首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A number of physical and chemical agents in the environment have been studied for their ability to induce or alter DNA repair mechanisms in human cells. We have investigated the effects of 60 Hz, 1000 V/cm electric fields on DNA repair in normal human fibroblasts in vitro. An examination was done on the ability of electric fields suspected to cause damage which could be repaired by thymine dimer excision and measurable by the bromodeoxyuridine photolysis assay. The thymine dimer assay with enzyme-sensitive site analysis was used to measure the cells' capacity for removing ultraviolet light (u.v.)-induced pyrimidine dimers; during exposure to electric field 24 hr before u.v. irradiation; 24 hr after u.v. irradiation; and up to 48 hr continuously after u.v. irradiation. Cell growth and cell survival following electric field exposure were also studied. Within the limits of these experiments, it was found that exposure to such electric fields did not alter cell growth or survival, and no DNA repair or alteration in DNA excision repair capacity was observed as compared with unexposed control cultures.  相似文献   

2.
Abstract. A number of physical and chemical agents in the environment have been studied for their ability to induce or alter DNA repair mechanisms in human cells. We have investigated the effects of 60 Hz, 1000 V/cm electric fields on DNA repair in normal human fibroblasts in vitro. an examination was done on the ability of electric fields suspected to cause damage which could be repaired by thymine dimer excision and measurable by the bromodeoxyuridine photolysis assay. the thymine dimer assay with enzyme-sensitive site analysis was used to measure the cells' capacity for removing ultraviolet light (u.v.)-induced pyrimidine dimers; (i) during exposure to electric field 24 hr before U.V. irradiation; (ii) 24 hr after U.V. irradiation; and (iii) up to 48 hr continuously after U.V. irradiation. Cell growth and cell survival following electric field exposure were also studied. Within the limits of these experiments, it was found that exposure to such electric fields did not alter cell growth or survival, and no DNA repair or alteration in DNA excision repair capacity was observed as compared with unexposed control cultures.  相似文献   

3.
Friend erythroleukaemia cells (FELC) were induced to a haem-producing state by X-rays. The percentage of haem positive cells was maximum for doses between 10 and 15 Gy. Heat treatment at 42.0 degrees C or 45.0 degrees C during or after irradiation inhibited haem induction whereas heating before irradiation enhanced it. Incubation at 37 degrees C between heating and irradiation resulted in a decline in induction levels, indicating repair of heat damage that interacts with X-ray damage. Incubation at 37 degrees C between irradiation and heating did not result in changed haem induction levels, indicating a lack of repair of radiation damage that could interact with subsequent damage produced by heating.  相似文献   

4.
The influence of a strong homogeneous and stationary magnetic field (SMF) on the activity of the enzyme thymidine kinase (TdR-K) in bone marrow cells, and as a consequence of this on the incorporation of 125I-labelled 5-iodo-2-deoxyuridine (125IUdR) into DNA of mice and into isolated bone marrow cells in vitro, was assayed after exposure of immobilized mice. No effect could be elicited in moving mice, in cells in suspension or in enzyme in solution. The response depended on the body temperature during exposure: at 27 degrees C and 29 degrees C there was an increase and at 37 degrees C and a depression of enzyme activity. The TdR-K activity at low temperature increased with the field strength ranging from 0.2 to 1.4T. Thirty minutes were required for full expression of the effect at 1.4T; 5-10 min were needed after exposure for a return to base-line levels. Mice were given total-body irradiation at a dose of 0.1 Gy 137Cs gamma rays and then exposed immediately to a magnetic field at 1.4T for 30 min at a body temperature of 27 degrees C; gamma irradiation no longer inhibited the enzyme. Exposure to the magnetic field further removed from the time of gamma irradiation, did not negate the inhibitory effect of gamma irradiation. The observed responses to given challenges in this complex system support the hypothesis that the magnetic field affects TdR-K activity by way of a mediating structure, such as a membrane.  相似文献   

5.
In diploid yeast, split-dose recovery (SDR) after X-irradiation was affected, if incubation between split doses was performed in the presence of the protein-synthesis inhibitor, cycloheximide. In exponentially-growing cell-cultures, early SDR was undisturbed but complete recovery was not achieved. Concomitantly the cells show a decresing ability to perform subsequent liquid-holding recovery (LHR). In stationary-phase cell-cultures, SDR was completely suppressed. The cells show, however, recovery from potentially lethal damage in the presence of cycloheximide during incubation between the dose-fractions. The experimental results suggest that in diploid yeast SDR after X-irradiation is an enzymatic process dependent on a functioning protein metabolism.  相似文献   

6.
Depletion of glutathione after gamma irradiation modifies survival   总被引:2,自引:0,他引:2  
The relationship between the intracellular glutathione (GSH) concentration and the aerobic radiation response was studied in Chinese hamster ovary cells. Various degrees of GSH depletion were produced by exposure to buthionine sulfoximine (BSO) and/or diethyl maleate (DEM). Diethyl maleate did not act as a classical radiosensitizer under the experimental conditions employed, nor did exposure to DEM/BSO nonspecifically affect protein thiols as measured by thiol blotting. Dose-response curves were obtained using cells irradiated in the absence or presence of DEM/BSO, which decreased GSH levels by 90-95%. Exposure to DEM/BSO did not affect the formation of DNA single-strand breaks or DNA-protein crosslinks measured immediately after irradiation performed at ice temperatures. Analysis of survival curves indicated that the Dq was decreased by 18% when GSH depletion occurred prior to, during, and after irradiation. The DEM/BSO exposure did not affect D0. To study postirradiation conditions, cells were exposed to 10 microM DEM prior to and during irradiation, which was performed at ice temperatures. Levels of GSH were depleted by 75% by this protocol. Immediately after irradiation, the cells were rapidly warmed by the addition of 37 degrees C growth medium containing either 10 or 90 microM DEM. Addition of 10 microM DEM after irradiation did not affect the degree of depletion, which remained constant at 75%. In contrast, GSH depletion was increased to 90% 10 min after addition of the 90 microM DEM. Addition of 90 microM DEM after irradiation produced a statistically significant difference in survival compared to addition of 10 microM DEM. In a second depletion protocol, cells were exposed to 100 microM DEM at room temperature for 5 min, irradiated, incubated at 37 degrees C for 1 h, washed, and then incubated in 50 microM BSO for 24 h. This depletion protocol reduced survival by a factor of 2.6 compared to cells not exposed to the combination of DEM/BSO. Survival was not affected if the cells were exposed to the DEM or BSO alone. This was interpreted to indicate that survival was not affected by GSH depletion occurring after irradiation unless depletion was rapid and sustained. The rate of repair of sublethal and potentially lethal damage was measured and found to be independent of the DEM/BSO exposure. These experimental results in addition to previous ones (Freeman and Meredith, Int. J. Radiat. Oncol. Biol. Phys. 13, 1371-1375, 1987) were interpreted to indicate that under aerobic conditions GSH depletion may alter the expression of radiation damage by affecting metabolic fixation.  相似文献   

7.
The effects of topically-applied olive oil on the response of hamster skin to single or multiple doses of X-rays has been studied. The olive oil was applied either 15 min or 1 hour before the radiation exposures. The treatment did not alter the temporal pattern of development and recovery from the radiation injury. For single exposers, olive oil did not alter the 1- to 30-day average skin response. However, when it was administered at each treatment when three radiation fractions were given over a 4-day interval (3 fractions/4 days), a significant increase in the amount of dose recovered was found compared with control irradiated animals. For controls, the average amount of dose recovered per fractionation interval, (Dn-D1)/(n-1), was about 505 rad. For animals treated with olive oil 15 min before irradiation, it was about 720 rad; and for those treated 1 hour before irradiation, it was 782 rad. The data indicate a definite radioprotective effect of topical administration of olive oil, but at present the mechanism is not known.  相似文献   

8.
In an attempt to determine whether exposure to extremely low frequency (ELF) electromagnetic fields can affect cells, Ku80-deficient cells (xrs5) and Ku80-proficient cells (CHO-K1) were exposed to ELF electromagnetic fields. Cell survival, and the levels of the apoptosis-related genes p21, p53, phospho-p53 (Ser(15)), caspase-3 and the anti-apoptosis gene bcl-2 were determined in xrs5 and CHO-K1 cells following exposure to ELF electromagnetic fields and X-rays. It was found that exposure of xrs5 and CHO-K1 cells to 60 Hz ELF electromagnetic fields had no effect on cell survival, cell cycle distribution and protein expression. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields for 5 h after irradiation significantly inhibited G(1) cell cycle arrest induced by X-rays (1 Gy) and resulted in elevated bcl-2 expression. A significant decrease in the induction of p53, phospho-p53, caspase-3 and p21 proteins was observed in xrs5 cells when irradiation by X-rays (8 Gy) was followed by exposure to 5 mT ELF magnetic fields. Exposure of xrs5 cells to the ELF electromagnetic fields for 10 h following irradiation significantly decreased X-ray-induced apoptosis from about 1.7% to 0.7%. However, this effect was not found in CHO-K1 cells within 24 h of irradiation by X-rays alone and by X-rays combined with ELF electromagnetic fields. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields following irradiation can affect cell cycle distribution and transiently suppress apoptosis by decreasing the levels of caspase-3, p21, p53 and phospho-p53 and by increasing bcl-2 expression.  相似文献   

9.
PC12 cells were manipulated in such a way as to permit the study of differentiation-specific responses independently from proliferative responses. Cells were starved for serum then exposed to nerve growth factor (NGF) or serum. Following addition of serum, cells incorporated thymidine in a synchronous manner. Subsequent to the wave of DNA synthesis, the cell number increased approximately two-fold. Addition of NGF to serum-starved cultures had no measurable effect on either parameter. Neurite outgrowth was more rapid and extensive and appearance of Na+ channels, measured as saxitoxin binding sites, more rapid than when NGF was added to exponentially-growing cells. Epidermal growth factor receptors were heterologously down-regulated by NGF with similar kinetics under both conditions. Induction of the proto-oncogene c-fos by NGF was also greater in the serum-starved cells than in exponentially-growing cultures. These results indicated that serum starvation resulted in synchronisation of the cultures and that NGF action may be cell cycle-specific. Analysis of the cellular response to NGF at different times during the cell cycle showed that c-fos was induced in the G1 phase but not in S or G2. Fluorescence-activated cell sorter analysis demonstrated that addition of NGF to exponentially-growing cells, resulted in their accumulation in a G1-like state. With regard to the study of the mechanism of NGF action, these results illustrate that measurements of NGF effects on specific components in the signal transduction pathway may be confounded by the use of exponentially-growing cultures.  相似文献   

10.
V79 hamster cells in plateau (extended G1) phase were irradiated with either 250 kV ('hard') X-rays or carbon K characteristic ultrasoft X-rays under conditions minimizing cell overlap. These cells were killed most effectively by the carbon X-rays, by a factor of about 3 relative to hard X-rays, in agreement with our previous findings with cells in exponential growth. Chromosome-type aberrations were measured at 3 fixation times within the first division cycle after irradiation, and an approximately uniform sensitivity to aberration induction was found for both radiations. The combined aberration data show that carbon X-rays are 2 or more times as effective as hard X-rays, depending on dose and/or data fit. Exchange aberrations require recombination between two separate chromosomes, but they are induced efficiently by carbon X-rays with a substantial linear component to the dose-response despite the very short electron tracks (approximately less than 7 nm) that they produce in the cell. This implies either that the participating DNA helices must be lying extremely close together at the time of radiation damage, so that one track can effectively damage both helices, or that only one radiation-damaged chromosome is needed to promote an exchange event.  相似文献   

11.
Chinese hamster ovary cells grown in vitro were treated with bleomycin or irradiated with high doses of 60Co gamma rays (200 and 400 Gy). DNA strand breaks in single cells were analysed by using our newly introduced microelectrophoretic technique. Bleomycin seems to act in a selective manner so that in some cells the DNA is heavily degraded while in others there is only moderate or no measurable damage. In contrast, a uniform response was found after gamma irradiation. To achieve the same magnitude of DNA fragmentation as in the most severely bleomycin-damaged cells, irradiation with more than 200 Gy is required. Some 8000 double-strand breaks per cell are produced by 200 Gy which will convert the molecular weight of the DNA to the range of 10(8)-10(9) dalton, and free migration of DNA fragments occurs during electrophoresis. We include also a detailed study of the DNA migration pattern following doses of 0-100 Gy gamma rays.  相似文献   

12.
Male infertility is often related to reproductive age couples experiencing fertility-related issues. Men may have fertility problems associated with reversible testicular damage. Considering that men have been increasingly exposed to extremely low-frequency magnetic fields generated by the production, distribution and use of electricity, this study analyzed whether 60?Hz and 1?mT magnetic field exposure may impair spermatogenesis recovery after reversible testicular damage induced by heat shock using rats as an experimental model. Adult male rats were subjected to a single testicular heat shock (HS, 43?°C for 12?min) and then exposed to the magnetic field for 15, 30 and 60?d after HS. Magnetic field exposure during the spermatogenesis recovery induced changes in testis components volume, cell ultrastructure and histomorphometrical parameters. Control animals had a reestablished and active spermatogenesis at 60?d after heat shock, while animals exposed to magnetic field still showed extensive testicular degeneration. Magnetic field exposure did not change the plasma testosterone. In conclusion, extremely low-frequency magnetic field may be harmful to fertility recovery in males affected by reversible testicular damage.  相似文献   

13.
Liquid-holding conditions can be obtained for human diploid skin fibroblasts by keeping confluent cultures stationary over periods of 7 days or longer by means of conditioned medium. Under this condition recovery of radiation damage induced by ultraviolet light or X-rays is observed as an increase in cloning efficiency. The amount of recovery when expressed in a dose-modifying-factor appears higher than in bacteria and yeast. The repair-deficient human cell strains XP25Ro and XP7Be (xeroderma pigmentosum from complementation groups A and D respectively) exhibit less but still discernible recovery after UV-irradiation and the same was observed for AT5Bi (ataxia telangiectasia) after X-irradiation. Experiments on mutation induction indicated that the repair which takes place during liquid holding of UV-irradiated XP7Be cells reduces the mutant frequency considerably while after liquid holding of UV-irradiated wild-type cells the same or lower mutant frequencies were found for the lower exposures and the same or higher mutant frequencies for the higher exposures.  相似文献   

14.
It is shown that in diploid yeast there are significant differences in the extent of irreparable damage after irradiation with X-rays, 60Co-gamma-rays and 30 MeV electrons. At extremely low dose rates, 60Co-gamma-rays were found to produce almost no irreparable damage at least up to 1200 Gy. X-rays, however, at the same low dose rate caused irreparable damage in the same dose range yielding a surviving fraction of 0.25 at 1200 Gy. For irradiations at high dose rate followed by liquid holding recovery the relative biological effectiveness of X-rays amounted to at least 4 for absorbed doses of up to 1000 Gy. With 30 MeV electrons at high dose rates an accumulation of sublethal and potentially lethal damage resulting in irreparable damage occurred above 1000 Gy. It is suggested that irreparable damage in yeast is due to a cooperative effect of neighbouring track ends.  相似文献   

15.
Bystander and delayed effects after fractionated radiation exposure   总被引:3,自引:0,他引:3  
Human immortalized keratinocytes were exposed to a range of single or fractionated doses of gamma rays from (60)Co, to medium harvested from donor cells exposed to these protocols, or to a combination of radiation and irradiated cell conditioned medium (ICCM). The surviving fractions after direct irradiation or exposure to ICCM were determined using a clonogenic assay. The results show that medium harvested from cultures receiving fractionated irradiation gave lower "recovery factors" than direct fractionated irradiation, where normal split-dose recovery occurred. The recovery factor is defined here as the surviving fraction of the cells receiving two doses (direct or ICCM) separated by an interval of 2 h divided by the surviving fraction of cells receiving the same dose in one exposure. After treatment with ICCM, the recovery factors were less than 1 over a range of total doses from 5 mGy-5 Gy. Varying the time between doses from 10 min to 180 min did not alter the effect of ICCM, suggesting that two exposures to ICCM are more toxic than one irrespective of the dose used to generate the response. In certain protocols using mixtures of direct irradiation and ICCM, it was possible to eliminate the bystander effect. If bystander factors are produced in vivo, then they may reduce the sparing effect of the dose fractionation.  相似文献   

16.
We investigated the roles of gap junction communication and oxidative stress in modulating potentially lethal damage repair in human fibroblast cultures exposed to doses of α particles or γ rays that targeted all cells in the cultures. As expected, α particles were more effective than γ rays at inducing cell killing; further, holding γ-irradiated cells in the confluent state for several hours after irradiation promoted increased survival and decreased chromosomal damage. However, maintaining α-particle-irradiated cells in the confluent state for various times prior to subculture resulted in increased rather than decreased lethality and was associated with persistent DNA damage and increased protein oxidation and lipid peroxidation. Inhibiting gap junction communication with 18-α-glycyrrhetinic acid or by knockdown of connexin43, a constitutive protein of junctional channels in these cells, protected against the toxic effects in α-particle-irradiated cell cultures during confluent holding. Upregulation of antioxidant defense by ectopic overexpression of glutathione peroxidase protected against cell killing by α particles when cells were analyzed shortly after exposure. However, it did not attenuate the decrease in survival during confluent holding. Together, these findings indicate that the damaging effect of α particles results in oxidative stress, and the toxic effects in the hours after irradiation are amplified by intercellular communication, but the communicated molecule(s) is unlikely to be a substrate of glutathione peroxidase.  相似文献   

17.
J Kerkis 《Mutation research》1975,29(2):271-277
The culture time of rabbit lymphocytes (41–42 h) that provides cells in their first post-stimulation mitosis, was estimated on the basis of the mitotic index, dicentric yield and presence of the cells with these aberrations unaccompanied by acentric fragments, studied as a function of culture duration. The cells obtained in metaphase from cultures terminated at this time displayed no donor-to-donor variation where induction of dicentrics by X-rays was concerned.Rabbit venous blood was irradiated in vitro with a range of X- and gamma-ray doses, and dose-effect curves were obtained by regression analysis. Sixteen rabbits were irradiated in vivo (uniform whole-body irradiation), and blood was sampled 10 min, 6, 24, and 48 h after exposure. The frequency of dicentrics in the lymphocytes cultured did not change significantly over the first 24 h after irradiation. Dose-effect relationships in vivo fell within one standard error confidence limits of the respective curves in vitro. The authors conclude that the latter may be used for estimation of dose in vivo under conditions of homogeneous whole-body irradiation.  相似文献   

18.
The ability of yeast cells to retain potassium and to form colonies was studied after exposure to pressures ranging from 2 to 143 atmospheres of oxygen. The investigations allow comparison of these responses with those found after x-ray exposure. Exposure to 2 to 8 atmospheres of oxygen for 2, 20, and 40 hours showed decreased potassium leakage as measured by an elution technique. Further experiments using 0.5 to 22 hour exposures to 10 to 143 atmospheres of oxygen showed decreased potassium leakage when glucose was present in the test media, but increased leakage (as did x-ray effects) in the absence of substrate. There was increased potassium leakage into the suspending media (distilled water) during oxygen exposure but this usually did not affect the leakage rates measured subsequently. Marked inability to form colonies was observed after 20 hour exposures to 100 atmospheres of oxygen, with a much smaller response at lower pressures. Increased oxygen concentrations, not pressure, evidently caused these effects, since comparable pressures of nitrogen produced almost no change. The ratio of potassium leakage to survival sensitivity was found to be approximately unity when comparing exposures causing 50 per cent damage. This is quite different from that seen with x-ray or ultraviolet irradiation.  相似文献   

19.
The magnetic flux density of MRI for clinical diagnosis has been steadily increasing. However, there remains very little biological data regarding the effect of strong static magnetic fields (SMFs) on human health. To evaluate the effects of strong SMFs on biological systems, we cultured insulin-secreting cells under exposure to sham and SMF conditions (3-10 T of magnetic flux density, and 0-41.7 T/m of magnetic field gradient) for 0.5 or 1 h, and analyzed insulin secretion, mRNA expression, glucose-stimulated insulin secretion, insulin content, cell proliferation and cell number. Exposure to SMF with a high magnetic field gradient for 1 h significantly increased insulin secretion and insulin 1 mRNA expression. Exposure to SMF with a high magnetic flux density for 0.5 h significantly enhanced responsiveness to glucose stimulation. Exposure to SMF did not affect the insulin content, cell proliferation or cell number. Our results suggested that MRI systems with a higher magnetic flux density might not cause cell proliferative or functional damages on insulin-secreting cells, and that SMF with a high magnetic field gradient might be used clinically after thorough in vivo investigations are conducted.  相似文献   

20.
Recovery from potentially lethal radiation damage in HeLa S3 cells has been studied by irradiating synchronous cultures with 4 Gy at selected ages in the cell cycle, initiating treatment with 4 mM caffeine, which prevents recovery, at progressively later times up to 24-30 h after irradiation, and determining the plateau level of survival after incubation with the caffeine until 36-40 h after mitotic collection. Cell recovery appears to begin immediately after irradiation at any time during interphase: an accelerating increase in survival gives way after several hours to a linear increase which lasts for an additional several hours. The median recovery time is approximately 13 h after irradiation at any time during G1, but is markedly shorter (5-7 h) after irradiation in S or G2. The rate of recovery is slightly depressed if DNA replication is inhibited with aphidicolin after irradiation and slightly enhanced if protein synthesis is inhibited with cycloheximide. Both the rate and the extent of recovery are dependent on the location of the cells in the cycle at the time of irradiation--both functions increasing with cell age from the beginning of S, but having different age dependencies in G1. Blocking cell progression with a DNA-synthesis inhibitor before irradiation halts the age-dependent changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号