首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fungal bean pathogen Colletotrichum lindemuthianum differentiates appressoria in order to penetrate bean tissues. We showed that appressorium development in C. lindemuthianum can be divided into three stages, and we obtained three nonpathogenic strains, including one strain blocked at each developmental stage. H18 was blocked at the appressorium differentiation stage; i.e., no genuine appressoria were formed. H191 was blocked at the appressorium maturation stage; i.e., appressoria exhibited a pigmentation defect and developed only partial internal turgor pressure. H290 was impaired in appressorium function; i.e., appressoria failed to penetrate into bean tissues. Furthermore, these strains could be further discriminated according to the bean defense responses that they induced. Surprisingly, appressorium maturation, but not appressorium function, was sufficient to induce most plant defense responses tested (superoxide ion production and strong induction of pathogenesis-related proteins). However, appressorium function (i.e., entry into the first host cell) was necessary for avirulence-mediated recognition of the fungus.  相似文献   

2.
Conservation of the molecular mechanisms controlling appressorium-mediated penetration during evolution was assessed through a functional study of the ClPLS1 gene from Colletotrichum lindemuthianum orthologous to the MgPLS1 from Magnaporthe grisea, involved in penetration peg development. These two plant-pathogenic Pyrenomycetes differentiate appressoria to penetrate into plant tissues. We showed that ClPLS1 is a functional homologue of MgPLS1 in M. grisea. Loss of ClPLS1 function had no effect on vegetative growth, conidiation or on appressorium differentiation and maturation. However, Clpls1::hph mutants are non-pathogenic on either intact or wounded bean leaves, as a result of a defect in the formation and/or positioning of the penetration pore and consequently in the formation of the penetration peg. These observations suggest that the fungal tetraspanins control a conserved appressorial function that could be required for the correct localization of the site where the penetration peg emerges.  相似文献   

3.
The rice blast fungus, Magnaporthe grisea, forms a dome-shaped and darkly pigmented infection structure, an appressorium, to penetrate its host. Differentiation and maturation of appressoria are critical steps for successful infection. A spontaneous developmental mutant (MG01) defective in appressorium formation was found in this fungus. The mutant did not form appressoria either on inductive hydrophobic surfaces or on rice leaves. The addition of cyclic AMP or 1,16-hexadecanediol was not effective in inducing appressorium formation in this mutant. This mutant did not cause lesions on rice when inoculated with conidial suspension by spraying or injecting into the leaf sheath. Genetic analysis of the mutant indicated that the phenotype is under single gene control, designated APP5. Crosses with previously described appressorium defective mutants (app1 and app3) of Magnaporthe grisea suggested that the mutations are at different loci. Bulked segregant analysis was employed to obtain DNA markers linked to the APP5 locus.  相似文献   

4.
We developed a method to purify appressoria of the bean anthracnose fungus Colletotrichum lindemuthianum for biochemical analysis of the cell surface and to compare appressoria with other fungal structures. We used immunomagnetic separation after incubation of infected bean leaf homogenates with a monoclonal antibody that binds strongly to the appressoria. Preparations with a purity of >90% could be obtained. Examination of the purified appressoria by transmission electron microscopy showed that most had lost their cytoplasm. However, the plasma membrane was retained, suggesting that there is some form of attachment of this membrane to the cell wall. The purified appressoria can be used for studies of their cell surface, and we have shown that there are clear differences in the glycoprotein constituents of cell walls of appressoria compared with mycelium.  相似文献   

5.
Glomerella cingulata f.sp. phaseoli and Colletotrichum lindemuthianum are the teleomorph and anamorph, respectively, of the pathogen causing anthracnose in common bean. The mechanisms relating to the sexual reproduction of this plant pathogen are still unclear, as are the infection structures involved and the symptoms produced. In the present study, bean plants were inoculated with ascospores and conidia, and the events taking place within the following 120 h were investigated using light microscopy and scanning electron microscopy. The symptoms exhibited by plants inoculated with the ascospores were milder than in those inoculated with conidia. Microscopy revealed that most of ascospores produced germ tubes and appressoria at an early stage (24 h after inoculation). From 48 h onwards, the formation of hyphae and the production of germ tubes and appressoria were great. In contrast, infections originating from conidia developed more slowly, and at 24 and 48 h, many non‐germinated conidia were present, whereas only few conidia developed germ tubes and appressoria. Ascospore germination and appressorium formation were similar on both resistant and susceptible cultivars. Hence, the symptoms and the temporal sequence of events associated with the infection of bean plants by the two fungal forms differed, although the structures produced were similar. This is the fist report comparing symptoms and prepenetration events between anamorph and teleomorph of G. cingulata f.sp. phaseoli in common bean.  相似文献   

6.
The 5′ noncoding region of clpg2, an endopolygalacturonase gene of the bean pathogen Colletotrichum lindemuthianum, was fused to the coding sequence of a gene encoding a green fluorescent protein (GFP), and the construct was introduced into the fungal genome. Detection of GFP accumulation by fluorescence microscopy examination revealed that clpg2 was expressed at the early stages of germination of the conidia and during appressorium formation both in vitro and on the host plant.  相似文献   

7.
Summary Histochemical and ultrastructural studies were carried out on a wild-type strain (Guyll) and a melanin-deficient mutant(büβ) of the rice-blast pathogen,Magnaporthe grisea (=Pyricularia oryzae), in order to investigate the destination of lipid storage reserves during appressorium development. Lipid droplets were abundant in conidia and were mobilised upon germination, accumulating in the appressorial hook which developed at the tip of each germ tube. Following the formation of a septum at the base of the nascent appressorium, one or a few closely appressed central vacuoles became established and were observed to enlarge in the course of appressorium maturation. On unyielding artificial surfaces such as glass or plastic, appressoria matured to completion within 36–48 h, by which time the enlarged vacuole filled most of the inside volume of the appressorium. Light and transmission electron microscopical observations revealed that the lipid droplets entered the vacuole by autophagocytosis and were degraded therein. Histochemical approaches confirmed the vacuole as the key lytic element in maturing appressoria. Endocytosis of a vital dye, Neutral Red, progressed via endosomes which migrated into the vacuole and lysed there, releasing their dye content into the vacuolar lumen. Furthermore, activity of the lysosomal marker enzyme, acid phospho-monoesterase, was strongly localised in the vacuole at all stages of appressorium maturation. It is therefore envisaged that vacuoles are involved in the degradation of lipid storage reserves which may act as sources of energy and/or osmotically active metabolites such as glycerol, which generate the very high turgor pressure known to be crucial for penetration of hard surfaces. On softer surfaces such as onion epidermis, appressoria ofM. grisea were able to penetrate before degradation of lipid droplets had been completed.  相似文献   

8.
9.
After a brief period of biotrophic growth, the anthracnose fungus Colletotrichum lindemuthianum (Sacc. et Mgn.) Bri et Cav. develops extensively in bean leaf cells, causing severe wall alterations and death of the host protoplast. Aplysia gonad lectin, a polygalacturonic acid-binding agglutinin, was complexed to gold and used to study the extent of pectin breakdown during the necrotrophic phase of the infection process. In view of its specific binding properties for the endopolygalacturonase produced by C. lindemuthianum, a polygalacturonase-inhibiting protein isolated from bean cell walls was successfully tagged with gold particles and used for localizing the sites of enzyme accumulation in infected host tissues. The basal level of endopolygalacturonase produced by C. lindemuthianum grown in culture was found to increase severalfold when the fungus developed in host plant tissues. The enzyme was able to diffuse freely in the host cell wall, causing drastic degradation of the pectic material of primary walls and middle lamella matrices. The enzymatic alteration of plant cell walls was accompanied by the release of pectic fragments and by the accumulation of pectic molecules at specific sites, such as intercellular spaces and aggregated cytoplasm of infected host cells. The occurrence of pectic molecules at those sites where fungal growth is likely to be restricted is discussed in relation to their origin and their implication in the plant's defense system.  相似文献   

10.
《Experimental mycology》1993,17(1):70-78
Terhune, B. T., Bojko, R. J., and Hoch, H. C. 1993. Deformation of stomatal guard cell lips and microfabricated artificial topographies during appressorium formation by Uromyces. Experimental Mycology 17, 70-78. The inductive signal, stomatal guard cell lips or 0.5-μm-high plastic ridges, for appressorium formation in urediospore germlings of Uromyces appendiculatus was examined for signs of physical deformation during the course of appressorium development. The normally erect stomatal guard cell lips were usually observed prostrate at most stages of appressorium development; and, there were no persistent or significant indentations into the fungal cell that might have been caused by the topographical features. To further evaluate the events that occurred at the lip-appressorium interface in situ, polycarbonate and/or polystyrene ridges (0.5 μm high and 0.25 μm wide), mimicking stomatal guard cell lips of Phaseolus vulgaris, were cast on specifically microfabricated silicon templates. These artificial lips induced appressoria and became deformed approximately 30 min after initial contact by the germ tube apex as recorded and observed with time-lapsed video light microscopy. The collapsed nature of the ridges was further evaluated by both transmission and scanning electron microscopy. These results suggest that mechanical forces imposed by a combination of cell turgor pressure and adhesion of the appressorium to the substrate were responsible for deformation of the inductive topography.  相似文献   

11.
To gain entry to plants, many pathogenic fungi develop specialized infection structures called appressoria. Here, we demonstrate that appressorium morphogenesis in the rice blast fungus Magnaporthe oryzae is tightly regulated by the cell cycle. Shortly after a fungus spore lands on the rice (Oryza sativa) leaf surface, a single round of mitosis always occurs in the germ tube. We found that initiation of infection structure development is regulated by a DNA replication-dependent checkpoint. Genetic intervention in DNA synthesis, by conditional mutation of the Never-in-Mitosis 1 gene, prevented germ tubes from developing nascent infection structures. Cellular differentiation of appressoria, however, required entry into mitosis because nimA temperature-sensitive mutants, blocked at mitotic entry, were unable to develop functional appressoria. Arresting the cell cycle after mitotic entry, by conditional inactivation of the Blocked-in-Mitosis 1 gene or expression of stabilized cyclinB-encoding alleles, did not impair appressorium differentiation, but instead prevented these cells from invading plant tissue. When considered together, these data suggest that appressorium-mediated plant infection is coordinated by three distinct cell cycle checkpoints that are necessary for establishment of plant disease.  相似文献   

12.
Trimeric G-proteins transmit extracellular signals to various downstream effectors (e.g. MAP kinases) in eukaryotes. In the rice blast fungus Magnaporthe grisea, the Pmk1 MAP kinase is essential for appressorium formation and infectious growth. The pmk1 deletion mutant fails to form appressoria but still responds to exogenous cAMP for tip deformation. Since gene disruption mutants of three Galpha subunits still form appressoria and are phenotypically different from pmk1 mutants, it is likely that the Pmk1 pathway is activated by Gbeta in M. grisea. In this study, we isolated and characterized the MGB1 gene that encodes the G subunit in M. grisea. Mutants disrupted in MGB1 were reduced in conidiation. Conidia from mgb1 mutants were defective in appressorium formation and failed to penetrate or grow invasively on rice leaves. Exogenous cAMP induced appressorium formation in mgb1 mutants, but these appressoria were abnormal in shape and could not penetrate. The intracellular cAMP level was reduced in mgb1 mutants and the defects in conidiation and hyphal growth were partially suppressed with 1 mM cAMP. Transformants expressing multiple copies of MGB1 were able to form appressoria on hydrophilic surfaces. Our results suggest that MGB1 may be involved in the cAMP signalling for regulating conidiation, surface recognition and appressorium formation. The Pmk1 pathway may be the downstream target of MGB1 for regulating penetration and infectious hyphae growth in M. grisea.  相似文献   

13.
Liu XH  Lu JP  Zhang L  Dong B  Min H  Lin FC 《Eukaryotic cell》2007,6(6):997-1005
We isolated an MgATG1 gene encoding a serine/threonine protein kinase from the rice blast fungus Magnaporthe grisea. In the DeltaMgatg1 mutant, in which the MgATG1 gene had been deleted, autophagy was blocked; the mutant also showed fewer lipid droplets in its conidia, lower turgor pressure of the appressorium, and such defects in morphogenesis as delayed initiation and slower germination of conidia. As a result of lower turgor pressure of the appressorium, the DeltaMgatg1 mutant lost its ability to penetrate and infect the two host plants, namely, rice and barley. However, normal values of the parameters and infective abilities were restored on reintroducing an intact copy of the MgATG1 gene into the mutant. Autophagy is thus necessary for turnover of organic matter during the formation of conidia and appressoria and for normal development and pathogenicity in M. grisea.  相似文献   

14.
Kelch repeat proteins are important mediators of fundamental cellular functions and are found in diverse organisms. However, the roles of these proteins in filamentous fungi have not been characterized. We isolated a kelch repeat-encoding gene of Colletotrichum lagenarium ClaKEL2, a Schizosaccharomyces pombe tea1 homologue. Analysis of the clakel2 mutant indicated that ClaKEL2 was required for the establishment of cellular polarity essential for proper morphogenesis of appressoria and that there is a plant signal-specific bypass pathway for appressorium development which circumvents ClaKEL2 function. Clakel2p was localized in the polarized region of growing hyphae and germ tubes, and the localization was disturbed by a microtubule assembly blocker. The clakel2 mutants formed abnormal appressoria, and those appressoria were defective in penetration hypha development into cellulose membranes, an artificial model substrate for fungal infection. Surprisingly, the clakel2 mutants formed normal appressoria on the host plant and retained penetration ability. Normal appressorium formation on the artificial substrate by the clakel2 mutants was restored when cells were incubated in the presence of CaCl2 or exudates from cucumber cotyledon. Furthermore, calcium channel modulators inhibited restoration of normal appressorium formation. These results suggest that there could be a bypass pathway that transduces a plant-derived signal for appressorium development independent of ClaKEL2 and that a calcium signal is involved in this transduction pathway.  相似文献   

15.
Mutagenesis of Magnaporthe grisea strain 4091-5-8 led to the identification of PTH11, a pathogenicity gene predicted to encode a novel transmembrane protein. We localized a Pth11-green fluorescent protein fusion to the cell membrane and vacuoles. pth11 mutants of strain 4091-5-8 are nonpathogenic due to a defect in appressorium differentiation. This defect is reminiscent of wild-type strains on poorly inductive surfaces; conidia germinate and undergo early differentiation events, but appressorium maturation is impaired. Functional appressoria are formed by pth11 mutants at 10 to 15% of wild-type frequencies, suggesting that the protein encoded by PTH11 (Pth11p) is not required for appressorium morphogenesis but is involved in host surface recognition. We assayed Pth11p function in multiple M. grisea strains. These experiments indicated that Pth11p can activate appressorium differentiation in response to inductive surface cues and repress differentiation on poorly inductive surfaces and that multiple signaling pathways mediate differentiation. PTH11 genes from diverged M. grisea strains complemented the 4091-5-8 pth11 mutant, indicating functional conservation. Exogenous activation of cellular signaling suppressed pth11 defects. These findings suggest that Pth11p functions at the cell cortex as an upstream effector of appressorium differentiation in response to surface cues.  相似文献   

16.
Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation is largely unknown. Infectious hyphae grow on the leaf surface by inserting regularly spaced retraction septa at the distal end of the tip cell leaving empty sections of collapsed hyphae behind. Here we show that formation of retraction septa is critical for appressorium formation and virulence in U. maydis. We demonstrate that the diaphanous-related formin Drf1 is necessary for actomyosin ring formation during septation of infectious hyphae. Drf1 acts as an effector of a Cdc42 GTPase signaling module, which also consists of the Cdc42-specific guanine nucleotide exchange factor Don1 and the Ste20-like kinase Don3. Deletion of drf1, don1 or don3 abolished formation of retraction septa resulting in reduced virulence. Appressorium formation in these mutants was not completely blocked but infection structures were found only at the tip of short filaments indicating that retraction septa are necessary for appressorium formation in extended infectious hyphae. In addition, appressoria of drf1 mutants penetrated the plant tissue less frequently.  相似文献   

17.
18.
When faced with nonadapted fungal pathogens, Arabidopsis thaliana mounts nonhost resistance responses, which typically result in the termination of early pathogenesis steps. We report that nonadapted anthracnose fungi engage two alternative entry modes during pathogenesis on leaves: turgor-mediated invasion beneath melanized appressoria, and a previously undiscovered hyphal tip–based entry (HTE) that is independent of appressorium formation. The frequency of HTE is positively regulated by carbohydrate nutrients and appears to be subject to constitutive inhibition by the fungal mitogen-activated protein kinase (MAPK) cascade of MAPK ESSENTIAL FOR APPRESSORIUM FORMATION1. The same MAPK cascade is essential for appressorium formation. Unexpectedly, the Arabidopsis indole glucosinolate pathway restricts entry of the nonadapted anthracnose fungi only when these pathogens employ HTE. Arabidopsis mutants defective in indole glucosinolate biosynthesis or metabolism support the initiation of postinvasion growth of nonadapted Colletotrichum gloeosporioides and Colletotrichum orbiculare. However, genetic disruption of Colletotrichum appressorium formation does not permit HTE on host plants. Thus, Colletotrichum appressoria play a critical role in the suppression of preinvasion plant defenses, in addition to their previously described role in turgor-mediated plant cell invasion. We also show that HTE is the predominant morphogenetic response of Colletotrichum at wound sites. This implies the existence of a fungal sensing system to trigger appropriate morphogenetic responses during pathogenesis at wound sites and on intact leaf tissue.  相似文献   

19.
20.
Colletotrichum lagenarium, the causal agent of cucumber anthracnose, invades host plants by forming a specialized infection structure called an appressorium. In this fungus, the mitogen-activated protein kinase (MAPK) gene CMK1 is involved in several steps of the infection process, including appressorium formation. In this study, the goal was to investigate roles of other MAPKs in C. lagenarium. The MAPK gene MAF1, related to Saccharomyces cerevisiae MPK1 and Magnaporthe grisea MPS1, was isolated and functionally characterized. The maf1 gene replacement mutants grew normally, but there was a significant reduction in conidiation and fungal pathogenicity. The M. grisea mps1 mutant forms appressoria, but conidia of the C. lagenarium maf1 mutants produced elongated germ tubes without appressoria on both host plant and glass, on which the wild type forms appressoria, suggesting that MAF1 has an essential role in appressorium formation on inductive surfaces. On a nutrient agar, wild-type conidia produced elongated germ tubes without appressoria. The morphological phenotype of the wild type on the nutrient agar was similar to that of the maf1 mutants on inductive surfaces, suggesting repression of the MAF1-mediated appressorium differentiation on the nutrient agar. The cmk1 mutants failed to form normal appressoria but produced swollen, appressorium-like structures on inductive surfaces, which is morphologically different from the maf1 mutants. These findings suggest that MAF1 is required for the early differentiation phase of appressorium formation, whereas CMK1 is involved in the maturation of appressoria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号