首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: SH2/SH3 adaptor proteins play a critical role in tyrosine kinase signaling pathways, regulating essential cell functions by increasing the local concentration or altering the subcellular localization of downstream effectors. The SH2 domain of the Nck adaptor can bind tyrosine-phosphorylated proteins, while its SH3 domains can modulate actin polymerization by interacting with effectors such as WASp/Scar family proteins. Although several studies have implicated Nck in regulating actin polymerization, its role in living cells is not well understood. RESULTS: We used an antibody-based system to experimentally modulate the local concentration of Nck SH3 domains on the plasma membrane of living cells. Clustering of fusion proteins containing all three Nck SH3 domains induced localized polymerization of actin, including the formation of actin tails and spots, accompanied by general cytoskeletal rearrangements. All three Nck SH3 domains were required, as clustering of individual SH3 domains or a combination of the two N-terminal Nck SH3 domains failed to promote significant local polymerization of actin in vivo. Changes in actin dynamics induced by Nck SH3 domain clustering required the recruitment of N-WASp, but not WAVE1, and were unaffected by downregulation of Cdc42. CONCLUSIONS: We show that high local concentrations of Nck SH3 domains are sufficient to stimulate localized, Cdc42-independent actin polymerization in living cells. This study provides strong evidence of a pivotal role for Nck in directly coupling ligand-induced tyrosine phosphorylation at the plasma membrane to localized changes in organization of the actin cytoskeleton through a signaling pathway that requires N-WASp.  相似文献   

2.
The actin-binding proteins, spectrin and dystrophin, are key components of the plasma membrane-associated cytoskeleton of the cardiac muscle cell. From confocal immunofluorescence studies, the distribution of spectrin appears to overlap with that of dystrophin, but the precise functional differentiation, molecular distributions and spatial relationship of these two cytoskeletal systems remain unclear. Freeze-fracture replica immuno-electron microscopy, in parallel with immunofluorescence/confocal microscopy, were applied to examine at high resolution the spatial relationships between the spectrin and dystrophin membrane-associated cytoskeleton systems in cardiac muscle. Application of freeze-fracture replica cytochemistry, with single and double immunogold labeling, permitted simultaneous examination of the organization of spectrin and dystrophin in en-face views of the plasma membrane at high resolution. In contrast to the close spatial relationship previously demonstrated for dystrophin and β-dystroglycan, no association between the gold label marking dystrophin and that marking spectrin was observed. Our freeze-fracture cytochemical results suggest that the two membrane skeletal networks formed by dystrophin and spectrin in cardiac muscle are independently organized, implying that whatever overlap of function (e.g., in structural support to the plasma membrane) may exist between them, the two systems may each have additional distinctive roles.  相似文献   

3.
Summary Cytoskeletal organization and its association with plasma membranes in embryonic chick skeletal muscle cells in vitro was studied by the freeze-drying and rotary-shadowing method of physically ruptured cells. The cytoskeletal filaments underlying the plasma membranes were sparse in myogenic cells at the stage when cells exhibited great lipid fluidity in plasma membranes (fusion competent mononucleated myoblasts and recently fused young myotubes). Myotubes at more advanced stages of development possessed a highly interconnected dense filamentous network just underneath the cell membrane. This subsarcolemmal network was composed predominantly of 8–10 nm filaments; they were identified as actin filaments because of their decoration with myosin subfragment-1. Fine fibrils having a diameter of 3–5 nm were found on the protoplasmic surface of the plasmalemma at both the early and advanced stages of development. They were associated with the subsarcolemmal cytoskeletal filaments. Short 2–5 nm cross-linking filaments were occasionally seen between filaments in the subsarcolemmal network. We conclude that, although the subsarcolemmal cytoskeletal network contains many actin filaments, this domain appears to play some role in preserving the cell shape in the form of the membrane skeleton rather than membrane mobility.  相似文献   

4.
Actin assembly on the surface of Listeria monocytogenes in the cytoplasm of infected cells provides a model to study actin-based motility and changes in cell shape. We have shown previously that the ActA protein, exposed on the bacterial surface, is required for polarized nucleation of actin filaments. To investigate whether plasma membrane-associated ActA can control the organization of microfilaments and cell shape, variants of ActA, in which the bacterial membrane signal had been replaced by a plasma membrane anchor sequence, were produced in mammalian cells. While both cytoplasmic and membrane-bound forms of ActA increased the F-actin content, only membrane-associated ActA caused the formation of plasma membrane extensions. This finding suggests that ActA acts as an actin filament nucleator and shows that permanent association with the inner face of the plasma membrane is required for changes in cell shape. Based on the observation that the amino-terminal segment of ActA and the remaining portion which includes the proline-rich repeats cause distinct phenotypic modifications in transfected cells, we propose a model in which two functional domains of ActA cooperate in the nucleation and dynamic turnover of actin filaments. The present approach is a new model system to dissect the mechanism of action of ActA and to further investigate interactions of the plasma membrane and the actin cytoskeleton during dynamic changes of cell shape.  相似文献   

5.
Lymphocyte membrane proteins are important in the transduction of signals across the plasma membrane. Visual and biophysical studies have shown that after ligand binding, membrane proteins may become immobile in the plane of the membrane and may cap. In intact cells, binding of cross-linking ligands to surface immunoglobulin converts it to a detergent-insoluble state (77% insoluble). This conversion is positively correlated with the transmission of a mitogenic signal. Class II histocompatibility proteins (Ia) and thy-1 remain predominantly detergent soluble (60 to 97% soluble). Insolubilized membrane proteins may be solubilized by incubating the detergent insoluble cytoskeletons with 0.34 M sucrose, 0.5 mM ATP, 0.5 mM dithiothreitol, 1 mM EDTA, or 3 X 10(-5) M DNAase I, 1 mM EDTA. To determine if the membrane-associated cytoskeleton contains the sufficient components for ligand-induced receptor insolubilization, experiments were done with a crude plasma membrane fraction. The results with whole cells or crude plasma membranes were comparable. These studies support the view that ligand-induced insolubilization of membrane proteins is due to their interaction with cytoskeletal structures.  相似文献   

6.
To study molecular motion and function of membrane phospholipids, we have developed various probes which bind specifically to certain phospholipids. Using a novel peptide probe, RoO9-0198, which binds specifically to phosphatidylethanolamine (PE) in biological membranes, we have analyzed the cell surface movement of PE in dividing CHO cells. We found that PE was exposed on the cell surface specifically at the cleavage furrow during the late telophase of cytokinesis. PE was exposed on the cell surface only during the late telophase and no alteration in the distribution of the plasma membranebound peptide was observed during the cytokinesis, suggesting that the surface exposure of PE reflects the enhanced transbilayer movement of PE at the cleavage furrow. Furthermore, cell surface immobilization of PE induced by adding of the cyclic peptide coupled with streptavidin to prometaphase cells effectively blocked the cytokinesis at late telophase. The peptide-streptavidin complex bound specifically to cleavage furrow and inhibited both actin filament disassembly at cleavage furrow and subsequent plasma membrane fusion. Binding of the peptide complex to interphase cells also induced immediate disassembly of stress fibers followed by assembly of cortical actin filaments to the local area of plasma membrane where the peptide complex bound. The cytoskeletal reorganizations caused by the peptide complex were fully reversible; removal of the surface-bound peptide complex by incubating with PE-containing liposome caused gradual disassembly of the cortical actin filaments and subsequent formation of stress fibers. These observations suggest that the redistribution of plasma membrane phospholipids act as a regulator of actin cytoskeleton organization and may play a crucial role in mediating a coordinate movement between plasma membrane and actin cytoskeleton to achieve successful cell division.  相似文献   

7.
Treatment of untransformed mouse and hamster cells with the tertiary amine local anesthetics dibucaine, tetracaine and procaine increases their susceptibility to agglutination by low doses of the plant lectin concanavalin A. Agglutination of anesthetic-treated untransformed cells by low doses of concanavalin A is accompanied by redistribution of concanavalin A receptors on the cell surface to form patches, similar to that occurring in spontaneous agglutination of virus-transformed cells by concanavalin A. Immunofluorescence and freeze-fracture electronmicroscopic observations indicate that local anesthetics per se do not induce this redistribution of concanavalin A receptors but modify the plasma membrane so that receptor redistribution is facilitated on binding of concanavalin A to the cell surface. Fluorescence polarization measurements on the rotational freedom of the membrane-associated probe, diphenylhexatriene, indicate that local anesthetics produce a small increase in the fluidity of membrane lipids. Spontaneous agglutination of transformed cells by low doses of concanavalin A is inhibited by colchicine and vinblastine but these alkaloids have no effect on concanavalin A agglutination of anesthetic-treated cells. Evidence is presented which suggests that local anesthetics may impair membrane peripheral proteins sensitive to colchicine (microtubules) and cytochalasin-B (microfilaments). Combined treatment of untransformed 3T3 cells with colchicine and cytochalasin B mimics the effect of local anesthetics in enhancing susceptibility to agglutination by low doses of concanavalin A. A hypothesis is presented on the respective roles of colchicine-sensitive and cytochalasin B-sensitive peripheral membrane proteins in controlling the topographical distribution of lectin receptors on the cell surface.  相似文献   

8.
Tertiary amine local anesthetics (dibucaine, Tetracaine, procaine, etc.) modify cell morphology, concanavalin A (Con A)-mediated agglutinability and redistribution of Con A receptors. Con A agglutination of untransformed mouse 3T3 cells was enhanced at low concentrations of local anesthetics, and the dynamics of fluorescent-Con A indicated that ligand-induced clustering was increased in the presence of the drugs. In contast, these drugs inhibited Con A-induced receptor capping on mouse spleen cells. These effects can be duplicated by combinations of vinblastine (or colchicine) and cytochalasin B suggesting that local anesthetics act on microtubule cell surface receptor mobility and distribution. It is proposed that tertiary amine local anesthetics displace plasma membrane-bond Ca2+, resulting in disengagement of microfilament systems from the plasma membrane and increased cellular Ca2+ concentration to levels which disrupt microtubular organization. The possible involvement of cellular Ca2+ in cytoskeletal destruction by local anesthetics was investigated utilizing Ca2+-specific ionophores A23187 and X537A. In media containing Ca2+ and cytochalasin B these ionophores caused effects similar to tertiary amine local anesthetics.  相似文献   

9.
Treatment of untransformed mouse and hamster cells with the tertiary amine local anesthetics dibucaine, tetracaine and procaine increases their susceptibility to agglutination by low doses of the plant lectin concanavalin A. Agglutination of anesthetic-treated untransformed cells by low doses of concanavalin A is accompanied by redistribution of concanavalin A receptors on the cell surface to form patches, similar to that occurring in spontaneous agglutination of virus-transformed cells by concanavalin A. Immunofluorescence and freeze-fracture electronmicroscopic observations indicate that local anesthetics per se do not induce this redistribution of concanavalin A receptors but modify the plasma membrane so that receptor redistribution is facilitated on binding of concanavalin A to the cell surface. Fluorescence polarization measurements on the rotational freedom of the membrane-associated probe, diphenylhexatriene, indicate that local anesthetics produce a small increase in the fluidity of membrane lipids. Spontaneous agglutination of transformed cells by low doses of concanavalin A is inhibited by colchicine and vinblastine but these alkaloids have no effect on concanavalin A agglutination of anesthetic-treated cells. Evidence is presented which suggests that local anesthetics may impair membrane peripheral proteins sensitive to colchicine (microtubules) and cytochalasin-B (microfilaments). Combined treatment of untransformed 3T3 cells with colchicine and cytochalasin B mimics the effect of local anesthetics in enhancing susceptibility to agglutination by low doses of concanavalin A. A hypothesis is presented on the respective roles of colchicine-sensitive and cytochalasin B-sensitive peripheral membrane proteins in controlling the topographical distribution of lectin receptors on the cell surface.  相似文献   

10.
Gangliosides, complex glycosphingolipids containing sialic acids, are synthesized in the endoplasmic reticulum and in the Golgi complex. These neobiosynthesized gangliosides move via vesicular transport to the plasma membrane, becoming components of the external leaflet. Gangliosides can undergo endocytosis followed by recycling to the cell surface or sorting to the Golgi complex or lysosomes for remodeling and catabolism. Recently, glycosphingolipid catabolic enzymes (glycohydrolases) have been found to be associated with the plasma membrane, where they display activity on the membrane components. In this work, we demonstrated that ecto-ganglioside glycosyltransferases may catalyze ganglioside synthesis outside the Golgi compartment, particularly at the cell surface. Specifically, we report the first direct evidence of expression and activity of CMP-NeuAc:GM3 sialyltransferase (Sial-T2) at the cell surface of epithelial and melanoma cells, with membrane-integrated ecto-Sial-T2 being able to sialylate endogenously synthesized GM3 ganglioside as well as exogenously incorporated substrate. Interestingly, we also showed that ecto-Sial-T2 was able to synthesize GD3 ganglioside at the cell surface using the endogenously synthesized cytidine monophospho-N-acetylneuraminic acid (CMP-NeuAc) available at the extracellular milieu. In addition, the expression of UDP-GalNAc:LacCer/GM3/GD3 N-acetylgalactosaminyltransferase (GalNAc-T) was also detected at the cell surface of epithelial cells, whose catalytic activity was only observed after feeding the cells with exogenous GM3 substrate. Thus, the relative interplay between the plasma membrane-associated glycosyltransferase and glycohydrolase activities, even when acting on a common substrate, emerges as a potential level of regulation of the local glycosphingolipid composition in response to different external and internal stimuli.  相似文献   

11.
The techniques of fluorescence polarization and lectin-induced agglutination have been utilized to investigate the effects of the diabetic state on some of the dynamic properties of cell membranes. Hepatocyte plasma membranes from streptozotocin-induced diabetic rats exhibited a significant decrease in cholesterol and sialic acid with no alteration in phospholipid content. This membrane system also exhibited a decrease in fluorescence polarization, using the fluorescent probe, 1,6-di-phenyl-1, 3,5-hexatriene, suggesting an increase in membrane fluidity over the value observed in normal hepatocytes. When normal hepatocytes were incubated in the presence of the lectin, concanavalin A (ConA), no significant agglutination was observed. In contrast, hepatocytes from diabetic rats which exhibited a slightly decreased lectin-binding capacity underwent extensive agglutination. In addition, normal hepatocytes which were pretreated with 0.1 mM tetracaine also underwent extensive agglutination with no measurable increase in lectin-binding capacity. These results suggest that altered membrane lipid fluidity and/or cytoskeletal organization may have a profound effect on cell surface dynamics and could result in the uncoupling of the insulin receptor complex from the membrane-associated effector system(s), a defect which may play a role in the problem of insulin resistance observed in some forms of diabetes.  相似文献   

12.
We describe herein the enzyme behavior of MmNEU3, the plasma membrane-associated sialidase from mouse (Mus musculus). MmNEU3 is localized at the plasma membrane as demonstrated directly by confocal microscopy analysis. In addition, administration of the radiolabeled ganglioside GD1a to MmNEU3-transfected cells, under conditions that prevent lysosomal activity, led to its hydrolysis into ganglioside GM1, further indicating the plasma membrane topology of MmNEU3. Metabolic labeling with [1-(3)H]sphingosine allowed the characterization of the ganglioside patterns of COS-7 cells. MmNEU3 expression in COS-7 cells led to an extensive modification of the cell ganglioside pattern, i.e. GM3 and GD1a content was decreased to about one-third compared with mock-transfected cells. At the same time, a 35% increase in ganglioside GM1 content was observed. Mixed culture of MmNEU3-transfected cells with [1-(3)H]sphingosine-labeled cells demonstrates that the enzyme present at the cell surface is able to recognize gangliosides exposed on the membrane of nearby cells. Under these experimental conditions, the extent of ganglioside pattern changes was a function of MmNEU3 transient expression. Overall, the variations in GM3, GD1a, and GM1 content were very similar to those observed in the case of [1-(3)H]sphingosine-labeled MmNEU3-transfected cells, indicating that the enzyme mainly exerted its activity toward ganglioside substrates present at the surface of neighboring cells. These results indicate that the plasma membrane-associated sialidase MmNEU3 is able to hydrolyze ganglioside substrates in intact living cells at a neutral pH, mainly through cell-to-cell interactions.  相似文献   

13.
In 1972 the Fluid—Mosaic Membrane Model of membrane structure was proposed based on thermodynamic principals of organization of membrane lipids and proteins and available evidence of asymmetry and lateral mobility within the membrane matrix [S. J. Singer and G. L. Nicolson, Science 175 (1972) 720–731]. After over 40 years, this basic model of the cell membrane remains relevant for describing the basic nano-structures of a variety of intracellular and cellular membranes of plant and animal cells and lower forms of life. In the intervening years, however, new information has documented the importance and roles of specialized membrane domains, such as lipid rafts and protein/glycoprotein complexes, in describing the macrostructure, dynamics and functions of cellular membranes as well as the roles of membrane-associated cytoskeletal fences and extracellular matrix structures in limiting the lateral diffusion and range of motion of membrane components. These newer data build on the foundation of the original model and add new layers of complexity and hierarchy, but the concepts described in the original model are still applicable today. In updated versions of the model more emphasis has been placed on the mosaic nature of the macrostructure of cellular membranes where many protein and lipid components are limited in their rotational and lateral motilities in the membrane plane, especially in their natural states where lipid–lipid, protein–protein and lipid–protein interactions as well as cell–matrix, cell–cell and intracellular membrane-associated protein and cytoskeletal interactions are important in restraining the lateral motility and range of motion of particular membrane components. The formation of specialized membrane domains and the presence of tightly packed integral membrane protein complexes due to membrane-associated fences, fenceposts and other structures are considered very important in describing membrane dynamics and architecture. These structures along with membrane-associated cytoskeletal and extracellular structures maintain the long-range, non-random mosaic macro-organization of membranes, while smaller membrane nano- and submicro-sized domains, such as lipid rafts and protein complexes, are important in maintaining specialized membrane structures that are in cooperative dynamic flux in a crowded membrane plane. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   

14.
In mKSA cells (a simian virus 40-transformed BALB/c mouse tumor cell line), plasma membrane-associated large T antigen (large T) is found in two subfractions of the plasma membrane; a minor amount of large T is recovered from the Nonidet P-40 (NP-40)-soluble plasma membrane fraction, whereas the majority is tightly bound to a substructure of the plasma membrane, the plasma membrane lamina (PML). Only PML-associated large T is fatty acid acylated (U. Klockmann and W. Deppert, EMBO J. 2:1151-1157, 1983). We have analyzed whether these two forms of plasma membrane-associated large T might differ in features like cell surface expression or metabolic stability. In addition, we have asked whether one of the two large Ts might represent the hypothetic, large T-related protein T* (D. F. Mark and P. Berg, Cold Spring Harbor Symp. Quant. Biol. 44:55-62, 1979). We show that in mKSA cells grown in suspension culture, large T associated with the PML is also exposed on the cell surface. This form of large T, therefore, exhibits properties of a transmembrane protein. Large T in the NP-40-soluble plasma membrane fraction could not be labeled with radioiodine on the cell surface and, for this reason, does not seem to be oriented towards the cell surface. In contrast, when mKSA cells were grown on substratum (culture dish), we found that in these cells both NP-40-soluble large T as well as large T anchored in the PML could be cell surface iodinated. We also have analyzed the plasma membrane association of surface T antigen in mKSA cells grown in a mouse as ascites tumor. In tumor cells, only PML-bound large T is cell surface associated. We conclude that differences in extractibility of cell surface-associated large T most likely depend on cell shape and are not an artifact of cell culture. Both NP-40-soluble and PML-bound large Ts are associated with the plasma membrane in a metabolically stable fashion. Neither of the two large Ts represents T*.  相似文献   

15.
The three-dimensional ultrastructure of multinucleate giant cells in subcutaneous granulomas was compared with those of peritoneal macrophages using a quick-freezing and deep-etching method. Subcutaneous granulomas were induced by implanting plastic coverslips in the dorsal subcutaneous tissue of rats. The quick-freezing and deep-etching replicas were prepared from the cells attached to the coverslips. Dense networks of actin filaments were distributed along all peripheral aspects (beneath the plasma membrane, and on free and coverslip-attached surfaces) of the multinucleate giant cells. On the coverslip-attached surface, numerous clathrin-coated pits and vesicles occurred between the actin filaments. In these cells, intermediate filaments, but not actin filaments, were the predominant cytoskeletal components in perinuclear regions and were attached to the cell nucleus, mitochondria and other vesicular cell organelles. A similar distribution of cytoskeletal components was observed in the mononuclear macrophages of the granulomas and the peritoneal macrophages. These results show that the cytoskeletal organization varies in different regions of the cytoplasm of multinucleate giant cells, while the characteristic cytoskeletal arrangement, resembling that of mononuclear macrophages, is maintained.  相似文献   

16.
Anchorage-dependent fibroblasts respond to biochemical growth signals only when attached to and spread on a suitable substrate surface. Attachment of fibroblasts initiates a cytoskeletal assembly process that results in the organization of long actin stress fibers and microtubules which may be required for transmembrane signal transduction. Fibroblasts maintained in suspension, however, remain spherical with no apparent stress fibers or lengthy microtubules. Because of the significant differences in cytoskeletal organisation induced by shape modification, and the resulting possible changes in organization and dynamics of membrane receptors, the technique of fluorescence redistribution after photobleaching (FRAP) was employed to examine the lateral mobility of wheat germ agglutinin (WGA) and succinylated concanavalin A (sCon A) receptors in the plasma membrane of untransformed and Kirsten murine sarcoma virus-transformed Balb/c 3T3 fibroblasts in the spread and spherical state. An examination of FITC-WGA and FITC-sCon A binding to the plasma membrane for both cell lines in a spread or spherical state demonstrated no significant differences in the number of WGA or Con A receptors as a function of shape or transformation. The primary observations from this study are (a) membrane WGA and sCon A receptors in spherical Balb/c 3T3 fibroblasts display mobility 12 times faster than in the spread state, while phospholipid mobility is similar and apparently shape independent, (b) transformed cells in the spread state have WGA and sCon A receptor mobilities similar to those of untransformed cells in the spread state, (c) flat adherent, but not unattached spherical, Balb/c 3T3 fibroblasts are subject to Con A-induced global modulation and (d) transformed cells in the spherical state contain a significant population of cells (approximately 30%) with WGA receptor mobilities faster than those observed in spherical untransformed cells. These observations are discussed in terms of a linked matrix model for membrane protein diffusion.  相似文献   

17.
A 140 000 D glycoprotein (140 kD gp), labelled radioactively with surface-specific techniques, remained as the major cell surface glycoprotein in the detergent-resistant cytoskeletal preparations of cultured human fibroblasts. The 140 kD gp was present also in trypsinized cells and was not affected by treatment of the cells either with collagenase, chymotrypsin or thrombin. In density gradient fractionation of whole cells the 140 kD gp was recovered in the plasma membrane fraction together with small amounts of cytoskeletal components. In fractionation of cytoskeletal preparations, on the other hand, the 140 kD gp could not be dissociated from cytoskeletal proteins and together with vimentin it formed the major component of the oligomeric polypeptide complex generated by treating the surface-labelled cytoskeletal preparations with bifunctional cross-Linking reagent, dithiobis succinimidyl propionate (DTPS). Moreover, the 140 kD gp seemed to copurify with vimentin upon reconstitution of intermediate filaments from urea-solubilized cytoskeletal preparations. On the other hand, low ionic-induced degradation of vimentin led to a decrease in the amount of the detergent-resistant 140 kD gp on the cell surface. In electron microscopy, a close apposition between bilayer-like plasma membrane remnants of the adherent cytoskeletons and cytoskeletal elements could be seen. The results indicate that the 140 kD gp is a plasma membrane glycoprotein which closely interacts with the detergent-resistant cytoskeleton of cultured human fibroblast. Possible mechanisms of the association are discussed.  相似文献   

18.
Based on recent single-molecule imaging results in the living cell plasma membrane, we propose a hierarchical architecture of three-tiered mesoscale (2-300nm) domains to represent the fundamental functional organization of the plasma membrane: (i) membrane compartments of 40-300nm in diameter due to the partitioning of the entire plasma membrane by the actin-based membrane skeleton 'fence' and transmembrane protein 'pickets' anchored to the fence; (ii) raft domains (2-20nm); and (iii) dimers/oligomers and greater complexes of membrane-associated proteins (3-10nm). The basic molecular interactions required for the signal transduction function of the plasma membrane can be fundamentally understood and conveniently summarized as the cooperative actions of these mesoscale domains, where thermal fluctuations/movements of molecules and weak cooperativity play crucial roles.  相似文献   

19.
Immunoglobulin from goat antiserum directed against purified surface membranes from transformed BHK21/C13 cells (anti-M) has been shown to cause both control and transformed hamster cells to round and detach from the substrate (see accompanying paper). This paper documents the effects of the antiserum on the cytoskeletal organization and cell surface morphology of control BHK21/C13 cells examined by scanning and transmission electron microscopy. As a result of antiserum-induced rounding, the normally smooth cell surface becomes covered with filopodia and blebs, and the organization of all three components of the filamentous cytoskeleton is altered. In terms of cell surface morphology and cytoskeletal organization, the cells resemble rounded, postmitotic or trypsinized BHK cells rather than cells treated with either anticytoskeletal drugs or lectins. Immunocytochemical and radioimmune assay experiments support the suggestion that the rounding reaction induced by anti-M serum results from the specific interaction of antibodies with molecules on the cell surface. It is suggested that anti-M serum induces alterations in cytoskeletal organization via a transmembrane signal and that cytoskeletal reorganization is a fundamental part of the rounding and detachment process.  相似文献   

20.
A radioactive photoactivable analogue of phosphatidylethanolamine, 2-(2-azido-4-nitro-benzoyl)-1-acyl-sn-glycero-3-phospho[14C]ethanolamine ([14C]AzPE), was synthesized. Upon incubation with erythrocytes in the dark, about 90% of [14C]AzPE spontaneously incorporated into the cells; of this fraction, about 90% associated with the membrane, all of it noncovalently. Upon photoactivation, 3-4% of the membrane-associated probe was incorporated into protein. Analysis of this fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as well as extraction of labeled membranes with alkali or detergent, showed that the probe preferentially labeled cytoskeletal proteins. [14C]AzPE appears to be a useful tool for the study of lipid-protein interactions at the cytoplasmic face of the plasma membrane of intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号