首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although biosensors are by means suitable for continuous biomedical monitoring, due to fouling and blood clotting, in vivo performance is far from optimal. For this reason, ultrafiltration, microdialysis or open tubular flow is frequently used as interface. To secure quantitative recoveries of the analyte of interest, sampling at submicrolitre level will be necessary which in turn necessitates the development of small and versatile biosensor devices. Here, a miniaturised biosensor device, which directly can be connected to various interfaces will be presented. The biosensor device consists of a pulsefree pump and a biosensor with an internal volume of 10–20 nl. In this article, the production as well as the construction of the flow-through cell of the biosensor will be discussed. The advantages and disadvantages of several production processes will be demonstrated and a detailed protocol for the production of such a nanoliter flow-through cell will be presented. With respect to the bio-selector, several permselective membranes have been tested on their performance characteristics. Results obtained with these biosensors will be presented and discussed. Finally, a protocol based upon in situ electropolymerisation for the immobilisation of the biological component was defined and several biosensors based upon this principle have been produced and tested for the monitoring of glucose respectively lactate. To demonstrate, data obtained during a variety of in vivo studies at different clinical relevant applications will be presented.  相似文献   

2.
Raman spectroscopy has recently been applied ex vivo and in vivo to address various biomedical issues such as the early detection of cancers, monitoring of the effect of various agents on the skin, determination of atherosclerotic plaque composition, and rapid identification of pathogenic microorganisms. This leap in the number of applications and the number of groups active in this field has been facilitated by several technological advancements in lasers, CCD detectors, and fiber-optic probes. However, most of the studies are still at the proof of concept stage. We present a discussion on the status of the field today, as well as the problems and issues that still need to be resolved to bring this technology to hospital settings (i.e., the medical laboratory, surgical suites, or clinics). Taken from the viewpoint of clinicians and medical analysts, the potential of Raman spectroscopic techniques as new tools for biomedical applications is discussed and a path is proposed for the clinical implementation of these techniques.  相似文献   

3.
4.
摘要:成像技术在疾病的诊断、治疗和监测中起着重要的作用。热声成像作为一种非电离和非侵入性的新型生物医学成像技术,结合了微波成像高对比度和超声成像高分辨率的优点。因其具有利用内源性对比剂(如水和离子)或多种外源性对比剂(或两者兼有)提供结构、功能、和分子信息的能力,在预临床和临床应用中显示出了巨大的潜力。近几十年来,由于微波辐射源和超声硬件的不断发展,热声成像技术已被广泛用于生物医学成像领域。本文阐述了热声成像的基本原理及成像特点,介绍了近年来热声成像技术在生物医学上的应用、当前在解决相应临床问题应用中的优势及研究现状,最后针对热声成像技术在现有生物医学中面临的挑战对该技术进行了展望。  相似文献   

5.
V V Didenko 《BioTechniques》2001,31(5):1106-16, 1118, 1120-1
Fluorescence resonance energy transfer (FRET) is widely used in biomedical research as a reporter method. Oligonucleotides with a DNA backbone and one or several chromophore tags have found multiple applications as FRET probes. They are especially advantageous for the real-time monitoring of biochemical reactions and in vivo studies. This paper reviews the design and applications of various DNA-based probes that use FRET The approaches used in the design of new DNA FRET probes are discussed.  相似文献   

6.
Inorganic nanoparticles have shown promising potentials as novel biomedical imaging agents with high sensitivity, high spatial and temporal resolution. To translate the laboratory innovations into clinical applications, their potential toxicities are highly concerned and have to be evaluated comprehensively both in vitro and in vivo before their clinical applications. In this review, we first summarized the in vivo and in vitro toxicities of the representative inorganic nanoparticles used in biomedical imagings. Then we further discuss the origin of nanotoxicity of inorganic nanomaterials, including ROS generation and oxidative stress, chemical instability, chemical composition, the surface modification, dissolution of nanoparticles to release excess free ions of metals, metal redox state, and left-over chemicals from synthesis, etc. We intend to provide the readers a better understanding of the toxicology aspects of inorganic nanomaterials and knowledge for achieving optimized designs of safer inorganic nanomaterials for clinical applications.  相似文献   

7.
Fluorescence imaging, as a commonly used scientific tool, is widely applied in various biomedical and material structures through visualization technology. Highly selective and sensitive luminescent biological probes, as well as those with good water solubility, are urgently needed for biomedical research. In contrast to the traditional aggregation‐caused quenching of fluorescence, in the unique phenomenon of aggregation‐induced emission (AIE), the individual luminogens have extremely weak or no emissivity because they each have free intramolecular motion; however, when they form aggregates, these components immediately “light up”. Since the discovery of “turn‐on” mechanism, researchers have been studying and applying AIE in a variety of fields to develop more sensitive, selective, and efficient strategies for the AIE dyes. There are numerous advantages to the use of AIE‐based methods, including low background interference, strong contrast, high performance in intracellular imaging, and the ability for long‐term monitoring in vivo. In this review, two typical examples of AIEgens, TPE‐Cy and TPE‐Ph‐In, are described, including their structure properties and applications. Recent progress in the biological applications is mainly focused on. Undoubtedly, in the near future, an increasing number of encouraging and practical ideas will promote the development of more AIEgens for broad use in biomedical applications.  相似文献   

8.
In vivo sampling of interstitial fluid by using microdialysis fibers has become a standard and accepted procedure. This sampling method is generally coupled to offline analysis of consecutive dialysate samples by high-performance liquid chromatography or capillary electrophoresis, but this combination is not the best approach for some applications, especially those which require high temporal resolution and rapid data collection. The purpose of this review is to provide information on enzyme-based online assays, i.e., continuous analysis of the dialysate as it emerges from the outlet of the sampling device. We have focused on methods developed specifically for the analysis of solutions perfused at a very slow flow rate, i.e., a feature of microdialysis and ultrafiltration techniques. These methods include flow enzyme-fluorescence assays, flow enzyme-amperometric assays, and sequential enzyme-amperometric detection. Each type of assay is discussed in terms of principle, applications, advantages, and limitations. We also comment on implantable biosensors, an obvious next step forward for in vivo monitoring of molecules in neuroscience.  相似文献   

9.
10.
The purification of virus particles and viral vectors for vaccine and gene therapy applications is gaining increasing importance in order to deliver a fast, efficient, and reliable production process. Ultrafiltration (UF) is a widely employed unit operation in bioprocessing and its use is present in several steps of the downstream purification train of biopharmaceuticals. However, to date few studies have thoroughly investigated the performance of several membrane materials and cut-offs for virus concentration/diafiltration. The present study aimed at developing a novel class of UF cassettes for virus concentration/diafiltration. A detailed study was conducted to evaluate the effects of (i) membrane materials, namely polyethersulfone (PES), regenerated cellulose (RC), and highly cross-linked RC (xRC), (ii) nominal cut-off, and (iii) UF device geometry at different production scales. The results indicate that the xRC cassettes with a cut-off of approximately 500 kDa are able to achieve a 10-fold concentration factor with 100% recovery of particles with a process time twice as fast as that of a commercially available hollow fiber. DNA and host cell protein clearances, as well as hydraulic permeability and fouling behavior, were also assessed.  相似文献   

11.
We describe a newly developed method of continuous intravenous infusion and simultaneous monitoring of plasma levels of investigational compounds in ambulatory untethered rabbits. Continuous infusion was administered by means of a portable programmable external micropump which permitted adjustable dosing. Simultaneous plasma pharmacokinetic monitoring during infusion was accomplished by dual silastic central venous catheters. The potential applications of the micropump infusion system as an alternative to current methods of continuous infusion in other species and in other studies are further discussed. This method provided a safe, reliable, and well-tolerated method of adjustable continuous intravenous infusion and simultaneous sampling of central venous blood in rabbits.  相似文献   

12.
High-resolution studies of dental tissues are of considerable interest for biomedical engineering and clinical applications. In this paper, we demonstrate the application of piezoresponse force microscopy (PFM) to nanoscale imaging of internal structure of human teeth by monitoring the local mechanical response to an electrical bias applied via a conductive tip. It is shown that PFM is capable of detecting dissimilar components of dental tissues, namely, proteins and calcified matrix, which have resembling morphology but different piezoelectric properties. It is demonstrated that collagen fibrils revealed in chemically treated intertubular dentin exhibit high piezoelectric activity and can be visualized in PFM with spatial resolution of 10 nm. Evidence of the presence of protein inclusions of 100-200 nm wide and several micrometers long in tooth enamel has been obtained. Furthermore, it is found that the peritubular dentin and intertubular dentin exhibit different piezoelectric behavior suggesting different concentration of collagen fibrils. The obtained results demonstrate a high potential of PFM in providing an additional insight into the structure of dental tissues. It is suggested that the PFM approach can be used to study the structure of a wide range of biological materials by monitoring their electromechanical behavior at the nanoscale.  相似文献   

13.
Elements derived from lentiviral particles such as viral vectors or virus-like particles are commonly used for biotechnological and biomedical applications, for example in mammalian protein expression, gene delivery or therapy, and vaccine development. Preparations of high purity are necessary in most cases, especially for clinical applications. For purification, a wide range of methods are available, from density gradient centrifugation to affinity chromatography. In this study we have employed size exclusion columns specifically designed for the easy purification of extracellular vesicles including exosomes. In addition to viral marker protein and total protein analysis, a well-established single-particle characterization technology, termed tunable resistive pulse sensing, was employed to analyze fractions of highest particle load and purity and characterize the preparations by size and surface charge/electrophoretic mobility. With this study, we propose an integrated platform combining size exclusion chromatography and tunable resistive pulse sensing for monitoring production and purification of viral particles.  相似文献   

14.
Implantable medical devices (IMDs) have experienced a rapid progress in recent years to the advancement of state‐of‐the‐art medical practices. However, the majority of this equipment requires external power sources like batteries to operate, which may restrict their application for in vivo situations. Furthermore, these external batteries of the IMDs need to be changed at times by surgical processes once expired, causing bodily and psychological annoyance to patients and rising healthcare financial burdens. Currently, harvesting biomechanical energy in vivo is considered as one of the most crucial energy‐based technologies to ensure sustainable operation of implanted medical devices. This review aims to highlight recent improvements in implantable triboelectric nanogenerators (iTENG) and implantable piezoelectric nanogenerators (iPENG) to drive self‐powered, wireless healthcare systems. Furthermore, their potential applications in cardiac monitoring, pacemaker energizing, nerve‐cell stimulating, orthodontic treatment and real‐time biomedical monitoring by scavenging the biomechanical power within the human body, such as heart beating, blood flowing, breathing, muscle stretching and continuous vibration of the lung are summarized and presented. Finally, a few crucial problems which significantly affect the output performance of iTENGs and iPENGs under in vivo environments are addressed.  相似文献   

15.
Ultrafiltration/diafiltration (UF/DF) has been the hallmark for concentrating and buffer exchange of protein and peptide-based therapeutics for years. Here we examine the capabilities and limitations of UF/DF membranes to process oligonucleotides using antisense oligonucleotides (ASOs) as a model. Using a 3 kDa UF/DF membrane, oligonucleotides as small as 6 kDa are shown to have low sieving coefficients (<0.008) and thus can be concentrated to high concentrations (≤200 mg/mL) with high yield (≥95%) and low viscosity (<15 centipoise), provided the oligonucleotide is designed not to undergo self-hybridization. In general, the oligonucleotide should be at least twice the reported membrane molecular weight cutoff for robust retention. Regarding diafiltration, results show that a small amount of salt is necessary to maintain adequate flux at concentrations exceeding about 40 mg/mL. Removal of salts along with residual solvents and small molecule process-related impurities can be robust provided they are not positively charged as the interaction with the oligonucleotide can prevent passage through the membrane, even for common divalent cations such as calcium or magnesium. Overall, UF/DF is a valuable tool to utilize in oligonucleotide processing, especially as a final drug substance formulation step that enables a liquid active pharmaceutical ingredient.  相似文献   

16.
Ultrafiltration/diafiltration (UF/DF) is a typical step in protein drug manufacturing process to concentrate and exchange the protein solution into a desired formulation. However, significant offset of pH and composition from the target formulation have been frequently observed after UF/DF, posing challenges to the stability, performance, and consistency of the final drug product. Such shift can often be attributed to the Donnan and volume exclusion effects. In order to predict and compensate for those effects, a mechanistic model is developed based on the protein charge, mass and charge balances, as well as the equilibrium condition across the membrane. The integrated UF/DF model can be used to predict both the dynamic behavior and the final outcome of the process. Examples of the modeling results for the pH and composition variation during the UF/DF operations are presented for two monoclonal antibody proteins. The model predictions are in good agreement with a comprehensive experimental data set that covers different process steps, protein concentrations, solution matrices, and process scales. The results show that significant pH and excipient concentration shifts are more likely to occur for high protein concentration and low ionic strength matrices. As a special example, a self-buffering protein formulation shows unique pH behavior during DF, which could also be captured with the dynamic model. The capability of the model in predicting the performance of UF/DF process as a function of protein characteristics and formulation conditions makes it a useful tool to improve process understanding and facilitate process development.  相似文献   

17.
Nowadays, great attention is devoted to minimizing the discomfort caused by connection of patients to sensors for long-term monitoring of physiological parameters. Hence, the need for contact-less monitoring systems is increasingly recognized in clinical investigation. To this aim, audio signals recorded by ambient microphones are an appealing and increasing field of research: in the biomedical field, application of contact-less audio recording of long duration may concern obstructive apnoea syndrome, preterm newborns in Intensive Care Units, daily monitoring in occupational dysphonia, speech therapy, Parkinson and Alzheimer disease, monitoring of psychiatric and autistic subjects, etc. However, a significant amount of ambient noise is inevitably included in the records.Especially in the case of recordings that take a long time, manual extraction of clinically useful information from a whole record is a time-consuming operator-dependent task, the length of a whole recording (even several hours) being prohibitive both for perceptual analysis made by listening to it and for visual inspection of signal patterns. Moreover, objective measures of signal characteristics may serve clinicians as a common ground for diagnosis. Hence, automatic methods are needed to speed up and objectify the analysis task.The present work describes a new, automatic, fast and reliable method for extracting “voiced candidates” from audio recordings of long duration for both clinical and home applications.To demonstrate its effectiveness, the method is compared to existing software tools commonly used in biomedical applications using synthetic signals.  相似文献   

18.
Microdialysis sampling has become an important method for the continuous monitoring from an in vivo environment. This technique has been used to monitor many endogenous molecules, such as neurotransmitters, as well as exogenous species such as drug substances. Microdialysis samples have traditionally been analyzed by liquid chromatographic (LC) methods to gain resolution and quantification of the molecules of interest. However, LC separations have a relatively large injection volume requirement which, as a consequence, increases microdialysis sampling times. Capillary electrophoresis (CE), with its very small sample volume requirements and high resolving power, has therefore gained popularity as an alternative to LC. Reviewed here are many of the technologies currently available for CE and examples of how this technique has been effectively applied to the analysis of microdialysis samples.  相似文献   

19.
There will be a need for a wide array of chemical sensors for biomedical experimentation and for the monitoring of water and air recycling processes on Space Station Freedom. The infrequent logistics flights of the Space Shuttle will necessitate onboard analysis. The advantages of biosensors and chemical sensors over conventional analysis onboard spacecraft are manifold. They require less crew time, space, and power. Sample treatment is not needed. Real time or near-real time monitoring is possible, in some cases on a continuous basis. Sensor signals in digitized form can be transmitted to the ground. Types and requirements for chemical sensors to be used in biomedical experimentation and monitoring of water recycling during long-term space missions are discussed.  相似文献   

20.
Long term monitoring optimization (LTMO) has proved a valuable method for reducing costs, assuring proper remedial decisions are made, and streamlining data collection and management requirements over the life of a monitoring program. A three-tiered approach for LTMO has been developed that combines a qualitative evaluation with an evaluation of temporal trends in contaminant concentrations, and a spatial statistical analysis. The results of the three evaluations are combined to determine the degree to which a monitoring program addresses the monitoring program objectives, and a decision algorithm is applied to assess the optimal frequency of monitoring and spatial distribution of the components of the monitoring network. Ultimately, application of the three-tiered method can be used to identify potential modifications in sampling locations and sampling frequency that will optimally meet monitoring objectives. To date, the three-tiered approach has been applied to monitoring programs at 18 sites and has been used to identify a potential average reduction of over one-third of well sampling events per year. This paper discusses the three-tiered approach methodology, including data compilation and site screening, qualitative evaluation decision logic, temporal trend evaluation, and spatial statistical analysis, illustrated using the results of a case study site. Additionally, results of multiple applications of the three-tiered LTMO approach are summarized, and future work is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号