首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
When domestic ruminants are faced with food diversity, they can use pre-ingestive information (i.e. food sensory characteristics perceived by the animal before swallowing the food) and post-ingestive information (i.e. digestive and metabolic consequences, experienced by the animal after swallowing the food) to evaluate the food and make decisions to select a suitable diet. The concept of palatability is essential to understand how pre- and post-ingestive information are interrelated. It refers to the hedonic value of the food without any immediate effect of post-ingestive consequences and environmental factors, but with the influence of individual characteristics, such as animal's genetic background, internal state and previous experiences. In the literature, the post-ingestive consequences are commonly considered as the main force that influences feeding behaviour whereas food sensory characteristics are only used as discriminatory agents. This discriminatory role is indeed important for animals to be aware of their feeding environment, and ruminants are able to use their different senses either singly or in combination to discriminate between different foods. However, numerous studies on ruminants’ feeding behaviour demonstrate that the role of food sensory characteristics has been underestimated or simplified; they could play at least two other roles. First, some sensory characteristics also possess a hedonic value which influences ruminants’ intake, preferences and food learning independently of any immediate post-ingestive consequences. Further, diversity of food sensory characteristics has a hedonic value, as animals prefer an absence of monotony in food sensory characteristics at similar post-ingestive consequences. Second, some of these food sensory characteristics become an indicator of post-ingestive consequences after their initial hedonic value has acquired a positive or a negative value via previous individual food learning or evolutionary processes. These food sensory characteristics thus represent cues that could help ruminants to anticipate the post-ingestive consequences of a food and to improve their learning efficiency, especially in complex environments. This review then suggests that food sensory characteristics could be of importance to provide pleasure to animals, to increase palatability of a food and to help them learn in complex feeding situations which could improve animal welfare and productivity.  相似文献   

2.
Behavioral management of risk, in which organisms must balance the requirements of obtaining food resources with the risk of predation, has been of considerable interest to ethologists for many years. Although numerous experiments have shown that animals alter their foraging behavior depending on the levels of perceived risk and demand for nutrients, few have considered the role of genetic variation in the trade-off between these variables. We performed a study of four zebrafish (Danio rerio (Hamilton, 1822)) strains to test for genetic variation in foraging behavior and whether this variation affected their response to both aversive stimuli and nutrient restriction. Zebrafish strains differed significantly in their latency to begin foraging from the surface of the water under standard laboratory conditions. Fish fed sooner when nutrients were restricted, although this was only significant in the absence of aversive stimuli. Aversive stimuli caused fish to delay feeding in a strain-specific manner. Strains varied in food intake and specific growth rate, and feeding latency was significantly correlated with food intake. Our results indicate significant genetic variation in foraging behavior and the perception of risk in zebrafish, with a pattern of strain variation consistent with behavioral adaptation to captivity.  相似文献   

3.
Summary A simulation model is used to quantify relationships between diet quality, digestive processes and body weight in ungulate herbivores. Retention time of food in the digestive tract is shown by regression to scale with W0.27, and to be longer in ruminants than in hindgut fermenters. Allometric relationships between whole gut mean retention time (MRT, h) and weight (W) were: MRT=9.4 W0.255 (r 2=0.80) for hindgut fermenters and MRT=15.3 W0.251 (r 2=0.76) in ruminants. Longer retention of ingesta by large-bodied ruminants and hindgut fermenters increases digestive efficiency relative to small animals and permits them to survive on lower-quality foods. Compared with ruminants, hindgut fermenters' faster throughput is an advantage which outweighs their lower digestive efficiency, particularly on poor quality foods, provided that food resources are not limiting. This suggests that the predominance of ruminants in the middle range of body weights results from their more efficient use of scarce resources under conditions of resource depletion. Considering only physical limitations on intake, the model shows that the allometric coefficient which scales energy intake to body mass is 0.88 in ruminants and 0.82 in hindgut fermenters. The advantages of large body size are countered by disadvantages where food quantity is limited, and we suggest that the upper limit to ungulate body size is determined by the ability to extract nutrients from feeding niches during the nadir of the seasonal cycle of resource quality and abundance.  相似文献   

4.
Determining the nutrient factors influencing food choice provides important insight into the feeding strategy of animals, which is crucial for understanding their behavioral response to environmental changes. A bamboo‐leaf‐based diet is rare among mammals. Animals’ food choice and nutritional goals have been explained by several frameworks; however, the influence of nutrients on food choice in bamboo‐leaf‐based macaques is not yet available. Assamese macaques (Macaca assamensis) inhabiting limestone forests are characterized by such a bamboo‐leaf‐based diet, predominantly consuming young leaves of Bonia saxatilis, a shrubby, karst‐endemic bamboo. We studied the feeding behavior of one group of Assamese macaques using instantaneous scan sampling in limestone forests of the Guangxi Nonggang National Nature Reserve in southwest Guangxi, China. We compared the nutrient content of staple food and nonfood items and examine the role of key nutrients in the food selection of macaques. Our results showed that young leaves of bamboo B. saxatilis contained more water, crude protein, phosphorus, and less tannin than nonfood items. Furthermore, staple foods contained a higher content of water and less content of calcium than nonfood items. More specifically, quantities of water, crude protein, calcium, and phosphorus in food items were critical factors affecting feeding time on a specific plant item. Our results suggest that young bamboo leaves could meet macaques’ required protein and water intake, while enabling them to maintain their mineral balance, consequently facilitating to maintain the primates’ bamboo‐leaf‐diet in the limestone forest. Our findings confirm the effects of nutrient contents in food choice of Assamese macaques, highlighting the importance of the nutrient contents in maintaining their bamboo‐based diet and the need to increase the knowledge on their nutritional strategy adapted to the bamboo‐dominated diet inhabiting the unique limestone habitat.  相似文献   

5.
Generalist primates eat many food types and shift their diet with changes in food availability. Variation in foods eaten may not, however, match variation in nutrient intake. We examined dietary variation in a generalist‐feeder, the blue monkey (Cercopithecus mitis), to see how dietary food intake related to variation in available food and nutrient intake. We used 371 all‐day focal follows from 24 adult females (three groups) in a wild rainforest population to quantify daily diet over 9 months. We measured food availability using vegetation surveys and phenology monitoring. We analyzed >700 food and fecal samples for macronutrient content. Subjects included 445 food items (species‐specific plant parts and insect morphotypes) in their diet. Variation in fruit consumption (percentage of diet and total kcal) tracked variation in availability, suggesting fruit was a preferred food type. Fruits also constituted the majority of the diet (by calories) and some fruit species were eaten more than expected based on relative availability. In contrast, few species of young leaves were eaten more than expected. Also, subjects ate fewer young leaves (based on calories consumed) when fruit or young leaves were more available, suggesting that young leaves served as fallback foods. Despite the broad range of foods in the diet, group differences in fiber digestibility, and variation that reflected food availability, subjects and groups converged on similar nutrient intakes (grand mean ± SD: 637.1 ± 104.7 kcal overall energy intake, 293.3 ± 46.9 kcal nonstructural carbohydrate, 147.8 ± 72.4 kcal lipid, 107.8 ± 12.9 kcal available protein, and 88.1 ± 17.5 kcal structural carbohydrate; N = 24 subjects). Thus, blue monkeys appear to be food composition generalists and nutrient intake specialists, using flexible feeding strategies to regulate nutrient intake. Findings highlight the importance of simultaneously examining dietary composition at both levels of foods and nutrients to understand primate feeding ecology.  相似文献   

6.
Comparative physiology applies methods established in domestic animal science to a wider variety of species. This can lead to improved insight into evolutionary adaptations of domestic animals, by putting domestic species into a broader context. Examples include the variety of responses to seasonally fluctuating environments, different adaptations to heat and drought, and in particular adaptations to herbivory and various herbivore niches. Herbivores generally face the challenge that a high food intake compromises digestive efficiency (by reducing ingesta retention time and time available for selective feeding and for food comminution), and a variety of digestive strategies have evolved in response. Ruminants are very successful herbivores. They benefit from potential advantages of a forestomach without being constrained in their food intake as much as other foregut fermenters, because of their peculiar reticuloruminal sorting mechanism that retains food requiring further digestion but clears the forestomach of already digested material; the same mechanism also optimises food comminution. Wild ruminants vary widely in the degree to which their rumen contents 'stratify', with little stratification in 'moose-type' ruminants (which are mostly restricted to a browse niche) and a high degree of stratification into gas, particle and fluid layers in 'cattle-type' ruminants (which are more flexible as intermediate feeders and grazers). Yet all ruminants uniformly achieve efficient selective particle retention, suggesting that functions other than particle retention played an important role in the evolution of stratification-enhancing adaptations. One interesting emerging hypothesis is that the high fluid turnover observed in 'cattle-type' ruminants - which is a prerequisite for stratification - is an adaptation that not only leads to a shift of the sorting mechanism from the reticulum to the whole reticulo-rumen, but also optimises the harvest of microbial protein from the forestomach. Although potential benefits of this adaptation have not been quantified, the evidence for convergent evolution toward stratification suggests that they must be substantial. In modern production systems, the main way in which humans influence the efficiency of energy uptake is by manipulating diet quality. Selective breeding for conversion efficiency has resulted in notable differences between wild and domestic animals. With increased knowledge on the relevance of individual factors, that is fluid throughput through the reticulo-rumen, more specific selection parameters for breeding could be defined to increase productivity of domestic ruminants by continuing certain evolutionary trajectories.  相似文献   

7.
ABSTRACT. Feeding discrimination of Manduca larvae reared on leaves and a variety of artificial media was tested against leaves, various media, solvent fractions of leaves and media, and media components, including pure chemicals. Field-collected animals showed the same preferences as did animals cultured in the laboratory for many generations. Rearing larvae on a leaf species, an artificial diet, or homogenized leaves added to artificial diet induced a preference for that food in subsequent choice tests. Extracts of these foods using organic solvents (particularly hexane) elicited feeding choices resembling those evoked by the foods themselves: water extracts were effective as stimulants or deterrents, but responses to them differed considerably from responses to the foods. Animals raised on a defined artificial diet showed an increased preference (or decreased deterrence) for the lipid component (linolenic acid) of that diet in behavioural tests. Thus induction of preference was shown to be influenced by a specific nutrient compound. Fifteen artificial diets were tested; three were successful, including a completely defined medium. Various components of the diets were tested for feeding preferences, both as omissions from the main diet and as pure compounds. Some were stimulatory, most were neutral or slightly deterrent; a few were strongly deterrent. With the exception of linolenic acid, preferences for pure compounds were not significantly correlated with the food on which the animals were reared. The data suggest that food discrimination depends on the perception of a complex chemical message comprised of both polar and non-polar compounds, with the latter being of somewhat greater importance. The results are consistent with the explanation of the induction of feeding preferences being due to a reduced responsiveness to deterrents, to an increased preference for feeding stimulants or to both.  相似文献   

8.
Many tropical animals inhabit mosaic landscapes including human-modified habitat. In such landscapes, animals commonly adjust feeding behavior, and may incorporate non-natural foods. These behavioral shifts can influence consumers' nutritional states, with implications for population persistence. However, few studies have addressed the nutritional role of non-natural food. We examined nutritional ecology of wild blue monkeys to understand how dietary habits related to non-natural foods might support population persistence in a mosaic landscape. We documented prevalence and nutritional composition of non-natural foods in monkey diets to assess how habitat use influenced their consumption, and their contribution to nutritional strategies. While most energy and macronutrients came from natural foods, subjects focused non-natural feeding activity on five exotic plants, and averaged about a third of daily calories from non-natural foods. Most non-natural food calories came from non-structural carbohydrates and least from protein. Consumption of non-natural foods related to time in human-modified habitats, which two groups used non-randomly. Non-natural and natural foods were similar in nutrients, and the amount of non-natural food consumed drove variation in nutritional strategy. When more daily calories came from non-natural foods, females consumed a higher ratio of non-protein energy to protein (NPE:P). Females also prioritized protein while allowing NPE:P to vary, increasing NPE while capitalizing on non-natural foods. Overall, these tropical mammals achieved a similar nutrient balance regardless of their intake of non-natural foods. Forest and forest-adjacent areas with non-natural vegetation may provide adequate nutrient access for consumers, and thus contribute to wildlife conservation in mosaic tropical landscapes.  相似文献   

9.
The total food intake and growth efficiency of growing rats were not affected by the feeding of a mild protein restricted (10%) diet containing an aversive taste stimulus. However, growing rats fed the same diet for a period of 18 days, suffered an inhibition of growth efficiency if the taste character of the diet was changed daily by the addition of a single but different aversive stimulus. For a period of time (9 days), these changes in diet palatability did not affect the total food intake. Rats fed diets containing a combination of the aversive taste changes and commercial soybean trypsin inhibitors, suffered an additional inhibition of growth efficiency. It is postulated that these manipulations in diet palatability interfered with digestive or metabolic processes.  相似文献   

10.
All free-living animals must make choices regarding which foods to eat, with the choices influencing their health and fitness. An important goal in nutritional ecology is therefore to understand what governs animals’ diet selection. Despite large variation in the availability of different food items, Peruvian spider monkeys (Ateles chamek) maintain a relatively stable daily protein intake, but allow total energy intake to vary as a function of the composition of available food items. This is referred to as protein-dominated macronutrient balancing. Here we assess the influence of this nutritional strategy on daily and seasonal nutritional intakes, estimate the nutritional value of different foods, and interpret unusual food choices. We conducted continuous all-day observations of focal spider monkeys inhabiting a semideciduous forest in Bolivia. We recorded feeding events, collected foods, and analyzed their nutrient content. By using the Geometric Framework for nutrition, we show that individuals reached their daily end-point in nutrient space —balance between protein and nonprotein energy intake— by consuming nutritionally balanced foods or by alternating between nutritionally complementary foods. The macronutritionally balanced figs of Ficus boliviana were their primary staple food and therefore dominated their overall nutritional intake. Our results also demonstrate that spider monkeys consumed a diverse array of ripe fruits to overcome periods of fig scarcity rather than vice versa; they could obtain sufficient protein on a diet of pure fruit; and unripe figs constituted a nutritionally rewarding and reliable food resource. We hope that the approaches taken and the conclusions reached in this study will catalyze further inquiries into the nutritional ecology of frugivorous primates.  相似文献   

11.
Concentrations of nutrients and plant secondary metabolites (PSM) vary temporally and spatially, creating a multidimensional feeding environment. Interactions between nutrients and PSM are poorly understood because research has relied largely on studying the isolated effects of nutrients or PSM on foraging behavior. Nevertheless, their interactions can influence food selection and the dynamics of plant communities. Our objective was to explore how interactions between nutrients and PSM influence food selection. For 7 d, three groups of lambs received intraruminal infusions of three different doses of a PSM (0=Control; low and high) and 2 h later they were offered two foods that contained either low (high in energy) or high (high in protein) protein/energy ratios. The foods were offered 7 d before (baseline) and 7 d after PSM infusions. We conducted five trials each with a different PSM- terpenoids, cyanogenic glycosides, sodium nitrate, quebracho tannin, and lithium chloride. Lambs consistently preferred the food high in energy to the food high in protein, but toxins modified the degree to which this preference was manifest. Terpenoids, nitrate, and lithium chloride depressed intake of the food high in energy. Cyanogenic glycosides had the opposite effect, and at higher doses they depressed intake of the food high in protein. Tannins enhanced intake of the food high in energy at lower doses and they depressed its ingestion at higher doses. Thus, PSM selectively depressed or enhanced intake depending on the macronutrient composition of the foods. These results imply that the probability of a plant being eaten will depend not only on its chemical defenses but also on the quantity and quality of nutrients in the plant and its neighbors, and that the ability of herbivores to learn associations between nutrients and PSM may have a substantial impact on the way herbivores regulate ecosystem processes.  相似文献   

12.
Nutrient balance is a strong determinant of animal fitness and demography. It is therefore important to understand how the compositions of available foods relate to required balance of nutrients and habitat suitability for animals in the wild. These relationships are, however, complex, particularly for omnivores that often need to compose balanced diets by combining their intake from diverse nutritionally complementary foods. Here we apply geometric models to understand how the nutritional compositions of foods available to an omnivorous member of the order Carnivora, the grizzly bear (Ursus arctos L.), relate to optimal macronutrient intake, and assess the seasonal nutritional constraints on the study population in west-central Alberta, Canada. The models examined the proportion of macronutrients that bears could consume by mixing their diet from food available in each season, and assessed the extent to which bears could consume the ratio of protein to non-protein energy previously demonstrated using captive bears to optimize mass gain. We found that non-selective feeding on ungulate carcasses provided a non-optimal macronutrient balance with surplus protein relative to fat and carbohydrate, reflecting adaptation to an omnivorous lifestyle, and that optimization through feeding selectively on different tissues of ungulate carcasses is unlikely. Bears were, however, able to dilute protein intake to an optimal ratio by mixing their otherwise high-protein diet with carbohydrate-rich fruit. Some individual food items were close to optimally balanced in protein to non-protein energy (e.g. Hedysarum alpinum roots), which may help explain their dietary prevalence. Ants may be consumed particularly as a source of lipids. Overall, our analysis showed that most food available to bears in the study area were high in protein relative to lipid or carbohydrate, suggesting the lack of non-protein energy limits the fitness (e.g. body size and reproduction) and population density of grizzly bears in this ecosystem.  相似文献   

13.
The present studies were designed to evaluate a potential dose-dependent effect of somatostatin (SRIF) administered peripherally on intake of either a low-protein basal diet or threonine-imbalanced diet (THR-IMB), on body weight gain (DeltaBW), gut motility, and on the histology of taste buds in rats. SRIF administration had a dual effect related to its concentration, increasing the intake of THR-IMB diet at low concentration and decreasing THR-IMB diet at high concentration. During the light phase, SRIF treatment increased the intake of THR-IMB diet, suggesting that the usual anorectic effect induced by intake of THR-IMB diet was attenuated. High-dosage SRIF decreases gastrointestinal motility, which, in turn, can decrease food intake and DeltaBW. The combination of THR-IMB diet regimen and SRIF treatment also induced significant modifications on the taste buds of the tongue. The feeding response to an amino acid-imbalanced diet includes a learned aversion to the diet, and animals may use taste in establishing that aversion. Modifications of taste buds of SRIF-treated rats eating THR-IMB diet might explain the increase of imbalanced diet intake if treated rats perceive this food as less aversive.  相似文献   

14.
Until European settlement of Australia 200 years ago, Aborigines lived as nomadic hunter-gatherers all over the continent under widely varying geographic and climatic conditions. Successful survival depended on a comprehensive knowledge of the flora and fauna of their territory. Available data suggest that they were physically fit and lean, and consumed a varied diet in which animal foods were a major component. Despite this, the diet was not high in fat, as wild animal carcasses have very low fat contents through most of the year, and the meat is extremely lean. Everything on an animal carcass was eaten, including the small fat depots and organ meats (which were highly prized), bone marrow, some stomach contents, peritoneal fluid and blood. A wide variety of uncultivated plant foods was eaten in the traditional diet: roots, starchy tubers, seeds, fruits and nuts. The plant foods were generally high in fibre and contained carbohydrates, which was slowly digested and absorbed. Traditional methods of food preparation (usually baked whole or eaten raw) ensured maximum retention of nutrients. In general, traditional foods had a low energy density but high density of some nutrients. The low energy density of the diet and the labour intensity of food procurement provided a natural constraint on energy intake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
To insure an adequate supply of nutrients, omnivores choose among available food sources. This process is exemplified by the well-characterized innate aversion of omnivores to otherwise nutritious foods of imbalanced amino acid content. We report that brain-specific inactivation of GCN2, a ubiquitously expressed protein kinase that phosphorylates translation initiation factor 2 alpha (eIF2alpha) in response to intracellular amino acid deficiency, impairs this aversive response. GCN2 inactivation also diminishes phosphorylated eIF2alpha levels in the mouse anterior piriform cortex following consumption of an imbalanced meal. An ancient intracellular signal transduction pathway responsive to amino acid deficiency thus affects feeding behavior by activating a neuronal circuit that biases consumption against imbalanced food sources.  相似文献   

16.
The nutrient balancing hypothesis proposes that, when sufficient food is available, the primary goal of animal diet selection is to obtain a nutritionally balanced diet. This hypothesis can be tested using the Geometric Framework for nutrition (GF). The GF enables researchers to study patterns of nutrient intake (e.g. macronutrients; protein, carbohydrates, fat), interactions between the different nutrients, and how an animal resolves the potential conflict between over-eating one or more nutrients and under-eating others during periods of dietary imbalance. Using the moose (Alces alces L.), a model species in the development of herbivore foraging theory, we conducted a feeding experiment guided by the GF, combining continuous observations of six captive moose with analysis of the macronutritional composition of foods. We identified the moose’s self-selected macronutrient target by allowing them to compose a diet by mixing two nutritionally complementary pellet types plus limited access to Salix browse. Such periods of free choice were intermixed with periods when they were restricted to one of the two pellet types plus Salix browse. Our observations of food intake by moose given free choice lend support to the nutrient balancing hypothesis, as the moose combined the foods in specific proportions that provided a particular ratio and amount of macronutrients. When restricted to either of two diets comprising a single pellet type, the moose i) maintained a relatively stable intake of non-protein energy while allowing protein intakes to vary with food composition, and ii) increased their intake of the food item that most closely resembled the self-selected macronutrient intake from the free choice periods, namely Salix browse. We place our results in the context of the nutritional strategy of the moose, ruminant physiology and the categorization of food quality.  相似文献   

17.
李俊年  刘季科  陶双伦 《生态学报》2007,27(11):4478-4484
实验室条件下,测定饥饿和食物单宁酸对东方田鼠食物摄入量和觅食行为的影响。结果表明,饥饿使实验个体的食物总摄入量增加,食物摄入率及口量大小随饥饿强度的增大而增加,而觅食频次则无显著改变,实验个体每取食回合的觅食时间呈缓慢增加的趋势,与对照组比较,觅食时间差异不显著。东方田鼠优先选择0%单宁酸食物,次为3%单宁酸食物,而对6%单宁酸食物的摄入量最少。在饥饿条件下,东方田鼠食物摄入率的增加主要源于其口量大小,觅食频次和觅摄食时间对食物摄入量增加的贡献不显著。在饥饿条件下,植食性小哺乳动物并未通过延长觅食时间,降低用于防卫、繁殖活动时间来增加食物摄入量,而是通过增加口量大小,提高其食物摄入率来满足其营养需要。验证了饥饿与植物次生化合物共同作用引起田鼠类动物生理的改变,能影响其食物摄入量及觅食行为的假设。  相似文献   

18.
The effect of nutrients and their availability on the diet of the herbivorous Malabar giant squirrel Ratufa indica (Sciuridae) was investigated at Magod and Bhimashankar in western India. The daily consumption of food items (percent wet diet) and the intake rates of these items and the contained nutrients (wet g s-1) were determined by continuous observation of focal animals. Water content was a significant positive predictor of relative food item consumption while mineral contents in general had the opposite effect. The intake rates of water and more digestible nutrients such as nonstructural carbohydrates, as well as the intake rate of minerals such as zinc (at Magod), were significant positive predictors of the relative contribution of an item to the daily diet, thus indicating considerations of feeding costs versus benefits. Tannins, some alkaloids, and other secondary metabolites may negatively influence food choice. Protein content, relative to digestibility reducers, influenced food item consumption only at Bhimashankar. There was seasonal variation in daily biomass consumption. At Bhimashankar, daily biomass consumption increased with the proportion of fruit in the diet while this did not occur at Magod. This is perhaps a result of the higher water content and the lower content of some soluble nutrients within fruit at Bhimashankar relative to Magod. There was also intra-month variation between individual squirrels in daily biomass of food consumed. Squirrels consumed ephemeral food items opportunistically and non-ephemeral items such as mature leaves and bark on a regular daily basis. Squirrels probably obtained minerals and nitrogen from both fruit (especially seeds) and non-fruit sources (mature leaves and bark in the case of minerals, young and mature leaves in the case of nitrogen). However, they obtained lipid and non-structural carbohydrates mostly from fruit. Squirrels were selective in their utilization of tree species on a monthly basis, but this selectivity was not evident over a longer time period because individuals were constrained to use different phenological stages of tree species present within their territories. Large body size in this squirrel permits dietary flexibility and enables an overall generalist feeding strategy.  相似文献   

19.
Summary Ruminants are unevenly distributed across the range of body sizes observed in herbivorous mammals; among extant East African species they predominate, in numbers and species richness, in the medium body sizes (10–600 kg). The small and the large species are all hind-gut fermenters. Some medium-sized hind-gut fermenters, equid perissodactyls, coexist with the grazing ruminants, principally bovid artiodactyls, in grassland ecosystems. These patterns have been explained by two complementary models based on differences between the digestive physiology of ruminants and hind-gut fermenters. The Demment and Van Soest (1985) model accounts for the absence of ruminants among the small and large species, while the Bell/Janis/Foose model accounts both for the predominance of ruminants, and their co-existence with equids among the medium-sized species (Bell 1971; Janis 1976; Foose 1982). The latter model assumes that the rumen is competitively superior to the hind-gut system on medium quality forages, and that hind-gut fermenters persist because of their ability to eat more, and thus to extract more nutrients per day from high fibre, low quality forages. Data presented here demonstrate that compared to similarly sized grazing ruminants (bovids), hind-gut fermenters (equids) have higher rates of food intake which more than compensate for their lesser ability to digest plant material. As a consequence equids extract more nutrients per day than bovids not only from low quality foods, but from the whole range of forages eaten by animals of this size. Neither of the current nutritional models, nor refinements of them satisfactorily explain the preponderance of the bovids among medium-sized ungulates; alternative hypotheses are presented.  相似文献   

20.
Herbivorous insects use a variety of physiological mechanisms to cope with noxious (i.e., unpalatable and/or toxic) compounds in their food plants. Here, I review what is known about this coping process, focusing on one species of caterpillar, the tobacco hornworm (Manduca sexta). Herbivorous insects possess both preingestive (i.e., chemosensory) and postingestive response mechanisms for detecting plant secondary compounds. Stimulation of either class of detection mechanism inhibits feeding rapidly by reducing biting rate and/or bite size. This aversive response is highly adaptive during encounters with secondary plant compounds that are toxic. The insect's dilemma is that many harmless or mildly toxic compounds also activate the aversive response. To overcome this dilemma, herbivorous insects employ at least three mechanisms for selectively deactivating their aversive response to relatively harmless secondary plant compounds: (1) the presence of carbohydrates can mask the unpalatable taste of some secondary plant compounds; (2) prolonged dietary exposure to some unpalatable secondary plant compounds can initiate long-term adaptation mechanisms in the peripheral and central gustatory system; and (3) dietary exposure to toxic compounds can induce production of P450 detoxication enzymes. Thus, herbivorous insects utilize an integrated suite of physiological mechanisms to detect potentially toxic compounds in foods, and then selectively adapt to those that do not pose a serious threat to their growth and survivorship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号