首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

For ruminants reared on grazing systems, gastrointestinal nematode (GIN) parasite infections represent the class of diseases with the greatest impact on animal health and productivity. Among the many possible strategies for controlling GIN infection, the enhancement of host resistance through the selection of resistant animals has been suggested by many authors. Because of the difficulty of routinely collecting phenotypic indicators of parasite resistance, information derived from molecular markers may be used to improve the efficiency of classical genetic breeding.

Methods

A total of 181 microsatellite markers evenly distributed along the 26 sheep autosomes were used in a genome scan analysis performed in a commercial population of Spanish Churra sheep to detect chromosomal regions associated with parasite resistance. Following a daughter design, we analysed 322 ewes distributed in eight half-sib families. The phenotypes studied included two faecal egg counts (LFEC0 and LFEC1), anti-Teladorsagia circumcincta LIV IgA levels (IgA) and serum pepsinogen levels (Peps).

Results

The regression analysis revealed one QTL at the 5% genome-wise significance level on chromosome 6 for LFEC1 within the marker interval BM4621-CSN3. This QTL was found to be segregating in three out of the eight families analysed. Four other QTL were identified at the 5% chromosome-wise level on chromosomes 1, 10 and 14. Three of these QTL influenced faecal egg count, and the other one had an effect on IgA levels.

Conclusion

This study has successfully identified segregating QTL for parasite resistance traits in a commercial population. For some of the QTL detected, we have identified interesting coincidences with QTL previously reported in sheep, although most of those studies have been focused on young animals. Some of these coincidences might indicate that some common underlying loci affect parasite resistance traits in different sheep breeds. The identification of new QTL may suggest the existence of complex host-parasite relationships that have unique features depending on the host-parasite combination, perhaps due to the different mechanisms underlying resistance in adult sheep (hypersensitivity reactions) and lambs (immunity). The most significant QTL identified on chromosome 6 for LFEC1 may be the target for future fine-mapping research efforts.  相似文献   

2.
Resistance to an acute gastrointestinal nematode (GIN) infection is dependent on the ability of the host to recognise the parasite and mount a protective Th2 response. It is hypothesised that lambs which are genetically susceptible to GIN will differentially up-regulate Th1-type genes and therefore remain susceptible to chronic parasitism compared with genetically resistant lambs which will differentially up-regulate Th2-type genes and clear the parasite infection. Two selection flocks, in which lines of Merino sheep produced lambs genetically resistant or susceptible to GIN, were acutely challenged once or thrice with either Haemonchus contortus or Trichostrongylus colubriformis. Faecal-egg counts (FECs), and plasma and tissue anti-parasite (H. contortus or T. colubriformis) antibody isotype responses showed that resistant animals challenged three times with T. colubriformis established a protective Th2 response (negligible FEC, IgG1 and IgE) whereas susceptible animals required multiple challenges to establish a significant IgG1 response despite FECs remaining high. Trichostrongylus colubriformis elicited a more pronounced host response than H. contortus. RNA extracted from tissues at the site of each parasite infection and associated lymph nodes were interrogated by microarray and quantitative PCR analyses to correlate host gene expression to FECs and antibody responses. The IFN-γ inducible gene cxcl10 was up-regulated in the susceptible line of the Trichostrongylus selection flock sheep after a tertiary challenge with the parasites H. contortus and T. colubriformis. However, a uniform pattern of genes was not up-regulated in resistant animals from both selection flocks during both parasite infections, suggesting that the mode of host resistance to these parasites is different, although some similarities in host susceptibility were apparent.  相似文献   

3.
In dairy sheep flocks from Mediterranean countries, replacement and adult ewes are the animals most affected by gastrointestinal nematode (GIN) infections. In this study, we have exploited the information derived from an RNA-Seq experiment with the aim of identifying potential causal mutations related to GIN resistance in sheep. Considering the RNA-Seq samples from 12 ewes previously classified as six resistant and six susceptible animals to experimental infection by Teladorsagia circumcincta, we performed a variant calling analysis pipeline using two different types of software, gatk version 3.7 and Samtools version 1.4. The variants commonly identified by the two packages (high-quality variants) within two types of target regions – (i) QTL regions previously reported in sheep for parasite resistance based on SNP-chip or sequencing technology studies and (ii) functional candidate genes selected from gene expression studies related to GIN resistance in sheep – were further characterised to identify mutations with a potential functional impact. Among the genes harbouring these potential functional variants (930 and 553 respectively for the two types of regions), we identified 111 immune-related genes in the QTL regions and 132 immune-related genes from the initially selected candidate genes. For these immune-related genes harbouring potential functional variants, the enrichment analyses performed highlighted significant GO terms related to apoptosis, adhesion and inflammatory response, in relation to the QTL related variants, and significant disease-related terms such as inflammation, adhesion and necrosis, in relation to the initial candidate gene list. Overall, the study provides a valuable list of potential causal mutations that could be considered as candidate causal mutations in relation to GIN resistance in sheep. Future studies should assess the role of these suggested mutations with the aim of identifying genetic markers that could be directly implemented in sheep breeding programmes considering not only production traits, but also functional traits such as resistance to GIN infections.  相似文献   

4.
Breeding for resistance against nematodes has become the need of the hour due to emergence of anthelmintic resistant strains of major pathogenic nematodes of economic importance and rising demand for chemical residue free food by consumers. ICAR-Central Sheep and Wool Research Institute Avikanagar (Rajasthan) has developed Haemonchus contortus resistant lines of sheep in Avikalin and Malpura breeds by harvesting benefits of over-dispersion in fecal egg counts (FEC) through executing a breeding program since year 2004. Aim of the present study was to assess the genetic parameters for nematode resistance in these lines and also to develop suitable criteria for selection targeting resistance as well as growth improvement in these two lines. The data on 1240 Avikalin and 2172 Malpura sheep generated over 13 years (2004–16) for FEC along with deep pedigree and growth records for live weight at 6 (6WT) and 12 month were used for study. Data were analyzed using Average Information Restricted Maximum Likelihood (AIREML) approach. Results revealed moderate heritability (h2) for pre-drench log transformed fecal egg count (LFEC) in Avikalin (0.21±0.06) and Malpura (0.18±0.04) sheep. The post-drench h2 for LFEC was low in Avikalin (0.04±0.03) and Malpura (0.11±0.03) sheep. Effective selection program can be carried out for further improving the resistance against H. contortus in both the breeds using pre-drench LFEC estimates. The genetic correlation between the pre-drench LFEC and growth traits was not in the desired direction. Existence of substantial genotype × environment (G×E) interaction was seen in Malpura sheep, where major shift in ranks of sheep based on pre-drench LFEC as that of post-drench LFEC was observed owing to genetic correlation of 0.65±0.15. The G×E was absent in Avikalin sheep. Unreliable genetic correlation between growth and LFEC does not warrant a multi trait selection index development and its utilization in breeding program. The independent selection for LFEC followed by corrected 6WT can precisely help in achieving the goal of improving growth in nematode resistant sheep.  相似文献   

5.
Abstract Parasite resistance and body size are subject to directional natural selection in a population of feral Soay sheep (Ovis aries) on the island of St. Kilda, Scotland. Classical evolutionary theory predicts that directional selection should erode additive genetic variation and favor the maintenance of alleles that have negative pleiotropic effects on other traits associated with fitness. Contrary to these predictions, in this study we show that there is considerable additive genetic variation for both parasite resistance, measured as fecal egg count (FEC), and body size, measured as weight and hindleg length, and that there are positive genetic correlations between parasite resistance and body size in both sexes. Body size traits had higher heritabilities than parasite resistance. This was not due to low levels of additive genetic variation for parasite resistance, but was a consequence of high levels of residual variance in FEC. Measured as coefficients of variation, levels of additive genetic variation for FEC were actually higher than for weight or hindleg length. High levels of additive genetic variation for parasite resistance may be maintained by a number of mechanisms including high mutational input, balancing selection, antagonistic pleiotropy, and host‐parasite coevolution. The positive genetic correlation between parasite resistance and body size, a trait also subject to sexual selection in males, suggests that parasite resistance and growth are not traded off in Soay sheep, but rather that genetically resistant individuals also experience superior growth.  相似文献   

6.
The impact of parasites on natural populations has received considerable attention from evolutionary biologists in recent years. Central to a number of theoretical developments during this period is the assumption of additive genetic variation in resistance to parasites. However, very few studies have estimated the heritability of parasite resistance under field conditions, and those that have are mainly restricted to birds and their ectoparasites. In this paper, to our knowledge, we show for the first time in a free-ranging mammal population, Soay sheep (Ovis aries) living on the islands of St Kilda, that there is significant heritable variation in resistance to gastrointestinal nematodes. This result is consistent with earlier studies on this population which have indicated locus-specific associations with parasite resistance. We discuss our results in the context of current studies examining heritable resistance to parasites in domestic sheep and the possible mechanisms of selective maintenance of genetic variation for resistance to gastrointestinal nematodes in the St Kilda Soay sheep population.  相似文献   

7.
An in silico mathematical model was used to explore the effect of, and the interaction between, (i) nutrition, (ii) genotype for growth and (iii) genotype for resistance, on the estimates of genetic parameters for resistance and performance in a population of lambs trickle-challenged daily with 3,000 L3s of Teladorsagia circumcincta. A previously published model for nematode infections in sheep was developed to include heritable variation in sheep growth traits, as well as in immunologically controlled traits such as establishment of incoming larvae, mortality of the adult worms and fecundity of the adult female worms. The simulated population comprised 10,000 lambs, these being the offspring of 250 sires mated to 5,000 dams. The model assumed the lambs to be parasitologically naïve at weaning (2 months of age), at which point the trickle challenge commenced and the model was updated daily until slaughter (at 6 months of age). Dietary treatments included a good and a poor quality feed, offered ad libitum. Two genotypes for growth were assumed: (i) fast and (ii) slow growing. Three genotypes for resistance were used: (i) benchmark, (ii) susceptible and (iii) resistant, differing in their ability to cope with nematode infections. Genetic parameters for output traits, including growth rate, food intake, worm burden and faecal egg count were estimated using a linear mixed model, fitting sire as a random effect to capture genetic effects. Heritabilities and correlations were found to change over time. In general, the heritabilities of immunity traits increased over time, whereas genetic correlations between production and immunity traits became weaker. Diet had a significant effect on the means and the estimated correlations of output traits, while genotypes for growth and resistance had smaller effects. These results suggest that discrepancies between published genetic parameters for nematode resistance may be a function of environmental factors rather than differences in host genotype.  相似文献   

8.
Among‐individual variation in antibody‐associated immunity to gastrointestinal nematode parasites (GIN) is known be associated with life‐history traits and vital rates in wild vertebrate systems. To date, measurement of levels of antibodies against GIN antigens in natural populations has exclusively been based on invasive blood sampling techniques. Previous work in laboratory rodents and ruminant livestock suggests that antibody measures from feces may provide a viable noninvasive approach. We measured total and anti‐GIN antibodies of different isotypes (immunoglobulin (Ig) G, IgA and IgE) from paired samples of plasma and feces from free‐living Soay sheep of different ages and sexes. We tested the correlations among these measures as well as their associations with body mass and Strongyle nematode fecal egg counts (FEC). Significant positive correlations were present among plasma and fecal anti‐GIN antibody levels for IgG and IgA. Generally, correlations between total antibody levels in plasma and feces were weaker and not significant. No significant relationships were found between any antibody measures and body mass; however, fecal anti‐GIN antibody levels were significantly negatively correlated with FEC. Our data clearly demonstrate the feasibility of measuring anti‐GIN antibodies from fecal samples collected in natural populations. Although associations of fecal antibody levels with their plasma counterparts and FEC were relatively weak, the presence of significant correlations in the predicted direction in a relatively small and heterogeneous sample suggests fecal antibody measures could be a useful, noninvasive addition to current eco‐immunological studies.  相似文献   

9.
Using a genealogy containing over 1800 dams and nearly 400 sires (estimated by genetic paternity techniques), combined with maximum likelihood procedures and an ‘animal model’, we have estimated the heritabilities, genetic correlations and variance components of three morphometric traits in the Soay sheep (Ovis aries) on St Kilda, Scotland. This approach allows heritabilities to be estimated in natural populations that violate the assumptions of offspring–parent regression methods. Maternal (or paternal) effects can also be estimated under natural conditions. We demonstrate that all the traits, body weight, hind leg length and incisor arcade breadth, have low but significant heritabilities. Body weight, the trait that experiences the strongest selection, had the lowest heritability but the highest additive genetic coefficient of variation. An evolutionary response to selection is predicted. When maternal effects were not taken into consideration heritabilities were over‐estimated, although this effect was only significant in female offspring.  相似文献   

10.
The wide range of genetic parameter estimates for production traits and nematode resistance in sheep obtained from field studies gives rise to much speculation. Using a mathematical model describing host – parasite interactions in a genetically heterogeneous lamb population, we investigated the consequence of: (i) genetic relationships between underlying growth and immunological traits on estimated genetic parameters for performance and nematode resistance, and (ii) alterations in resource allocation on these parameter estimates. Altering genetic correlations between underlying growth and immunological traits had large impacts on estimated genetic parameters for production and resistance traits. Extreme parameter values observed from field studies could only be reproduced by assuming genetic relationships between the underlying input traits. Altering preferences in the resource allocation had less pronounced effects on the genetic parameters for the same traits. Effects were stronger when allocation shifted towards growth, in which case worm burden and faecal egg counts increased and genetic correlations between these resistance traits and body weight became stronger. Our study has implications for the biological interpretation of field data, and for the prediction of selection response from breeding for nematode resistance. It demonstrates the profound impact that moderate levels of pleiotropy and linkage may have on observed genetic parameters, and hence on outcomes of selection for nematode resistance.  相似文献   

11.
Genetic mapping has been widely employed to search for genes linked to phenotypes/traits of interest. Because of the ease of maintaining rodent malaria parasites in laboratory mice, many genetic crosses of rodent malaria parasites have been performed to map the parasite genes contributing to malaria parasite development, drug resistance, host immune response, and disease pathogenesis. Drs. Richard Carter, David Walliker, and colleagues at the University of Edinburgh, UK, were the pioneers in developing the systems for genetic mapping of malaria parasite traits, including characterization of genetic markers to follow the inheritance and recombination of parasite chromosomes and performing the first genetic cross using rodent malaria parasites. Additionally, many genetic crosses of inbred mice have been performed to link mouse chromosomal loci to the susceptibility to malaria parasite infections. In this chapter, we review and discuss past and recent advances in genetic marker development, performing genetic crosses, and genetic mapping of both parasite and host genes. Genetic mappings using models of rodent malaria parasites and inbred mice have contributed greatly to our understanding of malaria, including parasite development within their hosts, mechanism of drug resistance, and host-parasite interaction.  相似文献   

12.
The loss of genetic variation in host populations is thought to increase host susceptibility to parasites. However, few data exist to test this hypothesis in natural populations. Bighorn sheep (Ovis canadensis) populations occasionally suffer disease-induced population declines, allowing us to test for the associations between reduced genetic variation and parasitism in this species. Here, we show that individual mean heterozygosity for 15 microsatellite loci is associated with lungworm abundance (Protostrongylus spp.) in a small, recently bottlenecked population of bighorn sheep (linear regression, r2=0.339, p=0.007). This association remains significant for seven microsatellites located in genes (p=0.010), but not for eight neutral microsatellites (p=0.306). Furthermore, heterozygotes at three of four microsatellites located within disease-related genes had lower lungworm burdens. This study corroborates theoretical findings that increased parasitism and disease may be a consequence of reduced heterozygosity in wild populations, and that certain individual loci influence parasite resistance. The results illustrate the usefulness of using genomic information, strong candidate genes and non-invasive sampling for monitoring both genetic variation and fitness-related traits, such as parasite resistance, in natural populations.  相似文献   

13.
There are no estimates of the heritability of phenotypic udder traits in suckler sheep, which produce meat lambs, and whether these are associated with resilience to mastitis. Mastitis is a common disease which damages the mammary gland and reduces productivity. The aims of this study were to investigate the feasibility of collecting udder phenotypes, their heritability and their association with mastitis in suckler ewes. Udder and teat conformation, teat lesions, intramammary masses (IMM) and litter size were recorded from 10 Texel flocks in Great Britain between 2012 and 2014; 968 records were collected. Pedigree data were obtained from an online pedigree recording system. Univariate quantitative genetic parameters were estimated using animal and sire models. Linear mixed models were used to analyse continuous traits and generalised linear mixed models were used to analyse binary traits. Continuous traits had higher heritabilities than binary with teat placement and teat length heritability (h2) highest at 0.35 (SD 0.04) and 0.42 (SD 0.04), respectively. Udder width, drop and separation heritabilities were lower and varied with udder volume. The heritabilities of IMM and teat lesions (sire model) were 0.18 (SD 0.12) and 0.17 (SD 0.11), respectively. All heritabilities were sufficiently high to be in a selection programme to increase resilience to mastitis in the population of Texel sheep. Further studies are required to investigate genetic relationships between traits and to determine whether udder traits predict IMM, and the potential benefits from including traits in a selection programme to increase resilience to chronic mastitis.  相似文献   

14.
Larvae of several tenthredinid sawfly species readily release droplets of haemolymph through their integument when attacked by predators. This defence mechanism via 'bleeding' is characterised by a low integument resistance and a high haemolymph deterrence. Both traits are variable, and negatively correlated among species. We sought to determine if such differences in the propensity to bleed also occur intraspecifically by studying the heritability of traits potentially associated with the bleeding phenomenon in the turnip sawfly Athalia rosae ruficornis Jakovlev (Hymenoptera: Tenthredinidae, Allantinae). For three European populations, heritabilities were estimated in the laboratory in a parent-offspring and a full-sib design for haemolymph deterrence (measured as concentration of sequestered glucosinolate), integument resistance, body mass of eonymph and adult, and developmental time. Within A. rosae, no significant negative phenotypic correlation was found between the two traits directly related to the defence mechanism: integument resistance and haemolymph deterrence. However, the significant heritabilities found for these traits in the full-sib analysis (0.39 and 0.35, respectively, for males in the Swiss population) show that the variation has a genetic component. While full-sib analysis revealed highly significant heritabilities for most traits in all the three populations, parent-offspring regression revealed little or no evidence of heritable variation. Effects of common environment for siblings and variation in the host-plant quality between insect generations are likely to be the main factors explaining these differences. A consequence of such host-plant variation in the wild might be that genetic variation of such chemical defensive traits is largely invisible to natural selection.  相似文献   

15.
16.
A genome-wide scan was performed to detect quantitative trait loci (QTL) for resistance to gastrointestinal parasites and ectoparasitic keds segregating in the free-living Soay sheep population on St. Kilda (UK). The mapping panel consisted of a single pedigree of 882 individuals of which 588 were genotyped. The Soay linkage map used for the scans comprised 251 markers covering the whole genome at average spacing of 15cM. The traits here investigated were the strongyle faecal egg count (FEC), the coccidia faecal oocyst count (FOC) and a count of keds (Melophagus ovinus). QTL mapping was performed by means of variance component analysis so that the genetic parameters of the study traits were also estimated and compared with previous studies in Soay and domestic sheep. Strongyle FEC and coccidia FOC showed moderate heritability (h(2)=0.26 and 0.22, respectively) in lambs but low heritability in adults (h(2)<0.10). Ked count appeared to have very low h(2) in both lambs and adults. Genome scans were performed for the traits with moderate heritability and two genomic regions reached the level of suggestive linkage for coccidia FOC in lambs (logarithm of the odds=2.68 and 2.21 on chromosomes 3 and X, respectively). We believe this is the first study to report a QTL search for parasite resistance in a free-living animal population and therefore may represent a useful reference for similar studies aimed at understanding the genetics of host-parasite co-evolution in the wild.  相似文献   

17.
In dairy cattle, quantitative trait nucleotides (QTNs) underlying quantitative trait loci (QTL) for milk production traits have been identified in bovine DGAT1, GHR and ABCG2 genes. The SPP1 gene has also been proposed to be a regulator of lactation. In sheep, QTL underlying milk production traits have been reported only recently, and no proven QTN has been identified. Taking into account the close phylogenetic relationship between sheep and cattle, this study examined the possible effects of the aforementioned genes on sheep milk production traits. We first studied the genetic variability of the DGAT1, GHR, ABCG2 and SPP1 genes in 15 rams of the Spanish Churra dairy sheep breed. Second, we performed an association analysis between SNPs identified in these genes and three milk production traits recorded in a commercial population of Churra sheep. This analysis revealed only three significant associations at the nominal level (P-value <0.05) involving allelic variants of the ABCG2 gene, whereas no significant association was found for the DGAT1, GHR and SPP1 genes. When the Bonferroni correction was applied to take into account the multiple tests performed, none of the associations identified at the nominal level remained significant. Nevertheless, taking into account the high level of false-negative findings that can arise when applying the stringent Bonferroni correction, we think that our results provide a valuable primary assessment of strong candidate genes for milk traits in sheep.  相似文献   

18.
Theoretical studies have indicated that the population genetics of host-parasite interactions may be highly dynamic. with parasites perpetually adapting to common host genotypes and hosts evolving resistance to common parasite genotypes. The present study examined temporal variation in resistance of hosts and infectivity of parasites within three populations of Daphnia magna infected with the sterilizing bacterium Pasteuria ramosa. Parasite isolates and host clones were collected in each of two years (1997, 1998) from one population; in two other populations, hosts were collected from both years, but parasites from only the first year. We then performed infection experiments (separately for each population) that exposed hosts to parasites from the same year or made combinations involving hosts and parasites from different years. In two populations, patterns were consistent with the evolution of host resistance: either infectivity or the speed with which parasites sterilized hosts declined from 1997 to 1998. In another population, infectivity, virulence, and parasite spore production did not vary among host-year or parasite-year. For this population, we also detected strong within-population genetic variation for resistance. Thus, in this case, genetic variability for fitness-related traits apparently did not translate into evolutionary change. We discuss a number of reasons why genetic change may not occur as expected in parasite-host systems, including negative correlations between resistance and other traits, gene flow, or that the dynamic process itself may obscure the detection of gene frequency changes.  相似文献   

19.
Carta A  Scala A 《Parassitologia》2004,46(1-2):251-255
The control of helminthiases in ruminants raised in open pasture has been mainly undertaken by using prophylactic measures in the environment, but these are often inadequate due to incorrect application. With the appearance of anthelmintics, the strategy for controlling these parasitoses, passed to pharmacological treatments which became effective in reducing their impact. However, the frequent and incorrect utilisation of these molecules resulted in resistance to anthelmintics and the presence of chemical residues in animal products for human consumption. Anthelmintic resistance is widespread throughout the world, heterogeneous and probably underestimated. This has encouraged the introduction of homeopathic agents and products derived from plants whose effectiveness has not been scientifically assessed. It is well known that it is possible to detect differences in resistance to the most important parasites between breeds. In Europe, it has been reported that some ovine autochthonous breeds, Scottish Blackface and Lacaune, showed higher resistance. The implementation of breeding strategies aimed at obtaining animals with naturally low susceptibility to nematode infestations could therefore play an increasingly important role. Standard animal breeding techniques have been largely successful in improving the performance of domestic animals in the last century. Standard quantitative selection requires field data on: i) individual phenotype performance; ii) expected covariance among animals due to blood relationship between them. The whole process of predicting the breeding value of animals in order to select subsequently the genetically superior parents of the next generation is entirely based on sophisticated computations (BLUP-animal model). In sheep, the main objective is always selecting for milk yield and sometimes, in addition, milk composition. However, due to the evolution of the EU agricultural policy and consumer demand in terms of healthy and organic food, more attention is now being given to traits related to health (resistance to EST, mastitis or parasitic diseases). Some studies conducted in New Zealand and Australia showed that nematode resistance is genetically controlled with high heritabilities and quite low genetic correlations with production traits. In this sense, some studies showed that it is possible to decrease the number of parasites in the framework of a traditional breeding programme. However, in most situations, this trait is not extensively recorded due to the high cost of individual recording. Therefore, it would be useful to implement breeding strategies based on the knowledge of the genes involved in this trait expression. Traditionally, two approaches are available to locate a gene: i) genome scan; ii) candidate gene approach. The candidate gene approach attempts to link general resistance to some particular genes. To date, genetic resistance against parasites is considered to be linked with the MHC and IgE genes. Furthermore, several gene detection studies based on the genome scan approach for this trait are currently being carried out on both crossed experimental populations (fat x lean Blackface lines and Sarda x Lacaune) and pure breeds (Churra). The preliminary results seem promising as to the use of marker assisted or genotype assisted selection for this trait, which is difficult and expensive to measure on a population scale.  相似文献   

20.
Hosts may mitigate the impact of parasites by two broad strategies: resistance, which limits parasite burden, and tolerance, which limits the fitness or health cost of increasing parasite burden. The degree and causes of variation in both resistance and tolerance are expected to influence host–parasite evolutionary and epidemiological dynamics and inform disease management, yet very little empirical work has addressed tolerance in wild vertebrates. Here, we applied random regression models to longitudinal data from an unmanaged population of Soay sheep to estimate individual tolerance, defined as the rate of decline in body weight with increasing burden of highly prevalent gastrointestinal nematode parasites. On average, individuals lost weight as parasite burden increased, but whereas some lost weight slowly as burden increased (exhibiting high tolerance), other individuals lost weight significantly more rapidly (exhibiting low tolerance). We then investigated associations between tolerance and fitness using selection gradients that accounted for selection on correlated traits, including body weight. We found evidence for positive phenotypic selection on tolerance: on average, individuals who lost weight more slowly with increasing parasite burden had higher lifetime breeding success. This variation did not have an additive genetic basis. These results reveal that selection on tolerance operates under natural conditions. They also support theoretical predictions for the erosion of additive genetic variance of traits under strong directional selection and fixation of genes conferring tolerance. Our findings provide the first evidence of selection on individual tolerance of infection in animals and suggest practical applications in animal and human disease management in the face of highly prevalent parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号