首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present study was to determine the effects of rumen-protected choline (RPC) supplementation on body condition, milk production and milk choline content during the periparturient period. Thirty-two Holstein cows were allocated into two groups (RPC group - with RPC supplementation, and control group - without RPC supplementation) 28 days before the expected calving. Cows were fed the experimental diet from 21 days before expected calving until 60 days of lactation. The daily diet of the RPC group contained 100 g of RPC from 21 days before calving until calving and 200 g RPC after calving for 60 days of lactation, which provided 25 g and 50 g per day choline, respectively. Body condition was scored on days -21, 7, 35 and 60 relative to calving. Milk production was measured at every milking; milk fat, protein and choline content were determined on days 7, 35 and 60 of lactation. Body condition was not affected by RPC supplementation. Milk yield was 4.4 kg higher for the group of cows receiving supplementary choline during the 60 days experimental period and 4% fat-corrected milk production was also increased by 2.5 kg/day. Milk fat content was not altered by treatment, but fat yield was increased by 0.10 kg/day as a consequence of higher milk yield in the RPC-treated group. Milk protein content tended to increase by RPC supplementation and a 0.18 kg/day significant improvement of protein yield was detected. Milk choline content increased in both groups after calving as the lactating period advanced. However, milk choline content and choline yield were significantly higher in the RPC group than in the control group. The improved milk choline and choline yield provide evidence that some of the applied RPC escaped ruminal degradation, was absorbed from the small intestine and improved the choline supply of the cows and contributed to the changes of production variables.  相似文献   

2.
Owing to the high concentrations of crude protein and beneficial fatty acids, hempseed cake could be a high-quality feedstuff for ruminants. The aim of the present study was to evaluate the effects of hempseed cake on milk production and quality, as well as haemato-chemical parameters in Alpine goats. In total, 28 French Alpine dairy goats were evaluated over 45 days. All goats were fed meadow hay supplemented with 1.2 kg/day feed mixture. The feed mixture in control group contained soybean meal and extruded soybean. In the first experimental group, soybean meal and extruded soybean were partially replaced with 60 g/kg of hempseed cake (HC6). In the second experimental group, soybean meal and extruded soybean were partially replaced with 120 g/kg of hempseed cake (HC12). Feeding goats with HC6 and HC12 did not influence milk yield, although the concentration of milk urea was higher in the HC12 compared to control group. The HC12 decreased the linoleic acid (LA)/linolenic acid (ALA) ratio and glutathione peroxidase activity in the serum. Under the conditions evaluated in this study, the inclusion of HC6 in the diet was optimal with respect to chemical composition of milk and haemato-chemical parameters. Even though HC12 resulted in lowered LA/ALA ratio, which confers functional properties to goat milk, HC12 increased milk urea concentrations, and worsened serum antioxidant status.  相似文献   

3.
The objective of this study was to evaluate the effects of oak tannin extract (OTE) added in forage before ensiling on dairy cows fed at 92% of their digestible protein requirements. Six multiparous lactating Holstein cows were used in a crossover design (two treatments × two periods). The control treatment (CON) was based on a diet including 50% of grass silage, whereas the experimental treatment (TAN) included grass silage sprayed with OTE (26 g/kg DM) just before baling. Milk yield (on average 24 kg fat protein corrected milk per day) was not affected, but both milk and rumen fatty acids profiles were impacted by OTE. Nitrogen intake (415 g N per cow per day) and nitrogen use efficiency (NUE; 0.25 on average) were not affected, but a shift from urine (−8% of N intake relatively to control, P = 0.06) to faecal N (+5%; P = 0.004) was observed with the TAN diet (P ≤ 0.05). Nitrogen apparent digestibility was thus reduced for TAN (−3%; P ≤ 0.05). The effect of OTE on ruminal and milk FA profiles suggests an impact on rumen microbiota. Nitrogen isotopic discrimination between animal proteins and diet (Δ15N) was evaluated as a proxy for NUE. While no differences in NUE were observed across diets, a lower Δ15N of plasma proteins was found when comparing TAN v. CON diets. This finding supports the concept that Δ15N would mainly sign the N partitioning at the metabolic level rather than the overall NUE, with the latter also being impacted by digestive processes. Our results agree with a N shift from urine to faeces, and this strategy can thus be adopted to decrease the environmental impact of ruminant protein feeding.  相似文献   

4.
Dehydrated lucerne is used as a protein source in dairy cow rations, but little is known about the effects of lucerne on greenhouse gas production by animals. Eight Holstein dairy cows (average weight: 582 kg) were used in a replicated 4×4 Latin square design. They received diets based on either maize silage (M) or grass silage (G) (45% of diet on dry matter (DM) basis), with either soya bean meal (15% of diet DM) completed with beet pulp (15% of diet DM) (SP) or dehydrated lucerne (L) (30% of diet DM) as protein sources; MSP, ML, GSP and GL diets were calculated to meet energy requirements for milk production by dairy cows and degradable protein for rumen microbes. Dry matter intake (DMI) did not differ among diets (18.0 kg/day DMI); milk production was higher with SP diets than with L diets (26.0 v. 24.1 kg/day), but milk production did not vary with forage type. Milk fatty-acid (FA) composition was modified by both forage and protein sources: L and G diets resulted in less saturated FA, less linoleic acid, more trans-monounsaturated FA, and more linolenic acid than SP and M diets, respectively. Enteric methane (CH4) production, measured by the SF6 tracer method, was higher for G diets than for M diets, but did not differ with protein source. The same effects were observed when CH4 was expressed per kg milk. Minor effects of diets on rumen fermentation pattern were observed. Manure CH4 emissions estimated from faecal organic matter were negatively related to diet digestibility and were thus higher for L than SP diets, and higher for M than G diets; the resulting difference in total CH4 production was small. Owing to diet formulation constraints, N intake was higher for SP than for L diets; interaction between forage type and protein source was significant for N intake. The same statistical effects were found for N in milk. Faecal and urinary N losses were determined from total faeces and urine collection. Faecal N output was lower for M than for G diets but did not differ between protein sources. Urinary N output did not differ between forage types, but was lower for cows fed L diets than for cows fed SP diets, potentially resulting in lower ammonia emissions with L diets. Replacing soya bean meal plus beet pulp with dehydrated lucerne did not change CH4 production, but resulted in more N in faeces and less N in urine.  相似文献   

5.
The aim of this meta-analysis was to compare feed intake, milk production, milk composition and organic matter (OM) digestibility in dairy cows fed different grass and legume species. Data from the literature was collected and different data sets were made to compare families (grasses v. legumes, Data set 1), different legume species and grass family (Data set 2), and different grass and legume species (Data set 3+4). The first three data sets included diets where single species or family were fed as the sole forage, whereas the approach in the last data set differed by taking the proportion of single species in the forage part into account allowing diets consisting of both grasses and legumes to be included. The grass species included were perennial ryegrass, annual ryegrass, orchardgrass, timothy, meadow fescue, tall fescue and festulolium, and the legume species included were white clover, red clover, lucerne and birdsfoot trefoil. Overall, dry matter intake (DMI) and milk production were 1.3 and 1.6 kg/day higher, respectively, whereas milk protein and milk fat concentration were 0.5 and 1.4 g/kg lower, respectively, for legume-based diets compared with grass-based diets. When comparing individual legume species with grasses, only red clover resulted in a lower milk protein concentration than grasses. Cows fed white clover and birdsfoot trefoil yielded more milk than cows fed red clover and lucerne, probably caused by a higher OM digestibility of white clover and activity of condensed tannins in birdsfoot trefoil. None of the included grass species differed in DMI, milk production, milk composition or OM digestibility, indicating that different grass species have the same value for milk production, if OM digestibility is comparable. However, the comparison of different grass species relied on few observations, indicating that knowledge regarding feed intake and milk production potential of different grass species is scarce in the literature. In conclusion, different species within family similar in OM digestibility resulted in comparable DMI and milk production, but legumes increased both DMI and milk yield compared with grasses.  相似文献   

6.
There is absence knowledge about the effects of lactation trimester and parity on eating behavior, production and efficiency of dairy cows. Objective of this study was to identify and characterize in 340 dairy cows, the 20% high efficient (HE), 20% low efficient (LE) and 60% mid efficient (ME) cows according to their individual residual feed intake (RFI) values, within and between lactation trimesters and between 1st and 2nd parities. Efficiency effect within each lactation trimester, was exhibited in daily dry matter intake (DMI), eating rate and meal size, that were the highest in LE cows, moderate in the ME cows and lowest in the HE group. Daily eating time, meal frequency, yields of milk and energy-corrected milk (ECM) and BW were similar in the three efficiency groups within each trimester. The lower efficiency of the LE cows in each trimester attributes to their larger metabolic energy intake, heat production and energy losses. In subgroup of 52 multiparous cows examined along their 1st and 2nd trimesters, milk and ECM production, DMI, eating behavior and efficiency traits were similar with high Pearson’s correlation (r=0.78 to 0.89) between trimesters. In another subgroup of 42 multiparous cows measured at their 2nd and 3rd trimesters, milk and ECM yield, DMI and eating time were reduced (P<0.01) at the 3rd trimester, but eating rate, meal frequency and meal size remained similar with high Pearson’s correlation (r=0.74 to 0.88) between trimesters. In subgroup of 26 cows measured in 1st and 2nd parities, DMI, BW, milk and ECM yield, and ECM/DMI increased in the 2nd lactation, but eating behavior and RFI traits were similar in both parities. These findings encourage accurate prediction of DMI based on a model that includes eating behavior parameters, together with individual measurement of ECM production. This can be further used to identify HE cows in commercial herd, a step necessary for potential genetic selection program aimed to improve herd efficiency.  相似文献   

7.
Development and long-term retention of replacement beef females in a semi-arid environment are of a major concern for extensive livestock producers. Furthermore, the demand of not only producing a thriving, healthy calf, but having sufficient milk to support that first calf is essential. To address this issue, we conducted a 3-year study measuring milk production and milk constituent yields in primiparous beef heifers (n=48; 16/year reared under two different feeding regimens) raising steer calves. Cows received 1.8 or 1.2 kg/day winter supplementation for ~80 day before parturition and their heifer calves were then randomly assigned to heifer development treatments that provided ad libitum (AL) or 80% (less than ad libitum (LAL)) of ad libitum feed post weaning. Heifers developed on the AL treatment also received 1.8 kg/day winter supplementation for life, whereas heifers developed on the LAL treatment received 1.2 kg/day winter supplementation for life. Milk production of primiparous cows was measured with a portable milking machine every other week from days 27 to 125 postpartum. Milk yield for the 125-day lactation period was calculated from area under the lactation curve approximated by trapezoidal summation. The ANOVA model included in utero winter nutrition, post-weaning heifer development treatment, year and their interaction. Heifers subjected to the AL treatment reached peak milk yield ~12.3 day later (P=0.02) than heifers receiving LAL treatment. In addition, an in utero nutrition×post-weaning heifer treatment×year interaction existed (P⩽0.04) for milk peak yield, average daily milk yield (kg/day) and nutrient composition (protein, lactose, fat, solids non-fat, g/day). These interactions manifest as changes in magnitude and rank across the 3 years of the study. Livestock production in extensive environments is subject to variations in seasonal precipitation patterns and quality and quantity of grazeable forage and these fluctuations have a large impact on milk yield. In summary, the gestational nutritional environment of a heifer’s mother may interact with the heifer’s nutrient consumption during post-weaning growth and the current year to trigger variation in year-to-year milk production.  相似文献   

8.
Nitrogen emissions from dairy cows can be readily decreased by lowering the dietary CP concentration. The main objective of this work was to test whether the milk protein yield reduction associated with low N intakes could be partially compensated for by modifying the dietary carbohydrate composition (CHO). The effects of CHO on digestion, milk N efficiency (milk N/N intake; MNE) and animal performance were studied in four Jersey cows fed 100% or 80% of the recommended protein requirements using a 4×4 Latin square design. Four iso-energetic diets were formulated to two different CHO sources (starch diets with starch content of 34.3% and NDF at 32.5%, and fiber diets with starch content of 5.5% and NDF at 49.1%) and two CP levels (Low=12.0% and Normal=16.5%). The apparent digestible organic matter intake (DOMI) and the protein supply (protein digestible in the small intestine; PDIE) were similar between starch and fiber diets. As planned, microbial N flow (MNF) to the duodenum, estimated from the urinary purine derivatives (PD) excretion, was similar between Low and Normal CP diets. However, the MNF and the efficiency of microbial synthesis (g of microbial N/kg apparently DOMI) were higher for starch v. fiber diets. Milk and milk N fractions (CP, true protein, non-protein N (NPN)) yield were higher for starch compared with fiber diets and for Normal v. Low CP diets. Fecal N excretion was similar across dietary treatments. Despite a higher milk N ouput with starch v. fiber diets, the CHO modified neither the urinary N excretion nor the milk urea-N (MUN) concentration. The milk protein yield relative to both N and PDIE intakes was improved with starch compared with fiber diets. Concentrations of β-hydroxybutyrate, urea and Glu increased and those of glucose and Ala decreased in plasma of cows fed starch v. fiber diets. On the other hand, plasma concentration of albumin, urea, insulin and His increased in cows fed Normal compared with Low CP diets. This study showed that decreasing the dietary CP proportion from 16.5% to 12.0% increases and decreases considerably the MNE and the urinary N excretion, respectively. Moreover, present results show that at similar digestible OM and PDIE intakes, diets rich in starch improves the MNE and could partially compensate for the negative effects of Low CP diets on milk protein yield.  相似文献   

9.
Selection for prolificacy in sows has resulted in higher metabolic demands during lactation. In addition, modern sows have an increased genetic merit for leanness. Consequently, sow metabolism during lactation has changed, possibly affecting milk production and litter weight gain. The aim of this study was to investigate the effect of lactational feed intake on milk production and relations between mobilization of body tissues (adipose tissue or skeletal muscle) and milk production in modern sows with a different lactational feed intake. A total of 36 primiparous sows were used, which were either full-fed (6.5 kg/day) or restricted-fed (3.25 kg/day) during the last 2 weeks of a 24-day lactation. Restricted-fed sows had a lower milk fat percentage at weaning and a lower litter weight gain and estimated milk fat and protein production in the last week of lactation. Next, several relations between sow body condition (loss) and milk production variables were identified. Sow BW, loin muscle depth and backfat depth at parturition were positively related to milk fat production in the last week of lactation. In addition, milk fat production was related to the backfat depth loss while milk protein production was related to the loin muscle depth loss during lactation. Backfat depth and loin muscle depth at parturition were positively related to lactational backfat depth loss or muscle depth loss, respectively. Together, results suggest that sows which have more available resources during lactation, either from a higher amount of body tissues at parturition or from an increased feed intake during lactation, direct more energy toward milk production to support a higher litter weight gain. In addition, results show that the type of milk nutrients that sows produce (i.e. milk fat or milk protein) is highly related to the type of body tissues that are mobilized during lactation. Interestingly, relations between sow body condition and milk production were all independent of feed level during lactation. Sow management strategies to increase milk production and litter growth in modern sows may focus on improving sow body condition at the start of lactation or increasing feed intake during lactation.  相似文献   

10.
Current trends in the beef industry focus on selecting production traits with the purpose of maximizing calf weaning weight; however, such traits may ultimately decrease overall post-weaning productivity. Therefore, the objective of this study was to evaluate the effects of actual milk yield in mature beef cows on their offspring’s dry matter intake (DMI), BW, average daily gain, feed conversion ratio (FCR) and residual feed intake (RFI) during a ~75-day backgrounding feeding trial. A period of 24-h milk production was measured with a modified weigh-suckle-weigh technique using a milking machine. After milking, cows were retrospectively classified as one of three milk yield groups: Lower (6.57±1.21 kg), Moderate (9.02±0.60 kg) or Higher (11.97±1.46 kg). Calves from Moderate and Higher milk yielding dams had greater (P<0.01) BW from day 0 until day 75 at the end of the backgrounding feeding phase; however, day 75 BW were not different (P=0.36) between Lower and Moderate calves. Body weight gain was greater (P=0.05) for Lower and Moderate calves from the day 0 BW to day 35 BW compared with Higher calves. Overall DMI was lower (P=0.03) in offspring from Lower and Moderate cows compared with their Higher milking counterparts. With the decreased DMI, FCR was lower (P=0.03) from day 0 to day 35 in calves from Lower and Moderate milk yielding dams. In addition, overall FCR was lower (P=0.02) in calves from Lower and Moderate milk yielding dams compared with calves from Higher milk yielding dams. However, calving of Lower milk yielding dams had an increased (P=0.04) efficiency from a negative RFI value compared with calves from Moderate and Higher milking dams. Results from this study suggest that increased milk production in beef cows decreases feed efficiency during a 75-day post-weaning, backgrounding period of progeny.  相似文献   

11.
Paratuberculosis impairs productivity of infected dairy cows because of reduced milk production and fertility and enhanced risk of culling. The magnitude of the milk yield depression in individual cows is influenced by factors such as parity, the stage of the disease and the choice of test used. The objectives of this case–control study were to substantiate the influence of the different levels of the within-herd prevalence (WHP) on individual milk yield of fecal culture (FC)-positive cows (FC+) compared with FC-negative herd-mates (FC−), and to estimate the magnitude of the deviation of the milk yield, milk components and somatic cell count (SCC) in an FC-based study. Of a total of 31 420 cows from 26 Thuringian dairy herds tested for paratuberculosis by FC, a subset of 1382 FC+ and 3245 FC− with milk recording data were selected as cases and controls, respectively. The FC− cows were matched for the same number and stage of lactation (±10 days in milk) as one FC+ from the same herd. Within a mixed model analysis using the fixed effects of Mycobacterium avium ssp. paratuberculosis (MAP) status, lactation number, days in milk, prevalence class of farm and the random effect of farm on milk yield per day (kg), the amount of fat and protein (mg/dl) and lactose (mg/dl) as well as the SCC (1000/ml) were measured. On the basis of least square means, FC+ cows had a lower test-day milk yield (27.7±0.6 kg) compared with FC− (29.0±0.6 kg), as well as a lower milk protein content and a slightly diminished lactose concentration. FC status was not associated with milk fat percentage or milk SCC. In FC+ cows, reduction in milk yield increased with increasing WHP. An interaction of FC status and farm was found for the test-day milk yield, and milk protein percentage, respectively. We conclude that the reduction in milk yield of FC+ cows compared with FC− herd-mates is significantly influenced by farm effects and depends on WHP class. Owners of MAP-positive dairy herds may benefit from the reduction in WHP not only by reducing number of infected individuals but also by diminishing the individual losses in milk production per infected cow, and therefore should establish control measures.  相似文献   

12.
Heat stress is a major problem for dairy cows in hot climates, thus coping strategies are essential. This study evaluated the effects of increasing diet fermentability on intake, total tract digestibility, ruminal pH and volatile fatty acids (VFA) profile, blood metabolite profile and milk production and composition of lactating dairy cows managed under conditions of ambient heat stress. Nine multiparous cows (650 ± 56 kg BW; mean ± SD) averaging 102 ± 13 days in milk and producing 54 ± 6 kg/day were randomly assigned to a triplicate 3 × 3 Latin square. During each 21-day period, cows were offered one of three total mixed rations that varied in diet fermentability. The three levels of diet fermentability were achieved by increasing the proportion of pellets containing ground wheat and barley in the dietary DM from 11.7% (low), to 23.3% (moderate), and 35.0% (high) by replacing ground corn grain. Each period had 14 day of adaptation and 7 day of sampling. The ambient temperature–humidity index ( ≥ 72) indicated that the cows were in heat stress almost the entire duration of the study. Also, rectal temperature of cows was elevated at 39.2°C, another indication of heat stress. Increasing diet fermentability linearly decreased dry matter intake (22.8, 22.5, 21.8 kg/day for low, moderate and high, respectively; P ≤ 0.05) but increased non-fibre carbohydrate digestibility (P ≤ 0.05) and tended to increase digestibility of DM (P = 0.10) and crude protein (P = 0.06). As a result, the intake of digestible DM was not affected by the treatments. The production of 3.5% fat corrected milk (32.6, 33.7, and 31.5 kg/day) was quadratically (P ≤ 0.05) affected by diet fermentability with lower production for the high diet compared with the other two, which were similar. Rumen pH (ruminocentesis) and proportions of butyrate and isovalerate linearly decreased whereas propionate proportion linearly increased with increasing diet fermentability (P ≤ 0.05). The rumen concentration of NH3-N (11.0, 9.0, and 8.7 mg/dL) and blood concentration of urea linearly decreased with increasing diet fermentability (P ≤ 0.05). The activity of alkaline phosphatase increased (65.1, 83.2, and 84.9 U/l) and concentration of malondialdehyde decreased (2.39, 1.90 and 1.87 µmol/l) linearly with increasing diet fermentability (P ≤ 0.05), which indicated possible attenuation of the effects of oxidative stress with increasing diet fermentability. Overall, a modest increase of diet fermentability improved nitrogen metabolism, milk protein production and oxidative stress of heat-stressed dairy cows, but a further increase in diet fermentability decreased milk yield.  相似文献   

13.
The aim of this study was to evaluate the effects of dietary Quebracho tannin extract (QTE) on feed intake, apparent total tract digestibility (ATTD), excretion of urinary purine derivatives (PD) and milk composition and yield in dairy cows. Fifty Holstein cows were divided into two groups. To reach a similar performance of both groups, cows were divided according to their milk yield, body weight, days in milk and number of lactations at the start of the experiment averaging 33.2 ± 8.2 kg/d, 637 ± 58 kg, 114 ± 73 d and 2.3 ± 1.6 lactations, respectively. The cows were fed a basal diet as total mixed ration containing on dry matter (DM) basis 34% grass silage, 32% maize silage and 34% concentrate feeds. Three dietary treatments were tested, the control (CON, basal diet without QTE), QTE15 (basal diet with QTE at 15 g/kg DM) and QTE30 (basal diet with QTE at 30 g/kg DM). Two treatments were arranged along six periods each 21 d (13 d adaptation phase and 8 d sampling phase). The ATTD of DM and organic matter were reduced only in Diet QTE30, whereas both QTE treatments reduced ATTD of fibre and nitrogen (N), indicating that QTE impaired rumen fermentation. Nevertheless, feed intake was unaffected by QTE. In Diet CON, urinary N excretion accounted for 29.8% of N intake and decreased in treatments QTE15 and QTE30 to 27.5% and 17.9%, respectively. Daily faecal N excretion increased in treatments CON, QTE15 and QTE30 from 211 to 237 and 273 g/d, respectively, which amounted to 39.0%, 42.4% and 51.7% of the N intake, respectively. Hence, QTE shifted N excretion from urine to faeces, whereas the proportion of ingested N appearing in milk was not affected by QTE (average 30.7% of N intake). Daily PD excretion as indicator for microbial crude protein (CP) flow at the duodenum decreased in treatment QTE30 compared with Diet CON from 413 to 280 mmol/d. The ratios of total PD to creatinine suggest that urinary PD excretion was already lower when feeding Diet QTE15. While there was no effect of Diet QTE15, treatment QTE30 reduced milk yield, milk fat and protein. Both QTE treatments reduced milk urea concentration, which suggest that ruminal degradation of dietary CP was reduced. In summary, adding QTE at dosages of 15 and 30 g/kg DM to diets of lactating dairy cows to improve feed and protein use efficiency is not recommended.  相似文献   

14.
15.
Forage brassicas, such as summer turnip (ST; Brassica rapa) and forage rape (FR; Brassica napus), are used as supplementary crops during summer. However, studies with lactating dairy cows fed these forages are limited and report inconsistent productive responses. The aim of this study was to determine dry matter intake, rumen fermentation and milk production responses of dairy cows in mid-lactation supplemented with and without summer (‘ST’ or ‘FR’) brassicas. Twelve multiparous lactating dairy cows were randomly allocated to three dietary treatments in a replicated 3 × 3 Latin square design balanced for residual effects over three 21-day periods. The control diet consisted of 16.2 kg DM of grass silage, 2.25 kg DM of commercial concentrate and 2.25 kg DM solvent-extracted soybean meal. For the other two dietary treatments, 25% of the amounts of silage and concentrates were replaced with FR or ST. The inclusion of forage brassicas had no effects on milk production (24.2 kg cow/day average) and composition (average milk fat and protein 43.2 and 33.6 g/l, respectively). Dry matter intake was 0.98 kg and 1.12 kg lower for cows supplemented with FR and ST, respectively, resulting in a greater feed conversion efficiency (1.35 kg milk/kg DM for ST and FR v. 1.27 kg milk/kg DM for the control diet). Intraruminal pH was lower for cows supplemented with ST compared to the control diet; however, it did not decrease below pH 5.8 at any time of the day. After feeding, the concentrations of total short-chain fatty acids (SCFAs) in rumen contents increased with ST supplementation compared to the control diet. Inclusion of FR in the diet increased the molar proportion of acetate (68.5 mmol/100 mmol) in total SCFA at the expense of propionate, measured 6 h after feeding of the forage. The molar proportion of butyric acid was greater with ST and FR supplementation (13.1 and 12 mmol/100 mmol, respectively) than in control cows. The estimated microbial nitrogen (N) flow was 89.1 g/day greater when supplementing FR compared to the control diet. Based on the haematological measures, the inclusion of summer brassica forages did not affect the health status of the animals. These results indicate that mid-lactation dairy cows fed brassicas are able to maintain production despite the reduced intake, probably due to improved rumen fermentation and therefore nutrient utilization.  相似文献   

16.
Two experiments were conducted to evaluate the effects of Bacillus subtilis natto, which was initially isolated from fermented soybeans on milk production, rumen fermentation and ruminal microbiome in dairy cows. In Experiment 1, 36 early lactation Chinese Holstein dairy cows (56 ± 23 days in milk) were randomly assigned to three groups: Control, cows were fed total mixed ration (TMR); BSNLOW, TMR plus 0.5 × 1011 colony-forming units (cfu) of B. subtilis natto/cow per day; and BSNHIGH, TMR plus 1.0 × 1011 cfu of B. subtilis natto/cow per day. During the 70-day treatment period, daily milk production and daily milk composition were determined in individual cows. The results showed that supplementing dairy cows with 0.5 × 1011 and 1.0 × 1011 cfu of B. subtilis natto linearly increased (P < 0.01) milk production (25.2 and 26.4 kg/day v. 23.0 kg/day), 4% fat-corrected milk (27.3 and 28.1 kg/day v. 24.2 kg/day), energy-corrected milk (27.3 and 28.2 kg/day v. 24.2 kg/day), as well as milk fat (1.01 and 1.03 kg/day v. 0.88 kg/day), protein (0.77 and 0.82 kg/day v. 0.69 kg/day) and lactose yield (1.16 and 1.22 kg/day v. 1.06 kg/day) but decreased milk somatic cell counts (SCC) by 3.4% to 5.5% (P < 0.01) in BSNLOW and BSNHIGH treatments compared with Control. In Experiment 2, four rumen-cannulated dairy cows were fed the basal diet from 1 to 7 days (pre-trial period) and rumen samples were collected on days 6 and 7; the same cows then were fed 1.0 × 1011 cfu/day B. subtilis natto from days 8 to 21 (trial period) and rumen samples were collected on days 20 and 21. B. subtilis natto was discontinued from days 22 to 28 (post-trial period) and rumen samples were collected on days 27 and 28. Compared with the pre- and post-periods, ruminal pH decreased by 2.7% to 3.0% during the trial period (P < 0.01), whereas ammonia nitrogen (NH3-N), total volatile fatty acids and molar proportion of propionate (P < 0.01) and valerate (P < 0.05) increased. Molar proportion of acetate decreased and the acetate to propionate ratio was lower (P < 0.01) during the trial period. However, no differences for 24-h in sacco dry matter digestibility were detected among different periods (treatments) though NDF digestibility was reduced in the trial and post-trial periods (P < 0.01). Compared with pre-trial period, total ruminal bacteria, proteolytic and amylolytic bacteria in rumen enumerated by culture methods increased by 15.0%, 16.2% and 11.7%, respectively (P < 0.01) but protozoa decreased to 5.35 log10 cfu/ml (P < 0.01) during the trial period. These results demonstrate that B. subtilis natto improves milk production and milk components yield, decreases SCC and promotes the growth of total ruminal bacteria, proteolytic and amylolytic bacteria, which indicate that B. subtilis natto has potential to be applied as a probiotic for dairy cows.  相似文献   

17.
Many studies have shown that metabolic efficiency of ruminants can be significantly decreased when B-vitamin supply is insufficient. Under the present state of knowledge, the amounts of B vitamins available for intestinal absorption cannot be predicted based on diet composition. Therefore, in an attempt to increase our understanding of the effects of dietary factors, on B-vitamin supply for dairy cows, the effects of increasing amounts of extruded linseed in diets based on hay (permanent grassland hay, H; Experiment 1) or corn silage (CS; Experiment 2) on apparent ruminal synthesis (ARS) of thiamin, riboflavin, niacin, vitamin B6, folates and vitamin B12 were evaluated. In each experiment, four lactating Holstein cows fitted with cannulas in the rumen and the proximal duodenum were used in a 4 × 4 Latin square design. In both experiments, the dietary treatments consisted of an increasing supply of extruded linseed representing 0%, 5%, 10% or 15% of diet DM. The forage : concentrate ratios were 50 : 50 and 60 : 40 for Experiments 1 and 2, respectively. Duodenal flow was determined using YbCl3 as a marker. The ARS of each B vitamin was calculated as duodenal flow – daily intake. In both experiments, treatments did not affect thiamin, riboflavin, niacin and vitamin B12 duodenal flow or ARS. Increasing the dietary concentration of extruded linseed decreased folate intake in Experiment 1 and vitamin B6 intake in Experiment 2 but resulted in a greater duodenal flow of vitamin B6 and folates regardless of the forage used in basal diet. Greater dietary linseed concentrations decreased vitamin B6 apparent degradation in the rumen in CS-based diet only and increased folate ARS in both H- and CS-based diets. Increasing linseed concentration of isonitrogenous and isoenergetic diets increased vitamin B6 and folate supply to dairy cows, both with H- and CS-based diets.  相似文献   

18.
Shortening the dry period (DP) has been proposed as a strategy to improve energy balance (EB) in cows in early lactation. This study evaluated the effects of shortening the DP on milk yield (MY), EB and residual feed intake (RFI) in two breeds; Swedish Red (SR) and Swedish Holstein (SH). Cows were blocked by breed and parity and then randomly assigned to one of two treatments; short DP of 4 weeks (4W, n=43) or conventional DP of 8 weeks (8W, n=34). Cows were kept and fed under the same conditions, except for the 4 weeks when the 4W group were still lactating prepartum and thus kept with the lactating cows. Milk yield and BW were recorded and body condition score (BCS) was rated from 10 weeks prepartum to 12 weeks postpartum. Dry matter intake (DMI) was recorded for lactating cows postpartum. Milk yield was reduced by 6.75 kg/day during the first 12 weeks postpartum (P<0.001) for the 4W cows compared with 8W cows, but there was no significant difference in total MY (3724 kg compared with 3684 kg, P=0.7) when the milk produced prepartum was included. Protein content was higher in 4W cows (3.42%) than in 8W cows (3.27%) (P<0.001) postpartum. In the 8W group, cows lost more BCS after calving (P<0.05). Cows of SR breed had higher BCS than cows of SH breed (SR=3.7, SH=3.2, P<0.001), but no differences in BW were found between breed and treatment. Energy balance was improved for cows in the 4W group (P<0.001), while feed efficiency, expressed as RFI, was reduced for 4W cows than for 8W cows (5.91 compared with −5.39, P<0.01). Shortening the DP resulted in improved EB postpartum with no difference between the breeds and no milk losses when including the milk produced prepartum.  相似文献   

19.
Increasing plant species diversity has been proposed as a means for enhancing annual pasture productivity and decreasing seasonal variability of pasture production facing more frequent drought scenarios due to climate change. Few studies have examined how botanical complexity of sown swards affects cow performance. A 2-year experiment was conducted to determine how sward botanical complexity, from a monoculture of ryegrass to multi-species swards (MSS) (grasses-legumes-forb), affect pasture chemical composition and nutritive value, pasture dry matter (DM) intake, milk production and milk solids production of grazing dairy cows. Five sward species: perennial ryegrass (L as Lolium), white clover and red clover (both referred to as T as Trifolium because they were always sown together), chicory (C as Cichorium) and tall fescue (F as Festuca) were assigned to four grazing treatments by combining one (L), three (LT), four (LTC) or five (LTCF) species. Hereafter, the LT swards are called mixed swards as a single combination of ryegrass and clovers, whereas LTC and LTCF swards are called MSS as a combination of at least four species from three botanical families. The experimental area (8.7 ha) was divided into four block replicates with a mineral nitrogen fertilisation of 75 kg N/ha per year for each treatment. In total, 13 grazing rotations were carried out by applying the same grazing calendar and the same pasture allowance of 19 kg DM/cow per day above 4 cm for all treatments. Clover represented 20% of DM for mixed and MSS swards; chicory represented 30% of DM for MSS and tall fescue represented 10% of DM for LTCF swards. Higher milk production (+1.1 kg/day) and milk solids production (+0.08 kg/day) were observed for mixed swards than for ryegrass swards. Pasture nutritive value and pasture DM intake were unaffected by the inclusion of clover. Pasture DM, organic matter and NDF concentrations were lower for MSS than for mixed swards. Higher milk production (+0.8 kg/day), milk solids production (+0.04 kg/day) and pasture DM intake (+1.5 kg DM/day) were observed for MSS than for mixed swards. These positive effects of MSS were observed for all seasons, but particularly during summer where chicory proportion was the highest. In conclusion, advantages of grazing MSS on cow performance were due to the cumulative effect of improved pasture nutritive value and increased pasture DM intake that raised milk production and milk solids production.  相似文献   

20.
The objective of the present study was to quantify the relationships among body condition score (BCS; scale 1 to 5), live weight (WT) and milk production in Irish Holstein-Friesian spring calving dairy cows. Data were from 66 commercial dairy herds during the years 1999 and 2000. The data consisted of up to 9886 lactations with records for BCS or WT at least once pre-calving, or at calving, nadir or 60 days post-calving. Change in BCS and WT was also calculated between time periods. Mixed models with cow included as a random effect were used to quantify the effect of BCS and WT, as well as change in each trait, on milk yield, milk fat concentration and milk protein concentration. Significant and sometimes curvilinear associations were observed among BCS at calving or nadir and milk production. Total 305-day milk yield was greatest in cows calving at a BCS of 4.25 units. However, cows calving at a BCS of 3.50 units produced only 68 kg less milk than cows calving at a BCS of 4.25 units while cows calving at 3.25 or 3.00 BCS units produced a further 50 and 114 kg less, respectively. Cows that lost more condition in early lactation produced more milk of greater fat and protein concentration, although the trend reversed in cows that lost large amounts of condition post-calving. Milk yield increased with WT although the marginal effect decreased as cows got heavier. Milk fat and protein concentration in early lactation also increased with WT pre-calving, calving and nadir, although WT did not significantly affect average lactation milk fat concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号