首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Morphological characteristics of the forestomach, as well as reports of a natural diet that mostly excludes monocots, suggest that dikdiks (Madoqua spp.), among smallest extant ruminants, should have a 'moose-type' forestomach physiology characterised by a low degree of selective particle retention. We tested this assumption in a series of feeding experiments with 12 adult Phillip's dikdiks (Madoqua saltiana phillipsi) on three different intake levels per animal, using cobalt-EDTA as a solute marker and a 'conventional' chromium-mordanted fibre (<2 mm; mean particle size 0.63 mm) marker for the particle phase. Body mass had no influence on retention measurements, whereas food intake level clearly had. Drinking water intake was not related to the retention of the solute marker. In contrast to our expectations, the particle marker was retained distinctively longer than the solute marker. Comparisons with results in larger ruminants and with faecal particle sizes measured in dikdiks suggested that in these small animals, the chosen particle marker was above the critical size threshold, above which particle delay in the forestomach is not only due to selective particle retention (as compared to fluids), but additionally due to the ruminal particle sorting mechanism that retains particles above this threshold longer than particles below this threshold. A second study with a similar marker of a lower mean particle size (0.17 mm, which is below the faecal particle size reported for dikdiks) resulted in particle and fluid retention patterns similar to those documented in other 'moose-type' ruminants. Nevertheless, even this smaller particle marker yielded retention times that were longer than those predicted by allometric equations based on quarter-power scaling, providing further support for observations that small ruminants generally achieve longer retention times and higher digestive efficiencies than expected based on their body size.  相似文献   

2.
In domestic ruminants, the stratification of forestomach contents – the results of flotation and sedimentation processes – is an important prerequisite for the selective particle retention in this organ. A series of anatomical and physiological measurements suggests that the degree of this stratification varies between browsing and grazing wild ruminants. We investigated the forestomach contents of free-ranging mouflon and roe deer shot during regular hunting procedures. There was no difference between the species in the degree by which forestomach ingesta separated according to size due to buoyancy characteristics in vitro. However, forestomach fluid of roe deer was more viscous than that of mouflon, and no difference in moisture content was evident between the dorsal and the ventral rumen in roe deer, in contrast to mouflon. Hence, the forestomach milieu in roe deer appears less favourable for gas or particle separation due to buoyancy characteristics. These findings are in accord with notable differences in forestomach papillation between the two species. In roe deer, particle separation is most likely restricted to the reticulum, whereas in mouflon, the whole rumen may pre-sort particles to a higher degree. The results suggest that differences in forestomach physiology may occur across ruminant species.  相似文献   

3.
Although several aspects of the digestive physiology of the hippopotamidae-non-ruminating foregut fermenters-have been described, ingesta kinetics and passage characteristics of these species are not well understood. The most outstanding feature of the hippo digestive physiology reported so far is the very long mean ingesta retention times (MRTs) measured by Foose [Foose, T., 1982. Trophic strategies of ruminant versus nonruminant ungulates. PhD dissertation, University of Chicago, Chicago.]. Since those data had been investigated with animals without water access, we intended to measure MRT in hippos which were allowed to enter water pools during the night. MRT parameters as well as dry matter (DM) digestibility were determined in four common (Hippopotamus amphibius) and four pygmy hippos (Hexaprotodon liberiensis) on two different diets each using cobalt ethylendiamintetraacetate (Co-EDTA) as a fluid, chromium (Cr)-mordanted fibre (<2 mm) as a particle and acid detergent lignin (ADL) as an internal digestibility marker. Four of the animals additionally received cerium (Ce)-mordanted fibres (2-10 mm) as particle markers. Total MRTs for fluids and particles ranged between 20-35 and 48-106 h in the common and between 13-39 and 32-107 h in the pygmy hippos. The difference between fluid and particle retention was greater than usually reported in ruminants. Excretion patterns of the markers differed from those usually observed in ruminants but resembled those reported for macropods (kangaroos), indicating a plug-flow reactor-like physiology in the hippo forestomach (FRST). This finding complements other described similarities between the macropod and the hippo forestomach. The measurements of larger particle retention profiles suggest that in the hippo, larger particles might be excreted either faster or at the same rate as smaller particles, indicating a general difference between ruminants and hippos with respect to differential particle retention. The digestive physiology of hippos is characterised by a generally low food intake, long ingesta retention times and dry matter digestibilities lower than reported in ruminants. Moderate digestibilities in spite of long retention times might be the result of the generally high average ingesta particle size in hippos. The comparatively easy management of pygmy hippos, together with the significant correlations between food intake, MRT and digestibility in the pygmy hippos of this study, recommends this species for further studies on the interplay of these parameters in herbivore digestive physiology.  相似文献   

4.
1. The interaction between the density of ingesta and gravity observed in the digestive systems of ruminant herbivores should receive attention in other non‐ruminant herbivorous mammals. The resting postures adopted by non‐ruminants are of particular interest. 2. A new interpretation of established findings regarding the digestive tract of sloths illustrates that the interplay of posture, anatomy, the density of ingesta and gravity can provide a novel explanation of behavioural and morphological adaptations in herbivores, as the average particle size and dry‐matter content increases within their forestomach from its caudal towards its cranial portion. In sloths, this could be indicative of a stratification of ingesta occurring in the upright sitting posture adopted while resting, as opposed to their characteristic upside down posture when moving. 3. The sitting resting posture of sloths could therefore be an adaptation to exploit the tendency of the forestomach contents to stratify in order to pass larger, more difficult‐to‐digest particles faster from the fermentation chamber.  相似文献   

5.
Retention time of food in the digestive tract is a major aspect describing the digestive physiology of herbivores. Differences in feed retention times have been described for different ruminant feeding types. In this study, a dominantly grazing desert ruminant, the addax (Addax nasomaculatus), was investigated in this respect. Eight animals with a body weight (BW) of 87+/-5.3 kg on an ad libitum grass hay (Chloris gayana) diet were available. Co-EDTA and Cr-mordanted fibers (<2 mm) were used as pulse-dose markers. Mean retention time (MRT) in the digestive tract was calculated from faecal marker excretion. Average daily intake of the addax was found to be 1.7 kg dry matter (DM) or 60+/-8.3 g DM/kg BW(0.75). The MRT of fluid and particles in the reticulo-rumen (MRT(fluid)RR and MRT(particle)RR) were quantified to be 20+/-5.8 and 42+/-7.0 h respectively. When compared to literature data, MRT(fluid)RR was significantly longer than in cattle species, and MRT(particle)RR was significantly longer than in 11 taxa of all feeding types. The ratio of MRT(particle)RR/MRT(fluid)RR (2.3+/-0.5) was found to be within the range described for grazing ruminants. The long retention times found in the addax can be interpreted as an adaptation to a diet including a high proportion of slow fermenting grasses, while the long retention time of the fluid phase can be interpreted as a consequence of water saving mechanisms of the desert-adapted addax with a potentially low water turnover and capacious water storing rumen.  相似文献   

6.
Retention time of food in the digestive tract is a major aspect describing the digestive physiology of herbivores. Differences in feed retention times have been described for different ruminant feeding types. In this study, a dominantly grazing desert ruminant, the addax (Addax nasomaculatus), was investigated in this respect. Eight animals with a body weight (BW) of 87+/-5.3 kg on an ad libitum grass hay (Chloris gayana) diet were available. Co-EDTA and Cr-mordanted fibers (<2 mm) were used as pulse-dose markers. Mean retention time (MRT) in the digestive tract was calculated from faecal marker excretion. Average daily intake of the addax was found to be 1.7 kg dry matter (DM) or 60+/-8.3 g DM/kg BW(0.75). The MRT of fluid and particles in the reticulo-rumen (MRT(fluid)RR and MRT(particle)RR) were quantified to be 20+/-5.8 and 42+/-7.0 h respectively. When compared to literature data, MRT(fluid)RR was significantly longer than in cattle species, and MRT(particle)RR was significantly longer than in 11 taxa of all feeding types. The ratio of MRT(particle)RR/MRT(fluid)RR (2.3+/-0.5) was found to be within the range described for grazing ruminants. The long retention times found in the addax can be interpreted as an adaptation to a diet including a high proportion of slow fermenting grasses, while the long retention time of the fluid phase can be interpreted as a consequence of water saving mechanisms of the desert-adapted addax with a potentially low water turnover and capacious water storing rumen.  相似文献   

7.
Summary A simulation model is used to quantify relationships between diet quality, digestive processes and body weight in ungulate herbivores. Retention time of food in the digestive tract is shown by regression to scale with W0.27, and to be longer in ruminants than in hindgut fermenters. Allometric relationships between whole gut mean retention time (MRT, h) and weight (W) were: MRT=9.4 W0.255 (r 2=0.80) for hindgut fermenters and MRT=15.3 W0.251 (r 2=0.76) in ruminants. Longer retention of ingesta by large-bodied ruminants and hindgut fermenters increases digestive efficiency relative to small animals and permits them to survive on lower-quality foods. Compared with ruminants, hindgut fermenters' faster throughput is an advantage which outweighs their lower digestive efficiency, particularly on poor quality foods, provided that food resources are not limiting. This suggests that the predominance of ruminants in the middle range of body weights results from their more efficient use of scarce resources under conditions of resource depletion. Considering only physical limitations on intake, the model shows that the allometric coefficient which scales energy intake to body mass is 0.88 in ruminants and 0.82 in hindgut fermenters. The advantages of large body size are countered by disadvantages where food quantity is limited, and we suggest that the upper limit to ungulate body size is determined by the ability to extract nutrients from feeding niches during the nadir of the seasonal cycle of resource quality and abundance.  相似文献   

8.
Ruminant species differ in the degree that their rumen contents are stratified but are similar insofar that only very fine particles are passed from the forestomach to the lower digestive tract. We investigated the passage kinetics of fluid and particle markers (2, 10 and 20 mm) in fistulated cattle (Bos primigenius f. taurus), muskoxen (Ovibos moschatus), reindeer (Rangifer tarandus) and moose (Alces alces) on different diets. The distribution of dry matter in the rumen and the viscosity of rumen fluids suggested that the rumen contents were more stratified in muskoxen than moose. Correspondingly, as in previous studies, the species differed in the ratio of mean retention times of small particles to fluids in the reticulorumen, which was highest in cattle (2.03) and muskoxen (1.97–1.98), intermediate in reindeer (1.70) and lowest in moose (0.98–1.29). However, the ratio of large to small particle retention did not differ between the species, indicating similarity in the efficiency of the particle sorting mechanism. Passage kinetics of the two largest particle classes did not differ, indicating that particle retention is not a continuous function of particle size but rather threshold-dependent. Overall, the results suggest that fluid flow through the forestomach differs between ruminant species. A lower relative fluid passage, such as in moose, might limit species to a browse-based dietary niche, whereas a higher relative fluid passage broadens the dietary niche options and facilitates the inclusion of, or specialization on, grass. The function of fluid flow in the ruminant forestomach should be further investigated.  相似文献   

9.
Up-to-date experimental results on mechanisms and physiological significance of mineral cations absorption in the reticulo-rumen of ruminants are observed in the review. Up to 90% of sodium, 100% of potassium and calcium and about 30-60% of magnesium pass across epithelium of the reticulo-rumen of domestic ruminants by electroneitral way through cation per hydrogen exchanges. In wild ruminant (reindeer) the item for sodium is up to 100%. Intracellular hydrogen ions are available due to carbonic anhydrase I function. The exchanges have great significance for the animals. The first, their organisms get cations mainly by metabolic products using. The second, hydrogen ions excretion is necessary for reticulo-rumen epithelial cells successful proliferation. The third, hydrogen ions excretion may be considered as a excretory mechanism of metabolic acidosis compensation in the digestive tract of ruminants. These moments may be observed as physiological mechanisms of adaptation of wild ruminants to seasonal dynamic of nutrition.  相似文献   

10.
哺乳动物的消化策略(英文)   总被引:13,自引:2,他引:11  
IanD.Hume 《动物学报》2002,48(1):1-19
理解动物的营养生态位是充分理解其整个生态学的基础,对于害兽控制和物种保护也很重要,食肉动物的小肠很发达,这可能与对食物的高消化能力有关;杂食性动物有更复杂的胃肠器官,其后端有可进行发酵的盲肠,消化物的平均滞留时间(mean retention times,MRTs)更长;最长的平均滞留时间见于食草动物,其消化道内高密度的微生物种群对不同滞留区内的消化物进行发酵,但是,并不是所有的食草动物都能够最大程度地消化植物纤维,只有反刍动物、骆驼和个体较大的后肠发酵动物(hindgut fermenter)能够具有这种能力,对比而言,许多其它的食草动物,如前肠发酵的有袋类和小型的后肠发酵动物如兔子、田鼠和负鼠等,它们具备可以使植物纤维消化效率最大的消化系统,可以在食物中的纤维素含量非常高的情况下仍能处理大量的食物。这些不同的消化策略使哺乳动物具有广幅的营养生态位。  相似文献   

11.
The omasum is the third forestomach compartment of pecoran ruminants. It is assumed that the re-absorption of fluid present in the forestomach digesta (that facilitates particle sorting, digestion, and harvest of microbes) is its main function, so that less diluted digesta is submitted to enzymatic digestion in the lower digestive tract. Here, we evaluate measures of omasum size (representing 84 ruminant species in the largest data set) against body mass and proxies of the natural diet (%grass) or forestomach physiology (fluid throughput), using phylogenetically controlled models. The origin of specimens (free-ranging or captive) did not have an effect in the data set. Models with the best support invariably either included %grass or a physiology proxy in addition to body mass. These effects were not necessarily additive (affecting the intercept of the allometric regression), but often indicated a change in the allometric body mass-exponent with diet or physiology. Only models that allowed an influence on the allometric exponent yielded basic exponents compatible with predictions derived from geometry. Species that include more grass in their natural diet, or that have a “cattle-type” physiology marked by a high forestomach fluid throughput, generally have larger omasa. However, the existence of outliers, as well as the overall data pattern, suggest that this is not an obligatory morphophysiological condition. Circumstantial evidence is presented leading to the hypothesis that the comparatively small and less complex omasa of “moose-type” species do not necessarily represent an “original” state, but may be derived from more complex states by ontogenetic reduction and fusion of omasal laminae.  相似文献   

12.
In chronic experiments on pregnant and lactating sheeps with large fistula of rumen the dynamics of progesterone transport in a cavity of temporarily isolated reticulo-rumen depending on a physiological condition of animals, composition of solution filling a cavity of organ, and time of incubation, were studied. On three animals, 24 experiments were carried out. It was established that, during pregnancy, in a cavity of reticulo-rumen more progesterone was transported than during lactation (p < 0.05). Addition of lignin and cellulose to the salt solution increased the progesterone transport in the cavity of reticulo-rumen (p < 0.001). During three-hour incubation of salt solution in the cavity of reticulo-rumen, an increase of progesterone transport was observed in cavity of the organ (p < 0.001). The data obtained confirm the assumption that forestomach of ruminants participates in removing of progesterone from internal environment to enteral one and that carbohydrate polymers facilitate this process.  相似文献   

13.
In contrast to the domestic horse, whose digestive physiology has been thoroughly investigated, knowledge on the digestive physiology of wild equids is scarce. Comparisons between the domestic horse and the domestic donkey suggest that wild asses might achieve higher digestibilities. This could derive from longer retention times or a greater difference in the mean retention time (MRT) of particles vs. fluid (the selectivity factor (SF)). Here, we measured MRT of a solute (fluid; MRTsolute) and a particle (<2 mm; MRTparticle) marker in five captive male Somali wild asses (Equus africanus somaliensis) fed a diet of 95% grass hay. At a mean dry matter intake of 94 ± 3 g kg?0.75 day?1, MRTsolute was 33.3 ± 5.4 h and MRTparticle 39.6 ± 3.9 h, resulting in a SF of 1.21 ± 0.14. For their food intake, Somali wild asses appeared to have slightly higher MRTparticle than expected based on domestic equid data, in contrast to Grevy zebras (Equus grevyi), potentially indicating higher capacities of the digestive tract. However, considering data on domestic horses, donkeys, and zebra, there was no evident difference in the SF of wild equids compared to domestic ones. Together with an absence of reported anatomical differences in the digestive tract of wild and domestic equids, the data suggest a general similarity in the digestive physiology of equid species that contrasts with the diversity in the digestive physiology of ruminants, and that might be one contributing factor to a lack of sympatric, niche-differentiated equid species.  相似文献   

14.
Little is known about the effect of age on digestive processes in wild cervids. One potentially important mechanism is that tooth wear alters the occlusal surface topography, causing gradual loss of functionality. Mastication efficiency is crucial to digestion processes among ruminants, as a larger particle size is associated with longer retention times and potentially reduced digestion efficiency. Using data from 49 adult Svalbard reindeer Rangifer tarandus platyrhynchus females, we investigated whether the mass of reticulo-rumen (RR) contents and tissue and the amount of back fat showed age-related changes. Older animals had higher RR content mass than younger individuals. This is consistent with the prediction that altered particle size due to decreased mastication efficiency led to increased rumen retention time either through increased RR capacity or filling. Additional data on RR particle size distribution were available for a subset ( n =30). The correlation between the proportion of small particles (<1.0 mm) and RR contents was much weaker than the correlation between age and RR contents. This suggests that additional factors apart from particle size contribute to the age-related pattern in RR content mass. The mass of RR tissue in older animals was higher than that in younger animals. This possibly reflects an adaptation to the higher organ fill. The amount of back fat decreased with age, suggesting that alterations in digestion-related processes are not sufficient to compensate for reduced mastication efficiency in Svalbard reindeer. Our results present one possible link between foraging, digestive processes and life-history patterns.  相似文献   

15.
Herbivores that digest plant material in the fore-stomach can be divided in ruminants and non-ruminants. This study describes the distribution of feed particles (and inorganic material) and dry matter (DM) in the digestive tract of non-ruminant foregut fermenters. Results from passage trials led us to hypothesize that specific particle-sorting mechanisms, as observed in ruminants, are unlikely in non-ruminants. Therefore, no systematic particle size distribution effects (indicative of a sorting mechanism) should be evident in the fore-stomachs of these animals, but differences in fluid and particle retention suggest that differences in fluid concentration (measured as DM) could occur in the foregut of macropods and hippos. The gut content of eleven Bennett's wallabies (Macropus rufogriseus), six collared peccaries (Pecari tajacu), three pygmy hippos (Hexaprotodon liberiensis), two common hippos (Hippopotamus amphibius) and one two-toed sloth (Choloepus didactylus) were analyzed with an emphasis on the fore-stomach. The ventral and dorsal regions in sacciform compartments, and peripheral and central regions in tubular compartments, were examined. Results were not uniform across the species studied. A potential sedimentation mechanism was observed firstly by the accumulation of sand in the fore-stomach of the peccary and sloth, and secondly by the lower DM content in peripheral versus central and ventral versus dorsal regions of the fore-stomach of the wallabies and common hippos, respectively. However, pair-comparisons for different gut regions of wallabies and peccaries yielded no differences in mean particle size between fore-stomach regions. To conclude, some digesta fractionation does occur in the fore-stomach of the studied groups of non-ruminants, but not in a uniform manner, which in turn is in accordance with morphological dissimilarities of their respective foregut structures. The absence of systematic fractionation effects in non-ruminant foregut fermenters emphasizes the innovative character of the sorting mechanism in ruminants.  相似文献   

16.
Browsing and grazing ruminants are thought to differ in the degree their rumen contents are stratified—which may be due to different characteristics of their respective forages, to particular adaptations of the animals, or both. However, this stratification is difficult to measure in live animals. The papillation of the rumen has been suggested as an anatomical proxy for stratification—with even papillation indicating homogenous contents, and uneven papillation (with few and small dorsal and ventral papillae, and prominent papillae in the atrium ruminis) stratified contents. Using the surface enlargement factor (SEF, indicating how basal mucosa surface is increased by papillae) of over 55 ruminant species, we demonstrate that differences between the SEFdorsal or SEFventral and the SEFatrium are significantly related to the percentage of grass in the natural diet. The more a species is adapted to grass, the more distinct this difference, with extreme grazers having unpapillated dorsal and ventral mucosa. The relative SEFdorsal as anatomical proxy for stratification, and the difference in particle and fluid retention in the rumen as physiological proxy for stratification, are highly correlated in species (n = 9) for which both kind of data are available. The results support the concept that the stratification of rumen contents varies among ruminants, with more homogenous contents in the more browsing and more stratified contents in the more grazing species. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
  • 1 It is generally assumed that animals compensate for a declining diet quality with increasing food intake. Differences in the response to decreasing forage quality in herbivores have been postulated particularly between cattle (ruminants) and horses (hindgut fermenters). However, empirical tests for both assumptions in herbivorous mammals are rare.
  • 2 We collected data on voluntary food intake in mammals on forage‐only diets and related this to dietary neutral detergent fibre (NDF) content, assuming a nonlinear correlation between these measurements. Generally, the paucity of corresponding data is striking.
  • 3 Elephants and pandas showed very high food intakes that appeared unrelated to dietary fibre content. Only in small rodents, and possibly in rabbits, was an increase in food intake on forages of higher NDF content evident. In particular, other large herbivores, including horses, followed patterns of decreasing intake with increasing forage NDF, also observed in domestic cattle or sheep.
  • 4 For large herbivores, empirical data therefore do not – so far – support the notion that intake is increased in response to declining diet quality. However, data are in accord with the assumption that most large herbivores have an anticipatory strategy of acquiring body reserves when high‐quality forage is available, and reducing food intake (and potentially metabolic losses) when only low‐quality forage is available.
  • 5 Intake studies in which the influence of digestive strategy on food intake capacity is tested should be designed as long‐term studies that outlast an anticipatory strategy and force animals to ingest as much as possible.
  • 6 We suggest that a colonic separation mechanism coupled with coprophagy, in order to minimize metabolic faecal losses, is necessary below a body size threshold where an anticipatory strategy (living off body reserves, migration) is not feasible. Future studies aimed at investigating fine‐scale differences, for example between equids and bovids, should focus on non‐domesticated species.
  相似文献   

18.
Members of the Bovini genus are classified as grazers. Smaller species of ruminants are not expected to be able to digest particularly fibrous diets and are more often classified as intermediate feeders or browsers. Anoas (Bubalus spp.) are interesting in this respect as they are the smallest representatives of the Bovini, being only 10–20% of the body weight of other species of the same genus. A feeding trial was carried out with four lowland anoas (Bubalus depressicornis) at London Zoo, investigating diet digestibility by total fecal collection and passage rates by the simultaneous administration of a fluid (Co‐EDTA) and a particle (Cr‐mordanted fibre <2 mm) marker. The diet consisted of legume hay, dairy cow pellets, browse, fruits, and vegetables. The achieved digestibility coefficients averaged 70±4% for dry matter and 57±7% for cell walls (NDF). Mean retention times for the total gastrointestinal tract were 25±4.1 hr for fluid and 39±6.7 hr for particles, respectively. The ratio of forestomach particle:fluid retention was 2.14±0.40. Additional information regarding anoa diets in captivity was collected through a survey targeting all institutions that have anoas in their collection currently. Suitability of the provided diet was evaluated using the ratio of unstructured:structured feeds (unstructured feeds pellets, grains, produce; structured feeds=roughage, browse) on a dry matter basis and an assumed complete consumption of offered unstructured diet items, with only the remaining intake capacity being met by structured items. The use of this ratio reliably predicted one facility that reported chronic diet‐related problems. As other ruminants, anoas should receive a diet with restricted amounts of concentrates and fruits. The comparatively high fibre digestibility and the high selective particle retention in the forestomach suggest a classification of an intermediate/grazing ruminant. Zoo Biol 24:125–134, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

19.
The measurement of passage rate is important for the concept of ruminant diversification. While supporters of Hofmann's 1989 feeding type classification claim that browsing ruminants have faster passage rates than grazing ruminants, other researchers consider the passage rate to depend on body size alone. To date, no convincing comparison of ruminant passage rates has been put forward. For comparative purposes, we suggest the use of the "selectivity factor", which is an expression of how much longer particles of a defined size (<2 mm) are retained in the ruminant digestive tract than fluids. From the limited data available, it seems that grazing ruminants display selectivity factors between 1.56 and 3.80, whereas browsers have a much narrower range of 1.14-1.80. This suggests that browsers are not able to selectively retain particles as long as grazers. Intake of browsers, on the other hand, may not be limited by physical fill of the forestomach to the same degree as in grazers. This result can explain several observations on the digestive physiology of browsers, some of which have been linked to a rumen bypass mechanism. We propose that the ability for selective particle retention is a key factor for understanding the physiological consequences of ruminant diversification.  相似文献   

20.
The obligatory, periodic regurgitation of forestomach material and its subsequent re-mastication is the hallmark of the most diverse extant large herbivore group, the ruminants. Although the process of rumination is well understood in domestic species, differences between free-ranging wild ruminant species, for example of different body size or different feeding type, remain speculative to date. Here we investigate the proportion of plastic particles of varying size (1, 10 and 20 mm) and density (1.03, 1.20 and 1.44 mg/ml) that are recovered intact or ruminated-upon after insertion into the reticulorumen (RR) of domestic cattle (Bos primigenius f. taurus) on grass silage, and of muskoxen (Ovibos moschatus; n = 4) and moose (Alces alces; n = 2) both fed browse and grass diets. In the three species, the proportion of particles leaving the RR intact depended on particle size, with density showing no effect in this study. The major proportion of 1 mm particles was excreted intact, whereas intact 10–20 mm particles were only excreted sporadically, and not in all animals. Intact particles were mostly found in the initial samples after marker application, and mean retention times of intact particles were always shorter than those of ruminated particles. There were no differences between moose and muskoxen, but diet had a significant effect, with a higher proportion of 1 mm particles ruminated upon on the grass diet in both species, indicating a higher ‘filter-bed effect’ with entrapment of small particles in a fibre mat in the RR on a grass diet. Given that less particles were ruminated on the grass diet, one could either assume that free-ranging browsers ruminate less than grazers on similar food intakes (or that they have higher food intakes at similar levels of rumination). The existing data on time-budgets of free-ranging ruminants, however, does not suffice to test these hypotheses. The fact that indication of a ‘filter-bed effect’ was also detectable in moose raises the question whether adaptations described in ‘cattle-type’ ruminants really serve to re-inforce the processes of RR contents stratification and the ‘filter-bed’, or whether they are not rather directed at other aims, such as maximizing microbial yield from the RR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号