首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Catechin, one of the major flavonoids presented in plants such as tea, reportedly suppresses bone resorption. We previously reported that prostaglandin F(2alpha) (PGF(2alpha)) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells. To clarify the mechanism of catechin effect on osteoblasts, we investigated the effect of (--)-epigallocatechin gallate (EGCG), one of the major green tea flavonoids, on the VEGF synthesis by PGF(2alpha) in MC3T3-E1 cells. The PGF(2alpha)-induced VEGF synthesis was significantly enhanced by EGCG. The amplifying effect of EGCG was dose dependent between 10 and 100 microM. EGCG did not affect the PGF(2alpha)-induced phosphorylation of p44/p42 MAP kinase. SB203580, a specific inhibitor of p38 MAP kinase, and SP600125, a specific inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), reduced the PGF(2alpha)-induced VEGF synthesis. EGCG markedly enhanced the phosphorylation of SAPK/JNK induced by PGF(2alpha) without affecting the PGF(2alpha)-induced phosphorylation of p38 MAP kinase. SP600125 markedly reduced the amplification by EGCG of the SAPK/JNK phosphorylation. In addition, the PGF(2alpha)-induced phosphorylation of c-Jun was amplified by EGCG. These results strongly suggest that EGCG upregulate PGF(2alpha)-stimulated VEGF synthesis resulting from amplifying activation of SAPK/JNK in osteoblasts.  相似文献   

2.
In previous studies, we have reported that PGF stimulates phosphoinositide hydrolysis by phospholipase C and phosphatidylcholine hydrolysis by phospholipase D through heterotrimeric GTP-binding protein in osteoblast-like MC3T3-E1 cells, and that PGF and PGE1 induce interleukin-6 (IL-6) synthesis via activation of protein kinase C and protein kinase A, respectively. In the present study, we investigated the effect of tiludronate, a bisphosphonate known to inhibit bone resorption, on the PGF- and PGE1-induced IL-6 synthesis in these cells. Tiludronate significantly suppressed the PGF-induced IL-6 secretion in a dose-dependent manner in the range between 0.1 and 30 μM. However, the IL-6 secretion induced by PGE1 or (Bu)2cAMP was hardly affected by tiludronate. The choline formation induced by PGF was reduced by tiludronate dose-dependently in the range between 0.1 and 30 μM. On the contrary, tiludronate had no effect on PGF-induced formation of inositol phosphates. Tiludronate suppressed the choline formation induced by NaF, known as an activator of heterotrimeric GTP-binding protein. However, tiludronate had little effect on the formation of choline induced by TPA, a protein kinase C activator. Tiludronate significantly inhibited the NaF-induced IL-6 secretion in human osteoblastic osteosarcoma Saos-2 cells. These results strongly suggest that tiludronate inhibits PGF-induced IL-6 synthesis via suppression of phosphatidylcholine-hydrolyzing phospholipase D activation in osteoblasts, and that the inhibitory effect is exerted at the point between heterotrimeric GTP-binding protein and phospholipase D. J. Cell. Biochem. 69:252–259, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Inflammatory cytokines are well known to play crucial roles in the pathogenesis of rheumatoid arthritis. Among them, interleukin (IL)-17 is a cytokine that is mainly synthesized by activated T cells and its receptors are present in osteoblasts. The synthesis of IL-6, known to stimulate osteoclastic bone resorption, is reportedly responded to bone resorptive agents such as tumor necrosis factor-alpha (TNF-alpha) in osteoblasts. It has been reported that IL-17 enhances TNF-alpha-stimulated IL-6 synthesis in osteoblast-like MC3T3-E1 cells. We previously showed that sphingosine 1-phosphate (S1-P) mediates TNF-alpha-stimulated IL-6 synthesis in these cells. In the present study, we investigated the mechanism of IL-17 underlying enhancement of IL-6 synthesis in MC3T3-E1 cells. IL-17 induced phosphorylation of p38 mitogen-activated protein (MAP) kinase. SB203580 and PD169316, specific inhibitors of p38 MAP kinase, significantly reduced the enhancement by IL-17 of TNF-alpha-stimulated IL-6 synthesis. IL-17 also amplified S1-P-stimulated IL-6 synthesis, and the amplification by IL-17 was suppressed by SB203580. Anisomycin, an activator of p38 MAP kinase, which alone had no effect on IL-6 level, enhanced the IL-6 synthesis stimulated by TNF-alpha. SB203580 and PD169316 inhibited the amplification by anisomycin of the TNF-alpha-induced IL-6 synthesis. Taken together, our results strongly suggest that IL-17 enhances TNF-alpha-stimulated IL-6 synthesis via p38 MAP kinase activation in osteoblasts.  相似文献   

4.
5.
The combined effect of prostaglandin F2alpha (PGF2alpha) and cAMP on glucose transport in 3T3-L1 adipocytes was examined. In cells pretreated with PGF2alpha and 8-bromo cAMP for 8 h, a synergy between these two agents on glucose uptake was found. Insulin-stimulated glucose transport, on the other hand, was only slightly affected. The synergistic effect of these two agents was suppressed in the presence of cycloheximide and actinomycin D. In concord, immunoblot and Northern blot analyses revealed that GLUT1 protein and mRNA levels were both increased in cells pretreated with both PGF2alpha and 8-bromo cAMP, greater than the additive effect of each agent alone. The synergistic action of PGF2alpha with 8-bromo cAMP to enhance glucose transport was inhibited by GF109203X, a selective protein kinase C (PKC) inhibitor. In addition, in cells depleted of diacylglycerol-sensitive PKC by prolonged treatment with 4beta-phorbol 12beta-myristate 13alpha-acetate, a PKC activator, the synergistic effects of PGF2alpha and 8-bromo cAMP on glucose transport and GLUT1 mRNA accumulation were both abolished. Taken together, these results indicate that PGF2alpha may act with cAMP in a synergistic way to increase glucose transport, probably through enhanced GLUT1 expression by a PKC-dependent mechanism.  相似文献   

6.
7.
8.
Studies were conducted to characterize a HeLa cell model by which the roles of the 85-kDa phospholipase A2 (cPLA2) in interleukin-1 beta (IL-1 beta) and interleukin-6 (IL-6) release could be evaluated. At first, untreated HeLa cells were compared with lipopolysaccharide (LPS)-treated HeLa cells. The latter resulted in cPLA2 overexpression and an increased trend of IL-1 beta and IL-6 release. The indicated doses of 85-kDa cPLA2 antisense oligonucleotide directed against the initiation site were then used to block cPLA2 in LPS-induced HeLa cells. The process led to a dose-dependent decrease in cPLA2 protein with no noticeable change of cPLA2 mRNA. Compared with that of LPS added only, a reduction of IL-1 beta and IL-6 levels in the supernatants of transfected cells following the repression of cPLA2 was observed. These results suggested that 85-kDa cPLA2 may mediate the signalling cascades by which IL-1 beta and IL-6 were released in LPS-induced HeLa cells.  相似文献   

9.
Mitogen‐activated protein kinase (MAPK) cascades have important functions in plant stress responses and development and are key players in reactive oxygen species (ROS) signalling and in innate immunity. In Arabidopsis, the transmission of ROS and pathogen signalling by MAPKs involves the coordinated activation of MPK6 and MPK3; however, the specificity of their negative regulation by phosphatases is not fully known. Here, we present genetic analyses showing that MAPK phosphatase 2 (MKP2) regulates oxidative stress and pathogen defence responses and functionally interacts with MPK3 and MPK6. We show that plants lacking a functional MKP2 gene exhibit delayed wilting symptoms in response to Ralstonia solanacearum and, by contrast, acceleration of disease progression during Botrytis cinerea infection, suggesting that this phosphatase plays differential functions in biotrophic versus necrotrophic pathogen‐induced responses. MKP2 function appears to be linked to MPK3 and MPK6 regulation, as indicated by BiFC experiments showing that MKP2 associates with MPK3 and MPK6 in vivo and that in response to fungal elicitors MKP2 exerts differential affinity versus both kinases. We also found that MKP2 interacts with MPK6 in HR‐like responses triggered by fungal elicitors, suggesting that MPK3 and MPK6 are subject to differential regulation by MKP2 in this process. We propose that MKP2 is a key regulator of MPK3 and MPK6 networks controlling both abiotic and specific pathogen responses in plants.  相似文献   

10.
It has been reported that platelet-derived growth factor (PDGF)-BB stimulates the synthesis of interleukin (IL)-6 in osteoblasts. In the present study, we investigated whether the phosphatidylinositol 3-kinase (PI3K)/Akt is involved in the PDGF-BB-induced IL-6 synthesis in osteoblast-like MC3T3-E1 cells. PDGF-BB markedly induced the phosphorylation of Akt and GSK-3beta. Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, significantly amplified the synthesis of IL-6 by PDGF-BB. The PDGF-BB-induced GSK-3beta phosphorylation was suppressed by the Akt inhibitor. The IL-6 synthesis stimulated by PDGF-BB was markedly enhanced by LY294002 and wortmannin, inhibitors of PI3K. Wortmannin and LY294002 suppressed the PDGF-BB-induced phosphorylation of Akt and GSK-3beta. Taken together, these results strongly suggest that PI3K/Akt negatively regulates the PDGF-BB-stimulated IL-6 synthesis in osteoblasts.  相似文献   

11.
We investigated the regulatory mechanism of interleukin-6 (IL-6) synthesis induced by interleukin-1 (IL-1) in osteoblast-like MC3T3-E1 cells. IL-1 stimulated the secretion of IL-6 in a dose-dependent manner in the range between 0.1 and 100 ng/ml. Staurosporine and calphostin C, inhibitors of protein kinase C (PKC), significantly enhanced the IL-1-induced secretion of IL-6. The stimulative effect of IL-1 was markedly amplified in PKC down-regulated MC3T3-E1 cells. IL-1 produced diacylglycerol in MC3T3-E1 cells. IL-1 had little effect on the formation of inositol phosphates and choline. On the contrary, IL-1 significantly stimulated the formation of phosphocholine dose-dependently. D-609, an inhibitor of phosphatidylcholine-specific phospholipase C, suppressed the IL-1-induced diacylglycerol production. The IL-1-induced IL-6 secretion was significantly enhanced by D-609. These results indicate that IL-1 activates PKC via phosphatidylcholine-specific phospholipase C in osteoblast-like cells, and the PKC activation then limits IL-6 synthesis induced by IL-1 itself. J. Cell. Biochem. 67:103–111, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
BACKGROUND INFORMATION: Pancreatic beta-cells require an optimal insulin content to allow instantaneous secretion of insulin. This is maintained by insulin biosynthesis and intracellular degradation of insulin. Degradation may be effected by crinophagy, i.e. the fusion of secretory granules with lysosomes. IL-1beta (interleukin 1beta) induces distinct changes of beta-cell lysosomes. To study the mechanisms for intracellular insulin degradation and crinophagy, isolated mouse pancreatic islets were exposed to IL-1beta and known pathways for IL-1beta actions were blocked. Intracellular insulin degradation was determined by following the fate of radioactively labelled insulin. Crinophagy was studied by ultrastructural analysis. The effects of blocking pathways for IL-1beta were monitored by measurements of nitrite and PGE(2) (prostaglandin E(2)). RESULTS: IL-1beta caused an enhancement of islet intracellular insulin degradation and an increase in the lysosomal incorporation of beta-cell secretory granules. The effects of IL-1beta were abolished by aminoguanidine, a selective inhibitor of inducible NOS (nitric oxide synthase), or by rofecoxib, a specific inhibitor of COX-2 (cyclo-oxygenase 2). In the absence of IL-1beta, nitroarginine, which is a selective inhibitor of constitutive NOS, caused a decrease in intracellular degradation of insulin in parallel with a decreased production of NO and PGE(2) by the islets. CONCLUSIONS: The correlation between the enhanced intracellular insulin degradation and lysosomal changes caused by IL-1beta suggests that insulin degradation may be effected by crinophagy. Under physiological conditions, significant beta-cell degradation of insulin may depend on the activity of COX-2, possibly stimulated by endogenous NO.  相似文献   

15.
16.
We previously showed that endothelin-1 (ET-1) stimulates the synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, in osteoblast-like MC3T3-E1 cells, and that protein kinase C (PKC)-dependent p44/p42 mitogen-activated protein (MAP) kinase plays a part in the IL-6 synthesis. In the present study, we investigated the effect of (-)-epigallocatechin gallate (EGCG), one of the major flavonoids containing in green tea, on ET-1-induced IL-6 synthesis in osteoblasts and the underlying mechanism. EGCG significantly reduced the synthesis of IL-6 stimulated by ET-1 in MC3T3-E1 cells as well primary cultured mouse osteoblasts. SB203580, a specific inhibitor of p38 MAP kinase, but not SP600125, a specific SAPK/JNK inhibitor, suppressed ET-1-stimulated IL-6 synthesis. ET-1-induced phosphorylation of p38 MAP kinase was not affected by EGCG. On the other hand, EGCG suppressed the phosphorylation of p44/p42 MAP kinase induced by ET-1. Both the IL-6 synthesis and the phosphorylation of p44/p42 MAP kinase stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA), a direct activator of PKC, were markedly suppressed by EGCG. The phosphorylation of MEK1/2 and Raf-1 induced by ET-1 or TPA were also inhibited by EGCG. These results strongly suggest that EGCG inhibits ET-1-stimulated synthesis of IL-6 via suppression of p44/p42 MAP kinase pathway in osteoblasts, and the inhibitory effect is exerted at a point between PKC and Raf-1 in the ET-1 signaling cascade.  相似文献   

17.
Lipopolysaccharide (LPS)‐induced inflammatory factors production by the cerebral cortical glial cells in two sides of the murine brain are different. To determine if microglial cells, a subset of glial cells, are involved in asymmetric production, interleukin‐6 (IL‐6), interleukin‐1β (IL‐1β) and nitric oxide (NO) responses to LPS by microglial cells in the right and left cerebral cortices were examined. Primary microglial cells were isolated from BALB/C neonatal mice, treated with LPS (10 µg ml?1) for 24 h and examined for IL‐6, IL‐1β and NO production. At untreated state, the levels of IL‐6, IL‐1β and NO showed no statistical difference between left and right. However, after LPS treatment, the levels of IL‐6, IL‐1β and NO for the right microglial cells was statistically significant higher than the left (P < 0·05). Our results denote that enhanced production of IL‐6, IL‐1β and NO after LPS treatment in microglia is directly proportional to their basal‐state levels, and right cortical microglia produce higher levels of IL‐6, IL‐1β and NO than left cortical microglia. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Syndecans are proteoglycans that act as signaling molecules. Previously, we showed that syndecan-2 (SYND2) is involved in the control of osteoblastic (OB) cell apoptosis. Here, we show a novel functional interaction between SYND2 and protein kinase C delta (PKCdelta). Overexpression of SYND2 in MG63 OB cells resulted in increased PKCdelta protein level without change in PKCdelta mRNA production. In SYND2-transfected cells, the increase in PKCdelta was restricted to the cytosolic compartment, threonine 505-PKCdelta was underphosphorylated and immunoprecipitated PKCdelta showed decreased capacity to phosphorylate histone, indicating that SYND2 decreased PKCdelta activity. Inhibition of PKCdelta by Rottlerin or a dead-kinase dominant negative (DN) construct activated effector caspases and increased the number of apoptotic cells. In addition, rescue of kinase activity with a construct coding, the PKCdelta catalytic domain (CAT) reduced SYND2-induced apoptosis. This indicates that PKCdelta acts as a pro-survival kinase and that SYND2 inhibits the anti-apoptotic action of PKCdelta in OB cells. We also showed that overexpression of PKCdelta wild type (WT) induced osteoblast apoptosis. Moreover, inhibition of PKCdelta by siRNA resulted in increased apoptosis in control cells but reduced apoptosis in SYND2-overexpressing osteoblasts, indicating that SYND2 requires PKCdelta accumulation to induce apoptosis. These results show that SYND2 modulates PKCdelta actions by inhibition of the canonical allosterical activation pathway that plays an anti-apoptotic role in OB cells, and promotion of a pro-apoptotic role that may depend on PKCdelta protein level and that participates to the induction of cell death by SYND2. This establishes a functional interaction between SYND2 and PKCdelta in osteoblasts.  相似文献   

19.
Platelet-derived growth factor (PDGF) is a biological mediator for connective tissue cells and plays a critical role in a wide variety of physiological and pathological processes. We here investigated the effect of PDGF on arachidonic acid release and prostaglandin E(2) (PGE(2)) synthesis in human gingival fibroblasts (HGF). PDGF induced arachidonic acid release in a time- and dose-dependent manner, and simultaneously induced a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), but less provoked PGE(2) release and cyclooxygenase-2 (COX-2) mRNA expression. When [Ca(2+)](i) was increased by Ca(2+)-mobilizing reagents, arachidonic acid release was increased. The PDGF-induced arachidonic acid release and increase in [Ca(2+)](i) were prevented by a tyrosine kinase inhibitor. On the other hand, in the HGF pre-stimulated with interleukin-1beta (IL-1beta), PDGF clearly increased PGE(2) release. The PDGF-induced PGE(2) release was inhibited by a tyrosine kinase inhibitor. In the HGF pretreated with IL-1beta, arachidonic acid strongly enhanced PGE(2) release and COX-2 mRNA expression. These results suggest that PDGF stimulates arachidonic acid release by the increase in [Ca(2+)](i) via tyrosine kinase activation, and which contributes to PGE(2) production via COX-2 expression in HGF primed with IL-1beta.  相似文献   

20.
We analyzed the role of Hypoxia-inducible factor (HIF)-1alpha in myoblast differentiation by examining the expression and regulation of HIF-1alpha in proliferating and differentiating C2C12 myoblast, and by knocking down HIF-1alpha of C2C12 myoblasts with small interfering RNA (siRNA), given that HIF-1alpha has been shown to be involved in differentiative process in non-muscle tissues. Although HIF-1alpha mRNA was constantly expressed in C2C12 myoblasts both under growth and differentiating phase, HIF-1alpha protein was hardly detectable in the growth phase but became detectable only during myogenic differentiation even under normoxia. During early stage of C2C12 myogenesis, HIF-1alpha accumulated in the nuclei of myogenin-positive myoblasts. The inhibition of proteasome in the growth phase led to HIF-1alpha protein accumulation, whereas in the differentiation phase the inhibition of Hsp90, which stabilizes HIF-1alpha, suppressed HIF-1alpha accumulation. Therefore, we suggest that the level of HIF-1alpha protein expression is regulated by a proteasome-and chaperon-dependent pathway in C2C12 myoblast. Knockdown of HIF-1alpha effectively blocked myotube formation and myosin heavy chain (MHC) expression. Finally, HIF-1alpha expression in vivo was confirmed in the regenerative muscle tissue of mice after eccentric exercise. We conclude that HIF-1alpha is required for C2C12 myogenesis in vitro, and suggest that HIF-1alpha may have an essential role in regenerative muscle tissue in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号