionary context and diversity of arthropod taxa in which it has been observed. Further, we discuss the functions of reversible colour change so far proposed, review the limited behavioural and ecological data, and argue that the field requires phylogenetically controlled approaches to understanding the evolution of reversible colour change. Finally, we encourage biologists to explore new model systems for colour change and to engage scientists from other disciplines; continued cross‐disciplinary collaboration is the most promising approach to this nexus of biology, physics, and chemistry.  相似文献   

2.
Ontogenetic colour change is typically associated with changes in size, vulnerability or habitat, but assessment of its functional significance requires quantification of the colour signals from the receivers' perspective. The tropical python, Morelia viridis, is an ideal species to establish the functional significance of ontogenetic colour change. Neonates hatch either yellow or red and both the morphs change to green with age. Here, we show that colour change from red or yellow to green provides camouflage from visually oriented avian predators in the different habitats used by juveniles and adults. This reflects changes in foraging behaviour and vulnerability as individuals mature and provides a rare demonstration of the adaptive value of ontogenetic colour change.  相似文献   

3.
In studies of animal colouration it is no longer necessary to rely on subjective assessments of colour and conspicuousness, nor on methods which rely upon human vision. This is important because animals vary greatly in colour vision and colour is context-dependent. New methods make it practical to measure the colour spectrum of pattern elements (patches) of animals and their visual backgrounds for the conditions under which patch spectra reach the conspecific's, predator's or prey's eyes. These methods can be used in both terrestrial and aquatic habitats. A patch's colour is dependent not only upon its reflectance spectrum, but also upon the ambient light spectrum, the transmission properties of air or water, and the veiling light spectrum. These factors change with time of day, weather, season and microhabitat, so colours must be measured under the conditions prevalent when colour patterns are normally used. Methods of measuring, classifying and comparing colours are presented, as well as techniques for assessing the conspicuousness of colour patterns as a whole. Some implications of the effect of environmental light and vision are also discussed.  相似文献   

4.
Organisms capable of rapid physiological colour change have become model taxa in the study of camouflage because they are able to respond dynamically to the changes in their visual environment. Here, we briefly review the ways in which studies of colour changing organisms have contributed to our understanding of camouflage and highlight some unique opportunities they present. First, from a proximate perspective, comparison of visual cues triggering camouflage responses and the visual perception mechanisms involved can provide insight into general visual processing rules. Second, colour changing animals can potentially tailor their camouflage response not only to different backgrounds but also to multiple predators with different visual capabilities. We present new data showing that such facultative crypsis may be widespread in at least one group, the dwarf chameleons. From an ultimate perspective, we argue that colour changing organisms are ideally suited to experimental and comparative studies of evolutionary interactions between the three primary functions of animal colour patterns: camouflage; communication; and thermoregulation.  相似文献   

5.
The use of colour characters in phylogenetic reconstruction   总被引:1,自引:0,他引:1  
The use of coloration as a source of characters in phylogenetic reconstruction is investigated using 54 published data sets. Studies were divided into two categories based on a priori postulated roles of the coloration: (1) aposematic and mimetic coloration and (2) nonaposematic, nonmimetic coloration plus dual signals. Colour characters superficially appear to provide similar phylogenetic signal to morphological ones in the case of aposematic and mimetic coloration but significantly less in other situations. However, the data indicated that the apparent signal in the aposematic/mimetic studies tends to be in greater conflict with the morphological signal. It is proposed that this reflects constraints in the evolution of colour characters that are part of aposematic/mimetic patterns and not that they are necessarily good indicators of phylogeny.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 193–202.  相似文献   

6.
The palatability and the ability of neotropical butterflies to escape after being detected, attacked and captured by wild kingbirds ( Tyrannus melancholicus Vieillot), was investigated by the release of 668 individuals of 98 butterfly species close to the birds, during their usual feeding activities. Most of the butterflies were attacked and eaten. Only the troidine swallowtails ( Parities and Battus ; Papilionidae) were consistently rejected on taste and elicited aversive behaviours in birds. Most other aposematic and/or mimetic species in the gehera Danaus and Lycorea (Danainae), Dione, Eueides and Heliconius (Heliconiinae), Hypothyris, Mechanitis and Melinaea (Ithomfinae), Biblis, Callicore and Diaethria (Limenitidinae) were generally eaten. Cryptic and non-mimetic species were always attacked and, if captured, they were also eaten. All Apaturinae, Charaxinae, Nymphalinae, Hesperidae, most Limenitidinae, Heliconiinag ( Agraulis, Dryas, Dryadula and Philaethria ) and Papilionidae ( Eurytides, Heraclides and Protesilaus ) were in this group. Results indicate that the learning process in kingbirds may demand a large mortality in prey populations, even among species generally accepted as unpalatable and aposematic. They also support the assertion that escaping ability and unpalatability evolved in butterflies as alternative strategies to avoid predation by birds. Mimetic relationships among several species are discussed. Evidence for the evolution of aposematism not related to unpalatability, but to escaping ability, was found for two hard-to-catch Morpho species.  相似文献   

7.
1. Protective coloration in insects may be aposematic or cryptic, and some species change defensive strategy between instars. In Sweden, the adult striated shieldbugs Graphosoma lineatum (Heteroptera: Pentatomidae) undergo a seasonal colour change from pale brown and black striation in the pre‐hibernating adults, to red and black striation in the same post‐hibernating individuals. To the human eye the pre‐hibernating adults appear cryptic against the withered late summer vegetation, whereas the red and black post‐hibernating adults appear aposematic. This suggests a possibility of a functional colour change. However, what is cryptic to the human eye is not necessarily cryptic to a potential predator. 2. Therefore we tested the effect of coloration in adult G. lineatum on their detectability for avian predators. Great tits (Parus major) were trained to eat sunflower seeds hidden inside the emptied exoskeletons of pale or red G. lineatum. Then the detection time for both colour forms was measured in a dry vegetation environment. 3. The birds required a longer time to find the pale form of G. lineatum than the red one. The pale form appears more cryptic on withered late summer vegetation than the red form, not only to the human eye but also to avian predators. The result supports the idea that the adult individuals of G. lineatum undergo a functional change from a cryptic protective coloration to an aposematic one.  相似文献   

8.
Some birds undergo seasonal colour change by moulting twice each year, typically alternating between a cryptic, non‐breeding plumage and a conspicuous, breeding plumage (‘seasonal plumage colours’). We test for potential drivers of the evolution of seasonal plumage colours in all passerines (N = 5901 species, c. 60% of all birds). Seasonal plumage colours are uncommon, having appeared on multiple occasions but more frequently lost during evolution. The trait is more common in small, ground‐foraging species with polygynous mating systems, no paternal care and strong sexual dichromatism, suggesting it evolved under strong sexual selection and high predation risk. Seasonal plumage colours are also more common in species predicted to have seasonal breeding schedules, such as migratory birds and those living in seasonal climates. We propose that seasonal plumage colours have evolved to resolve a trade‐off between the effects of natural and sexual selection on colouration, especially in seasonal environments.  相似文献   

9.
Both genetic and plastic traits contribute to adaptation in novel environments. Phenotypic plasticity can facilitate adaptation by allowing for existence in a wider range of conditions and a faster response to environmental change than gene‐based selection. Coastrange sculpins (Cottus aleuticus) colonize new and variable streams arising in the wake of receding glaciers in south‐east Alaska, and substrate‐matching plasticity may enhance colonization success by reducing detection by visual predators. As part of a long‐term study of the fitness consequences of colour plasticity and its capacity to respond to both positive and negative selection, we investigated whether it is heritable and costly. We raised full‐sib broods of sculpins in the laboratory: one half of each brood was raised in white containers, the other half in black. After 4 months, we digitally analysed their colour and found significant but weak heritability in both baseline colour and colour plasticity. To investigate the cost of colour plasticity, we compared the growth and mortality rates of juvenile sculpins reared under constant substrate colours to those reared on substrates that changed colour frequently, and compared growth rates among sculpin that differed in their colour change ability. We found evidence of small costs of plasticity, consistent with other studies of natural populations. Evidence of heritable genetic variation for plasticity and small costs to its maintenance and expression contributes to explanations of how plasticity is variable and persistent among wild populations and underscores its ability to respond both positively and negatively to selection in variable habitats.  相似文献   

10.
Conspicuous colouration increases male reproductive success through female preferences and/or male–male competition. Despite the advantages of conspicuous colouration, inconspicuous male morphs can exist simultaneously in a population due to genetic diversity, condition dependence or developmental constraints. We are interested in explaining the male dichromatism in Xanthagrion erythroneurum damselflies. We reared these damselflies in outdoor insectaries under natural conditions and showed that this species undergoes ontogenetic colour changes. The younger males are yellow and change colour to red 6–7 days after their emergence. We took red and yellow male reflectance spectra and found that red males are brighter than yellow males. Next, we aimed to determine whether ontogenetic colour change signals sexual maturity with field observations and laboratory experiments. Our field observational data showed that red males are in higher abundance in the breeding territory, and they have a higher mating frequency than yellow males. We confirmed these field observations by enclosing a red and a yellow male with two females and found that yellow males do not mate in presence of red males. To determine whether colour change signals sexual maturity, we measured mating success of males before and after colour changes by enclosing a single male at different age (day 3-day 7) and colour (yellow, intermediate and red) with a single female in a mating cage. Males did not mate when yellow but the same male mated after it changed colour to red, suggesting the ontogenetic colour change signals sexual maturity in this species. Our study shows that male dichromatism can be age-dependent and ontogenetic colour change can signal age and sexual readiness in non-territorial insects.  相似文献   

11.
Camouflage – adaptations that prevent detection and/or recognition – is a key example of evolution by natural selection, making it a primary focus in evolutionary ecology and animal behaviour. Most work has focused on camouflage as an anti‐predator adaptation. However, predators also display specific colours, patterns and behaviours that reduce visual detection or recognition to facilitate predation. To date, very little attention has been given to predatory camouflage strategies. Although many of the same principles of camouflage studied in prey translate to predators, differences between the two groups (in motility, relative size, and control over the time and place of predation attempts) may alter selection pressures for certain visual and behavioural traits. This makes many predatory camouflage techniques unique and rarely documented. Recently, new technologies have emerged that provide a greater opportunity to carry out research on natural predator–prey interactions. Here we review work on the camouflage strategies used by pursuit and ambush predators to evade detection and recognition by prey, as well as looking at how work on prey camouflage can be applied to predators in order to understand how and why specific predatory camouflage strategies may have evolved. We highlight that a shift is needed in camouflage research focus, as this field has comparatively neglected camouflage in predators, and offer suggestions for future work that would help to improve our understanding of camouflage.  相似文献   

12.
M Schilthuizen 《Heredity》2013,110(3):247-252
I made use of the known dates of reclamation (and of afforestations) in the IJsselmeerpolders in The Netherlands to assess evolutionary adaptation in Cepaea nemoralis. At 12 localities (three in each polder), I sampled a total of 4390 adult individuals in paired open and shaded habitats, on average 233 m apart, and scored these for genetic shell colour polymorphisms. The results show (highly) significant differentiation at most localities, although the genes involved differed per locality. Overall, though, populations in shaded habitats had evolved towards darker shells than those in adjacent open habitats, whereas a ‘Cain & Sheppard'' diagram (proportion yellow shells plotted against ‘effectively unbanded'' shells) failed to reveal a clear pattern. This might suggest that thermal selection is more important than visual selection in generating this pattern. Trait differentiation, regardless of whether they were plotted against polder age or habitat age, showed a linear increase of differentiation with time, corresponding to a mean rate of trait evolution of 15–31 kilodarwin. In conclusion, C. nemoralis is capable of rapid and considerable evolutionary differentiation over 1–25 snail generations, though equilibrium may be reached only at longer time scales.  相似文献   

13.
Females of Lampropholis delicata are dimorphic for colour pattern, the difference between morphs being the presence or absence of a distinct white mid-lateral stripe. A less distinct striped morph occurs also in males. We evaluated alternative hypotheses for the maintenance of this polymorphism by examining temporal and spatial variation in morph frequency, testing for differential selection among morphs using data on body size and reproductive traits from preserved specimens, and experimentally manipulating colour pattern in free-ranging lizards of both sexes, to assess the influence of the lateral stripe on survival rates. We found that the relative frequency of striped individuals varied among populations and decreased from north to south in both sexes, coincident with an increasing incidence of regenerated tails. Morph frequencies did not change through time within a population. Striped gravid females appeared to survive better and produced larger clutches than did non-striped females. In our experimental study, the relationship between survival and colour morph differed between the two sexes; males painted with a white lateral stripe had lower survival than control (brown stripe) males, but survival did not differ between striped and control females. The different response in the two sexes may be due partly to differences in temperature and microhabitat selection. We propose that the white lateral stripe decreases susceptibility to predators in gravid females but increases risk of predation in males, especially in combination with low temperatures. The polymorphism might be maintained by: (1) opposing fitness consequences of the stripe in males and females; (2) sex-specific habitat selection; and (3) gene flow in combination with spatial variation in relative fitness of the two morphs.  相似文献   

14.
Phenotypic polymorphism in cryptic species is widespread. This may evolve in response to search image use by predators exerting negative frequency‐dependent selection on intraspecific colour morphs, ‘apostatic selection’. Evidence exists to indicate search image formation by predators and apostatic selection operating on wild prey populations, though not to demonstrate search image use directly resulting in apostatic selection. The present study attempted to address this deficiency, using British Lepidoptera active in winter as a model system. It has been proposed that the typically polymorphic wing colouration of these species represents an anti‐search image adaptation against birds. To test (a) for search image‐driven apostatic selection, dimorphic populations of artificial moth‐like models were established in woodland at varying relative morph frequencies and exposed to predation by natural populations of birds. In addition, to test (b) whether abundance and degree of polymorphism are correlated across British winter‐active moths, as predicted where search image use drives apostatic selection, a series of phylogenetic comparative analyses were conducted. There was a positive relationship between artificial morph frequency and probability of predation, consistent with birds utilizing search images and exerting apostatic selection. Abundance and degree of polymorphism were found to be positively correlated across British Lepidoptera active in winter, though not across all taxonomic groups analysed. This evidence is consistent with polymorphism in this group having evolved in response to search image‐driven apostatic selection and supports the viability of this mechanism as a means by which phenotypic and genetic variation may be maintained in natural populations.  相似文献   

15.
Geographical variation in behaviour within species is common. However, how behavioural plasticity varies between and within locally adapted populations is less studied. Here, we studied behavioural plasticity induced by perceived predation risk and food availability in pond (low predation - high competition) vs. coastal marine (high predation - low competition) nine-spined sticklebacks (Pungitius pungitius) reared in a common garden experiment. Pond sticklebacks were more active feeders, more risk-taking, aggressive and explorative than marine sticklebacks. Perceived predation risk decreased aggression and risk-taking of all fish. Food restriction increased feeding activity and risk-taking. Pond sticklebacks became more risk-taking than marine sticklebacks under food shortage, whereas well-fed fish behaved similarly. Among poorly fed fish, males showed higher drive to feed, whereas among well-fed fish, females did. Apart from showing how evolutionary history, ontogenetic experience and sex influence behaviour, the results provide evidence for habitat-dependent expression of adaptive phenotypic plasticity.  相似文献   

16.
Variation in seed traits is a well‐known phenomenon affecting plant ecology and evolution. Here we describe, for the first time, a bimodal colour pattern of individual seeds, proposing an adaptive explanation, using Pinus halepensis as a model. Pinus halepensis disperses its seeds either by wind on hot dry days, from regular cones, or after fires, mainly from serotinous cones. Post‐dispersal seeds are exposed to strong predation by passerine birds, making crypsis important for seed survival. Individual seeds from non‐serotinous cones have a bimodal colour pattern: one side is light brown and the other black, exposing only one colour when lying on the ground. Serotinous cones from most trees have seeds with similar bimodal colour patterns, whereas seeds from serotinous cones of some trees are light brown on both sides. The dark side provides the seed with better crypsis on dark soils, whereas the light‐brown side is better adapted to light‐coloured soils, and mainly to light‐grey ash‐covered soil, which is the natural post‐fire regeneration niche of P. halepensis. The relative reflection curves of the black and brown seed colours differ, and their calculated relative chromatic distance is 5: meaning that seed‐predating passerine birds see them differently, and probably prefer seeds that present a higher contrast against the soil background. We propose that such a bimodal colour pattern of individual seeds is probably an overlooked general phenomenon mainly linked to seed dispersal in post‐fire and other heterogeneous environments. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 271–278.  相似文献   

17.
Polymorphism, the coexistence of two or more variants within a population, has served as a classic model system to address questions about the evolution and maintenance of intraspecific variation. It has been hypothesized that a natural level of colour polymorphism may impair the search efficiency of visually orientated predators. To test this polymorphism protects hypothesis, we asked human participants to search for images of natural black, striped or grey Tetrix subulata grasshopper colour morphs presented against photographs of their natural habitat on computer screens. Fewer grasshoppers were detected when morphs were presented in mixed than in uniform sequences. All three morphs benefited to comparable degrees, in terms of reduced detection, from being presented in polymorphic sequences. Our findings demonstrate that natural levels of polymorphic variation can impede the efficiency of visually orientated predators and increase survival of prey. This protective effect supports the limited attention hypothesis, explains why predators develop ‘search images’, may account for the spread and establishment of novel colour variants, and contributes to maintenance of polymorphisms. © 2014 The Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 546–555.  相似文献   

18.
Crypsis and aposematism are often regarded as two opposite protective strategies. However, there is large variation in prey appearance within both strategies. In this article, we investigated the conspicuousness of the aposematic red‐and‐black firebug, Pyrrhocoris apterus, by presenting images of natural and digitally manipulated phenotypes in their natural habitat on a computer screen to human ‘predators’, and comparing the detection times. We asked whether the natural colour pattern can be made more or less conspicuous by rearranging the spatial distribution of colour elements. Hence, we created a phenotype in which the black colour elements were moved to the body outline to test for a possible disruptive effect. In the ‘black’ and ‘red’ manipulations, we removed one of the two colours, creating two uniform colour variants. We found that some of our manipulations increased, but none reduced, the detection time significantly; this indicates that the naturally coloured firebug is highly conspicuous. The detection time varied among backgrounds and there was a significant relationship between detection time and chromatic similarity between the bug and the background for the natural and black phenotypes. Although background colour composition has an important effect on the signal, we argue that the coloration of P. apterus has evolved for high conspicuousness. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 806–816.  相似文献   

19.
Animal coloration can be the result of many interconnected elements, including the production of colour‐producing molecules de novo, as well as the acquisition of pigments from the diet. When acquired through the diet, carotenoids (a common class of pigments) can influence yellow, orange, and red coloration and enhanced levels of carotenoids can result in brighter coloration and/or changes in hue or saturation. We tested the hypothesis that dietary carotenoid supplementation changes the striking black and yellow coloration of the southern corroboree frog (Pseudophryne corroboree, Amphibia: Anura). Our dietary treatment showed no measurable difference in colour or brightness for black patches in frogs. However, the reflectance of yellow patches of frogs raised on a diet rich in carotenoids was more saturated (higher chroma) and long‐wave shifted in hue (more orange) compared to that of frogs raised without carotenoids. Interestingly, frogs with carotenoid‐poor diets still developed their characteristic yellow and black coloration, suggesting that their yellow colour patches are a product of pteridines manufactured de novo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号