首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of oestrous behaviour in Holstein Friesian dairy cows has progressively decreased over the past 50 years. Reduced oestrus expression is one of the factors contributing to the current suboptimal reproductive efficiency in dairy farming. Variation between and within cows in the expression of oestrous behaviour is associated with variation in peripheral blood oestradiol concentrations during oestrus. In addition, there is evidence for a priming role of progesterone for the full display of oestrous behaviour. A higher rate of metabolic clearance of ovarian steroids could be one of the factors leading to lower peripheral blood concentrations of oestradiol and progesterone in high-producing dairy cows. Oestradiol acts on the brain by genomic, non-genomic and growth factor-dependent mechanisms. A firm base of understanding of the ovarian steroid-driven central genomic regulation of female sexual behaviour has been obtained from studies on rodents. These studies have resulted in the definition of five modules of oestradiol-activated genes in the brain, referred to as the GAPPS modules. In a recent series of studies, gene expression in the anterior pituitary and four brain areas (amygdala, hippocampus, dorsal hypothalamus and ventral hypothalamus) in oestrous and luteal phase cows, respectively, has been measured, and the relation with oestrous behaviour of these cows was analysed. These studies identified a number of genes of which the expression was associated with the intensity of oestrous behaviour. These genes could be grouped according to the GAPPS modules, suggesting close similarity of the regulation of oestrous behaviour in cows and female sexual behaviour in rodents. A better understanding of the central genomic regulation of the expression of oestrous behaviour in dairy cows may in due time contribute to improved (genomic) selection strategies for appropriate oestrus expression in high-producing dairy cows.  相似文献   

2.
The milk fat globule (MFG) is one of the most representative of mammary gland tissues and can be utilized to study gene expression of lactating cows during lactation. In this study, RNA‐seq technology was employed to detect differential expression of genes in MFGs at day 10 and day 70 after calving between two groups of cows with extremely high (H group) and low (L group) 305‐day milk yield, milk fat yield and milk protein yield. In total, 1232, 81, 429 and 178 significantly differentially expressed genes (false discovery rate q < 0.05) were detected between H10 and L10, H70 and L70, H10 and H70, and L10 and L70 respectively. Gene Ontology enrichment and pathway analysis revealed that these differentially expressed genes were enriched in biological processes involved in mammary gland development, protein and lipid metabolism process, signal transduction, cellular process, differentiation and immune function. Among these differentially expressed genes, 178 (H10 vs. L10), 4 (H70 vs. L70), 68 (H10 vs. H70) and 22 (L10 vs. L70) were found to be located within previously reported QTL regions for milk production traits. Based on these results, some promising candidate genes for milk production traits in dairy cattle were suggested.  相似文献   

3.
4.
The hypotheses tested in this study were that neither average progesterone (P4) concentrations in plasma and milk nor average progesterone metabolites concentrations in faeces would differ during an oestrous cycle in two groups of cows with differing daily milk yields. High producing (HP = 8) and low producing (LP = 8) dairy cows were selected randomly for the study. Their oestrous cycles were initially synchronised using P4 and prostaglandin F2alpha. Chromic oxide capsules were administered twice daily to measure total faecal output. Samples of blood, faeces and milk were taken daily throughout one oestrous cycle, plasma and milk P4, and faecal progesterone metabolites (FP4M) assayed. The average daily milk yields in the two groups were 30.8 and 21.9l per day, respectively (P < 0.0001), although daily faecal output was similar in both the groups (HP, 7.7 versus LP, 6.9 kg DM; P = 0.24). Mean plasma and milk P4 concentrations were similar in both the groups (plasma P4, 4.12 versus 4.05 ng/ml; P = 0.3; milk P4, 8.2 versus 8.3; P = 0.9) during dioestrus. Average daily excretion of P4 to the milk was greater in HP than LP cows (252 versus 185 microg, P = 0.04). Neither concentration nor the daily yield of FP4Ms was affected by level of milk yield (concentration: 12.2 versus 11.5 microg/g; daily yield: 89.1 versus 82.9 mg per day; P > 0.05). These data showed that the concentrations of P4 in plasma and milk, and the concentrations and daily yields of FP4M were not affected by the level of daily milk yields which differed by about 41% of the LP average of 21.9l.  相似文献   

5.
本实验将中国荷斯坦牛泌乳期高乳品质奶牛(H)和泌乳期低乳品质奶牛(L)乳腺组织作为实验对象,利用高通量测序技术进行了miRNA测序,与miRNA数据库比对,获得已知miRNA,整合miREvo和mirDeep2这两个miRNA预测软件,进行新miRNA分析,通过差异表达分析筛选组间差异miRNAs,获得56个差异表达miRNA(P <0.05,FDRq <0.05)并对差异表达miRNA进行靶基因预测;利用DAVID对靶基因进行GO(Gene Ontology)和信号通路富集分析。经过对靶基因筛选,发现了4个已报道与乳蛋白、乳脂紧密相关的功能基因:CSN3、SCD、LALBA和DGAT2。靶基因聚集的生物学功能多数参与了蛋白质和脂肪代谢,乳腺发育和分化,以及免疫功能。靶基因主要富集在MAPK 信号通路、甘油磷酸脂质代谢、缺氧诱导因子1和磷脂酰肌醇3激酶 蛋白激酶B信号转导通路。结果显示,靶基因主要富集在糖类代谢、脂肪代谢、蛋白质代谢、细胞凋亡以及免疫相关通路。  相似文献   

6.
The aim of this study was to characterize the immediate effects of heat stress on plasma FSH and inhibin concentrations, and its involvement in follicular dynamics during a complete oestrous cycle, and to examine a possible delayed effect of heat stress on follicular development. Holstein dairy cows were oestrous synchronized and randomly assigned to either cooled (n = 7) or heat-stressed (n = 6) treatment groups. During a complete oestrous cycle, control cows, which were cooled, maintained normothermia, whereas heat-stressed cows, which were exposed to direct solar radiation, developed hyperthermia. At the end of this oestrous cycle (treated cycle), both groups were cooled and maintained normothermia for the first 10 days of the subsequent oestrous cycle. Throughout this period, follicular development was examined by ultrasonography, and plasma samples were collected. During the second follicular wave of the treated oestrous cycle, a significantly larger cohort of medium sized follicles (6-9 mm) was found in heat-stressed cows than in cooled cows (P < 0.05). The enhanced growth of follicles in this wave in heat-stressed cows was associated with a higher plasma FSH increase which lasted 4 more days (days 8-13 of the oestrous cycle; P < 0.05), and coincided with a decrease in the plasma concentration of immunoreactive inhibin (days 5-18 of the oestrous cycle; P < 0.05). During the follicular phase (days 17-20 of the treated cycle), heat-stressed cows showed an increase in the number of large follicles (>/= 10 mm), and the preovulatory plasma FSH surge was significantly higher in heat-stressed cows than in cooled cows (P < 0.01). The effect of heat stress was also observed during the first follicular wave of the subsequent cycle: the postovulatory plasma FSH concentration was higher (P < 0.01), but fewer medium follicles developed, and the first follicular wave decreased at a slower rate in previously heat-stressed cows than in cooled cows (0.40 and 0.71 follicles per day, respectively). This study shows both immediate and delayed effects of heat stress on follicular dynamics, which were associated with high FSH and low inhibin concentrations in plasma. These alterations may have physiological significance that could be associated with low fertility of cattle during the summer and autumn.  相似文献   

7.
Investigation were carried out to study the norms of progesterone concentration in the blood serum of buffaloes during various phases of oestrous cycle. Twenty four animals (12 heifers and 12 cows) were used. The blood serum samples were stored at -20 degrees C until processed for progesterone assay. The progesterone concentrations were measured by the radioimmunoassay technique. The progesterone levels were 0.360 +/- 0.062 and 0.334 +/- 0.066 ng/ml on the day of oestrus in buffalo-heifers and buffalo-cows, respectively. The values were around 1 ng/ml till day 6, followed by a gradual increase to a peak average value of 4.888 +/- 0.399 and 5.119 +/- 0.415 ng/ml on day 15 of the cycle in heifers and cows, respectively. Thereafter, the progesterone concentration fell abruptly to a level similar to that at oestrus. The mean progesterone value a day before oestrus was 0.488 +/- 0.067 and 0.577 +/- 0.053 ng/ml in buffalo-heifers and buffalo-cows, respectively. The mean progesterone concentration of different days of the cycle (except day 16) did not differ significantly (P / -0.01) between heifers and cows.  相似文献   

8.
Blood vessel expansion and reduction in the corpus luteum (CL) is regulated by the vascular endothelial growth factor (VEGF) system and linked to the maintenance of the CL. The VEGF system has both angiogenic and antiangiogenic ligands and receptors. Our objective was to evaluate the relationship between the mRNA expression of angiogenic and antiangiogenic members of the VEGF system in the CL, throughout the luteal phase of the oestrous cycle in cows. The CL of 18 cows were collected by transvaginal surgery on days 4, 6, 9, 12, 15 and 18 of the oestrous cycle and the mRNA expression of VEGF system components was evaluated by quantitative real-time PCR. The mRNA expression of VEGF ligands and receptors increased (P<0.05) from the early- and mid-luteal phase (days 4 to 12) reaching its maximum expression on day 15 of the cycle. We found no expression of VEGF164b throughout the cycle. Expression of sVEGFR1 did not change during the oestrous cycle and exceeded that of the VEGFR1 by 100 times. Nonetheless, as VEGFR1 increased, the relationship between the soluble and membrane receptor decreased (P<0.01). In contrast, the expression of VEGFR2 was higher than that of its soluble isoform for all days studied, however, the ratio between the membrane-bound and its soluble counterpart decreased continuously throughout the cycle (P<0.01). Our results show that the expression levels for VEGF ligands, receptors and their antagonistic counterparts are adjusted during CL development and regression, to upregulate angiogenesis early in the oestrous cycle and restrict it at the time of luteolysis.  相似文献   

9.
Carnosinase activity was determined in uterus extracts of sexually immature sows, on particular days of the oestrous cycle, and on the 20th and 30th day of pregnancy. In mature sows carnosinase activity in the uterus was on the average 4.5 times higher than in immature sows. Activity of the enzyme in the oestrous cycle increased from the zero day (first day of the heat) until 13th day, followed by a rapid decrease, reaching the lowest levels on the 17th day of the cycle (3 times lower on the average than on the zero day). On the last days of the cycle (20-21st) activity of carnosinase reached again levels similar to those of the zero day. Carnosinase activity in a uterus corner of pregnant sows (20th day of pregnancy) was over 4 times higher than in the "peak" day of the oestrous cycle (13th day), and over 12 times higher than in immature sows. Activity of the enzyme increased along with progressing pregnancy. It was found that activity of carnosinase in uterus corner of swines was related to the level of progesterone determined by other authors in the blood plasma.  相似文献   

10.
Lactating dairy cows experiencing normal oestrous cycles were injected once with either 0.5 mg of an analogue of prostaglandin F (PGF) (Cloprostenol, 435 cows) or 25 mg of a PGF-Tham salt (237 cows) when at days 7–16 of the cycle (oestrus = day 0). In these two trials, 91% and 93% of the cows were detected in oestrus from 3–10 days post-injection increasing from 81% to 98% with advancing dioestrus. Over 70% of detected cows injected on day 7 (early dioestrus) or day 16 (late dioestrus) were in oestrus from 48 to 72 h post-injection. Comparable response rates among cows injected on days 11 and 12 (mid-dioestrus) were less than 30% with most response intervals being at 4 and 5 days post-injection (73 h–120 h). The variability in response intervals generally decreased with advancing dioestrus. A regression model for ordinal data, with post-injection interval to oestrus as the ordinal response and stage of cycle at injection as the explanatory variable, showed that both the interval to oestrus and the variation in this interval varied with the stage of cycle at injection.These response intervals appear to reflect a wave-like pattern in ovarian follicle development during dioestrus. The probability of the presence of a follicle in a less advanced stage of development at the time of PGF injection is greatest among animals treated during mid-dioestrus.  相似文献   

11.
Exposure of pinealectomized rats to high ambient temperature (35 degrees C; PXH) brought about a diminution in pituitary weight and LH content when compared to their sham-operated peers (35 degrees C) or to pinealectomized controls (22 degrees C). Serum corticosterone level of PXH rats was significantly depressed while heat or pinealectomy alone had no effect. Mean oestrous cycle length was prolonged and blood serum progesterone was increased in the heat-exposed rats. However, the extended oestrous cycles and elevated serum progesterone levels of heat-exposed rats were depressed or abolished by pineal ablation. Thus, the pineal appears to exert a moderating effect on heat-induced endocrine changes in female rats. No changes were noticed in uterine and ovarian weights corrected for body weights either on the day of vaginal opening, at occurrence of the oestrous phase expressed as percentage of total oestrous cycle, or in N-acetyltransferase and hydroxyindole-O-methyltransferase activities.  相似文献   

12.
The hypothesis in the present study was that changes in circulating luteinizing hormone (LH) and follicle stimulating hormone (FSH) would occur during the luteal phase of the oestrous cycle (Days 4–19; Day 0, day of behaviourial oestrus) that were not related to corresponding changes in concentrations of progesterone and 17β-oestradiol. The stage of the oestrous cycle of cows (n = 18) was synchronised to obtain cows that were on alternate days of the cycle. Blood samples were collected every other day at 15 min intervals for 12 h from all cows: Days 4, 6, 8, 10, 12, 14, 16, 18 (n = 9) and Days 5, 7, 9, 11, 13, 15, 17, 19 (n = 9). Concentrations of LH, FSH, 17β-oestradiol and progesterone were determined in these samples. Data were compared across days to determine when significant changes occurred in concentrations or patterns of secretion of the gonadotrophins and ovarian steroid hormones during the oestrous cycle. There were significant changes in mean concentrations of FSH in circulation between Days 6 and 12. The most striking changes in secretion of gonadotrophins that could not be explained by changes in gonadal steroids were the fluctuations in amplitude of LH pulses between Days 7 and 12. Amplitude of LH pulses increased between Days 7 and 11 and subsequently decreased between Days 11 and 12 of the oestrous cycle. Some changes in gonadotrophin secretion that occurred in the present study can be explained by fluctuations in concentrations of progesterone and 17β-oestradiol in circulation. Other changes cannot be explained by fluctuations in circulating concentrations of these steroids. We accept our hypothesis because the concomitant changes in mean concentration of FSH between Days 6 and 11 and amplitude of LH pulses between Days 7 and 12 of the bovine oestrous cycle cannot be explained by changes in circulating concentrations of progesterone and 17β-oestradiol.  相似文献   

13.
As oestrous expression of dairy cows has decreased over the last decades oestrus detection has become more difficult. The objective of this study is to identify the main factors that affect oestrus detection in seasonal calving dairy cows, and to establish their relative importance. In each of 5 years 36 Normande and 36 Holstein cows were assigned to a Low or High winter-feeding level group. Half of each group was then assigned to a Low or High pasture-feeding group. The Low-Low strategy resulted in the lowest milk yield and the greatest body condition (BC) loss from calving to nadir BC score (6302 kg; -0.98 unit). The High-High strategy had the converse effect (7549 kg; -0.75 units). Low-High and High-Low strategies had intermediate values. The Normande cows had lower milk yield and BC loss than Holstein cows (6153 kg versus 7620 kg; -0.82 unit versus -1.20 unit). A database of 415 observed spontaneous oestruses was created. Oestruses were classified according to detection signs: (1) standing to be mounted, (2) mounting without standing, (3) other signs without standing or mounting (slight signs). Presence of another cow in oestrus, access to pasture, Normande breed and Low-Low strategy increased standing detection. In the Normande breed, 97% of oestruses were detected by standing while combining the presence of a herdmate in oestrus and access to pasture with a milk production of less than 6550 kg. Holstein cows had a higher frequency of slight signs oestruses than Normande ones, which was associated with a decreased subsequent calving rate (P<0.05). In multiparous Holstein cows, the odds of slight signs detection was multiplied by 7.8 for the High-High group in comparison with the Low-Low group (P<0.05). In our study milk yield had an effect on oestrus detection which was not explained by BC loss. As High-High cows produced more milk than others, we logically found that an increase in milk yield increased slight signs detection. Conversely, as they lost less BC than others, BC loss improved the chance of standing or mounting detection. These two results show that an increase in milk yield may reduce oestrous behaviour even if BC loss is moderate. Oestrus detection is crucial in seasonal compact calving systems. High phenotypic milk yields appear unsuitable with such systems in regard to depressed oestrous behaviour.  相似文献   

14.
15.
This study examines the genes coding for enzymes involved in bovine milk oligosaccharide metabolism by comparing the oligosaccharide profiles with the expressions of glycosylation-related genes. Fresh milk samples (n = 32) were collected from four Holstein and Jersey cows at days 1, 15, 90 and 250 of lactation and free milk oligosaccharide profiles were analyzed. RNA was extracted from milk somatic cells at days 15 and 250 of lactation (n = 12) and gene expression analysis was conducted by RNA-Sequencing. A list was created of 121 glycosylation-related genes involved in oligosaccharide metabolism pathways in bovine by analyzing the oligosaccharide profiles and performing an extensive literature search. No significant differences were observed in either oligosaccharide profiles or expressions of glycosylation-related genes between Holstein and Jersey cows. The highest concentrations of free oligosaccharides were observed in the colostrum samples and a sharp decrease was observed in the concentration of free oligosaccharides on day 15, followed by progressive decrease on days 90 and 250. Ninety-two glycosylation-related genes were expressed in milk somatic cells. Most of these genes exhibited higher expression in day 250 samples indicating increases in net glycosylation-related metabolism in spite of decreases in free milk oligosaccharides in late lactation milk. Even though fucosylated free oligosaccharides were not identified, gene expression indicated the likely presence of fucosylated oligosaccharides in bovine milk. Fucosidase genes were expressed in milk and a possible explanation for not detecting fucosylated free oligosaccharides is the degradation of large fucosylated free oligosaccharides by the fucosidases. Detailed characterization of enzymes encoded by the 92 glycosylation-related genes identified in this study will provide the basic knowledge for metabolic network analysis of oligosaccharides in mammalian milk. These candidate genes will guide the design of a targeted breeding strategy to optimize the content of beneficial oligosaccharides in bovine milk.  相似文献   

16.
Plasma progesterone and LH secretion patterns were examined in 18 mature dairy cows during the oestrous cycle and after insemination. Blood samples were collected every 15 min for 8 h per day on Days 3, 5, 6, 7, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20 and 21 of the oestrous cycle, then, in the same cows, at the same times during early pregnancy. PGF-2 alpha secretion rates (as determined by plasma PGFM concentrations) were also monitored on Days 14, 16 and the day of, or equivalent to, luteal regression. Mean daily plasma progesterone concentrations were similar until Day 16 in cyclic and pregnant cows, after which values in non-pregnant animals declined. Regression analysis indicated that progesterone concentrations were best described by a quadratic expression with fitted maximum values on Day 13 in non-pregnant animals but values increased linearly over the whole period to Day 21 in pregnant cows. The frequency, amplitude and area under the curve of LH episodes showed no significant differences between cyclic and pregnant animals. In pregnant cows, the amplitude and area under the curve of progesterone episodes increased linearly between Days 8 and 21, although no such increase occurred in cyclic cows. Low-level PGFM episodes were present in cyclic and pregnant cows on Days 14 and 16 after oestrus, and high amplitude episodes occurred in non-pregnant cows during luteal regression. Pregnant cows showed a significant depression of the amplitude, but not the frequency of episodes at the expected time of luteal regression. These results confirm that the corpus luteum of pregnancy secretes an increasing amount of progesterone per se and per unit of LH until at least Day 21 after mating. They further suggest that the corpus luteum of the cyclic cow may experience small episodes of PGF-2 alpha and be subjected to initial degenerative changes by Day 14 after oestrus, some time before the onset of definitive luteolysis.  相似文献   

17.
Two experiments were carried out to determine whether differences in sensitivity to exogenous gonadotrophin which exist during the oestrous cycle can be used effectively in the induction of multiple pregnancy in cattle. In Experiment I, Hereford heifers and cows were injected with 800 IU pregnant mare serum gonadotrophin (PMSG) on approximately day 10 of the oestrous cycle, followed 48 h later by 30 mg prostaglandin F (PGF). Controls were treated with PGF alone. Mean ovulation rates based on rectal palpation were 1.33 ± 0.10 (range: 1–2) and 3.05 ± 0.68 (range: 1–13) for 21 control and 21 treated animals, respectively (P < 0.02). In Experiment II, Hereford cows were treated with 800 IU PMSG on either day 5 (14 cows) or day 10 (12 cows) of the oestrous cycle, followed 48 h later by PGF. Mean numbers of ovulations for animals that became pregnant were 1.50 ± 0.26 (range 1–3) and 3.80 ± 0.74 (range 1–7), respectively (P < 0.02). A high incidence of embryonic wastage occurred by 120 days of gestation in animals treated on day 10. The results of this study indicate that taking advantage of an animal's reduced responsiveness to exogenous gonadotrophin during the early portion of the oestrous cycle may be useful in developing methods for inducing multiple births with exogenous gonadotrophins.  相似文献   

18.
Four trials were completed to study the effects of a single intramuscular injection of 5 μg of an agonist of gonadotrophin releasing hormone (Hoe 766) on plasma concentrations of LH and progesterone, and on oestrous cycle length in normally cycling dairy cows.The first trial (four cows) showed that a mid-cycle injection of Hoe 766 temporarily increases plasma LH from less than 5 ng/ml to over 20 ng/ml within 2.5 h. Average plasma progesterone concentrations ranged from 4.8 to 7.0 ng/ml compared to 3.3 ng/ml in the control animal.The second trial (22 cows) showed that an injection of Hoe 766 on Cycle Day 3, 6 or 9 (Oestrus = Cycle Day 0) increased average plasma progesterone concentrations during Cycle Days 13, 14 and 15 by 1.2 ng/ml. Each of three cows injected on Cycle Day 16 maintained plasma concentrations above 3.9 ng/ml until Cycle Day 19 and corpus luteum (CL) size was maintained until Cycle Day 21. Except for the group of cows injected on Cycle Day 3, all other groups had temporarily reduced concentrations of plasma progesterone when sampled 24 h after Hoe 766 administration.The third trial (216 cows) showed that a single injection of Hoe 766 made between Cycle Day 1 and 10 did not alter oestrous cycle length (21.5 vs 21.3 days). In contrast, in the fourth trial (371 cows), a single injection of Hoe 766 between Cycle Days 12 to 16 altered the distribution of cycle lengths of 17–29 days, the average cycle length and the incidence of ovulation without detected oestrus. Compared to matched control cows, fewer Hoe 766-treated cows were detected in oestrus (73.9% vs 90%), or had cycle lengths of less than 20 days (4.7% vs 22.2%). These effects were most pronounced among cows injected on Cycle Day 16 when only 51.7% were detected in oestrus and their average cycle length was 24.1 days.These effects were not due to the formation of a secondary CL. Rather, the injection of Hoe 766 stimulated CL function and appeared to prevent or delay normal luteolysis when administered from Cycle Day 12.  相似文献   

19.
Expression and detection of oestrus in cattle   总被引:4,自引:0,他引:4  
For herds using AI heat detection rate and calving rate are the two major determinants of compactness of calving, of the proportion of cows that fail to conceive in a defined breeding season. Numerous factors affect the expression of heat including, housing arrangement, floor surface, feet and leg problems and status of herd mates. The number of mounts a cow receives increases with the number of cows that are in heat simultaneously up to about 3-4 cows in heat. Generally, cows that are themselves in heat, coming into heat or were recently in heat are most likely to mount a cow that is in heat. Cows that are at the mid-stages of their cycles (day 5 to about day 16) are least likely to mount a cow that is in heat and consequently could be termed "poor heat detectors". Similarly, cows that are pregnant show less interest in mounting other cows that are in heat. In smaller herds and as more cows become pregnant the likelihood of more than one cow being heat on any given day becomes less, consequently, making heat detection more difficult. The single most important factor affecting heat detection efficiency is that those responsible for checking for heat should fully understand the signs of heat and be fully committed to heat detection for as long as it is planned to use Al. Technological aids to improve heat detection include the use of tail paint, oestrous synchronisation, vasectomised bulls, pressure activated heat mount detectors, radio telemetric devices, pressure sensitive mount count devices and pedometers. As herd size increases and labour become more expensive there will be a greater adoption of some of these technological aids.  相似文献   

20.
In order to characterize the expression of genes associated with immune response mechanisms to mastitis, we quantified the relative expression of the IL-2, IL-4, IL-6, IL-8, IL-10, IFN-γ and TNF- α genes in milk cells of healthy cows and cows with clinical mastitis. Total RNA was extracted from milk cells of six Black and White Holstein (BW) cows and six Gyr cows, including three animals with and three without mastitis per breed. Gene expression was analyzed by real-time PCR. IL-10 gene expression was higher in the group of BW and Gyr cows with mastitis compared to animals free of infection from both breeds (p < 0.05). It was also higher in BW Holstein animals with clinical mastitis (p < 0.001), but it was not significant when Gyr cows with and without mastitis were compared (0.05 < p < 0.10). Among healthy cows, BW Holstein animals tended to present a higher expression of all genes studied, with a significant difference for the IL-2 and IFN- γ genes (p < 0.001). For animals with mastitis no significant difference in gene expression was observed between the two breeds. These findings suggest that animals with mastitis develop a preferentially cell-mediated immune response. Further studies including larger samples are necessary to better characterize the gene expression profile in cows with mastitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号