首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS) and one pair-fed (PF) at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1), cows were challenged for 6 days (P2) by heat stress (temperature humidity index (THI) = 76) or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows.  相似文献   

2.
Nutritional strategies to mitigate the negative effects of heat stress on animal welfare and productivity often involve changes in ration formulation. However, cattle commonly sort their ration in favour of certain components, and it is not clear how feed sorting responds to heat stress. This study investigated the association between heat stress and feed sorting behaviour. Lactating Holstein dairy cows (n = 32; parity = 2.8±1.2; mean±SD) were housed in a free stall barn and milked 3×/day. Cows were fed individually using the Calan Broadbent Feeding System and offered ad libitum access to a total mixed ration (containing on a dry matter basis: 3.3% ryegrass hay, 16.5% ryegrass baleage, 24.7% corn silage, 11.1% brewers grains, 19.7% ground corn, 19.8% concentrate and 4.9% protein/mineral supplement), provided 1×/day. Beginning at 186±60 days in milk, cows were exposed to either: heat stress conditions (HT; n = 15) (average temperature–humidity index: 77.6), or evaporative cooling (CL; n = 17), consisting of misters and fans over the freestall and feed bunks. Data were collected during a 4-day baseline period, and two 4-day experimental periods: starting at 10 days after implementing treatments (defined as acute heat stress for HT cows), and at 62 days after implementing treatments (defined as chronic heat stress for HT cows). Daily feed intake and physiological responses to heat stress (body temperature, respiration rate) were recorded. Samples of fresh and refused feed were collected daily from individual cows for particle size analysis. The particle size separator had three screens (19, 8 and 1.18 mm) and a bottom pan, resulting in 4 fractions (long, medium, short and fine particles). Feed sorting was calculated as the actual intake of each particle size fraction expressed as a percentage of the predicted intake of that fraction. During both heat stress periods, HT cows sorted for long particles more than CL cows (105.0% v. 100.6%; SE = 1.1). During acute heat stress, HT cows sorted to a greater extent than CL cows against medium and short particles, whereas sorting of these fractions did not differ during chronic heat stress. Body temperature and respiration rate were associated across treatments with the extent of sorting for long particles and against short particles during acute heat stress. These results suggest that feed sorting is particularly influenced during acute heat stress, and that sorting for longer particles may increase in heat stress.  相似文献   

3.
Despite many challenges faced by animal producers, including environmental problems, diseases, economic pressure, and feed availability, it is still predicted that animal production in developing countries will continue to sustain the future growth of the world's meat production. In these areas, livestock performance is generally lower than those obtained in Western Europe and North America. Although many factors can be involved, climatic factors are among the first and crucial limiting factors of the development of animal production in warm regions. In addition, global warming will further accentuate heat stress-related problems. The objective of this paper was to review the effective strategies to alleviate heat stress in the context of tropical livestock production systems. These strategies can be classified into three groups: those increasing feed intake or decreasing metabolic heat production, those enhancing heat-loss capacities, and those involving genetic selection for heat tolerance. Under heat stress, improved production should be possible through modifications of diet composition that either promotes a higher intake or compensates the low feed consumption. In addition, altering feeding management such as a change in feeding time and/or frequency, are efficient tools to avoid excessive heat load and improve survival rate, especially in poultry. Methods to enhance heat exchange between the environment and the animal and those changing the environment to prevent or limit heat stress can be used to improve performance under hot climatic conditions. Although differences in thermal tolerance exist between livestock species (ruminants > monogastrics), there are also large differences between breeds of a species and within each breed. Consequently, the opportunity may exist to improve thermal tolerance of the animals using genetic tools. However, further research is required to quantify the genetic antagonism between adaptation and production traits to evaluate the potential selection response. With the development of molecular biotechnologies, new opportunities are available to characterize gene expression and identify key cellular responses to heat stress. These new tools will enable scientists to improve the accuracy and the efficiency of selection for heat tolerance. Epigenetic regulation of gene expression and thermal imprinting of the genome could also be an efficient method to improve thermal tolerance. Such techniques (e.g. perinatal heat acclimation) are currently being experimented in chicken.  相似文献   

4.
Appropriate thyroid gland function and thyroid hormone activity are considered crucial to sustain the productive performance in domestic animals (growth, milk or hair fibre production). Changes of blood thyroid hormone concentrations are an indirect measure of the changes in thyroid gland activity and circulating thyroid hormones can be considered as indicators of the metabolic and nutritional status of the animals. Thyroid hormones play a pivotal role in the mechanisms permitting the animals to live and breed in the surrounding environment. Variations in hormone bioactivity allow the animals to adapt their metabolic balance to different environmental conditions, changes in nutrient requirements and availability, and to homeorhetic changes during different physiological stages. This is particularly important in the free-ranging and grazing animals, such as traditionally reared small ruminants, whose main physiological functions (feed intake, reproduction, hair growth) are markedly seasonal. Many investigations dealt with the involvement of thyroid hormones in the expression of endogenous seasonal rhythms, such as reproduction and hair growth cycles in fibre-producing (wool, mohair, cashmere) sheep and goats. Important knowledge about the pattern of thyroid hormone metabolism and their role in ontogenetic development has been obtained from studies in the ovine foetus and in the newborn. Many endogenous (breed, age, gender, physiological state) and environmental factors (climate, season, with a primary role of nutrition) are able to affect thyroid activity and hormone concentrations in blood, acting at the level of hypothalamus, pituitary and/or thyroid gland, as well as on peripheral monodeiodination. Knowledge on such topics mirror physiological changes and possibly allows the monitoring and manipulation of thyroid physiology, in order to improve animal health, welfare and production.  相似文献   

5.
Global competition for high standard feed-food resources between man and livestock, such as industrial broilers, is a concerning problem. In addition, the low productivity of scavenger chickens in developing countries leaves much to be desired. Changing the ingredients, and therefore, the nutrient composition of feed intake by commercial fed as well as scavenger chickens seems like an obvious solution. In this study, the ability of four broiler chicken breeds to perform on a commercial versus a scavenger diet was tested. The four broiler breeds differed genetically in growth potential. A significant (P < 0.01) negative effect of the scavenger diet on the bodyweight of the fast growing breeds was found and this effect decreased with decreasing growth rate in the other breeds. These differences in bodyweight gain could not be explained by differences in nutrient digestibility but were caused by the lack of ability of the fast growing breeds to increase their feed intake sufficiently.  相似文献   

6.
Lactation markedly increases nutrient requirements in both rodents and ruminants. This is met mostly by increased food intake, but there are also adaptations to increase metabolic efficiency. Despite such changes, lactating animals usually experience periods of negative energy balance. This is not due to a physical constraint on food intake, at least in the rat. Leptin, a hormone secreted by adipocytes, plays an important role in the regulation of appetite and energy balance. During lactation, serum leptin concentration is decreased in both rodents and ruminants, and the nocturnal rise in concentration is lost in rats. Hypoleptinaemia in lactation is primarily a result of negative energy balance. There is also increased clearance of serum leptin, and the attenuation of the nocturnal rise in leptin in rats is at least partly due to the suckling stimulus. Hypoleptinaemia is not the major factor driving hyperphagia in lactating rats, but it probably facilitates the increased food intake. Leptin may play a more important role in this respect in lactating ruminants. Leptin is probably involved in other adaptations that increase metabolic efficiency during lactation. The ability of hypothalamic neuropeptides to respond to leptin does not appear to be altered by lactation in either rodents or ruminants. The reason why lactating animals do not respond to hypoleptinaemia with a further increase in appetite, thereby achieving energy balance, appears to be due to a failure to respond to changes in neuropeptides which mediate the effects of leptin.  相似文献   

7.
Ruminant livestock have the ability to produce high-quality human food from feedstuffs of little or no value for humans. Balanced essential amino acid composition of meat and milk from ruminants makes those protein sources valuable adjuncts to human diets. It is anticipated that there will be increasing demand for ruminant proteins in the future. Increasing productivity per animal dilutes out the nutritional and environmental costs of maintenance and rearing dairy animals up to production. A number of nutritional strategies improve production per animal such as ration balancing in smallholder operations and small grain supplements to ruminants fed high-forage diets. Greenhouse gas emission intensity is reduced by increased productivity per animal; recent research has developed at least one effective inhibitor of methane production in the rumen. There is widespread over-feeding of protein to dairy cattle; milk and component yields can be maintained, and sometimes even increased, at lower protein intake. Group feeding dairy cows according to production and feeding diets higher in rumen-undegraded protein can improve milk and protein yield. Supplementing rumen-protected essential amino acids will also improve N efficiency in some cases. Better N utilization reduces urinary N, which is the most environmentally unstable form of excretory N. Employing nutritional models to more accurately meet animal requirements improves nutrient efficiency. Although smallholder enterprises, which are concentrated in tropical and semi-tropical regions of developing countries, are subject to different economic pressures, nutritional biology is similar at all production levels. Rather than milk volume, nutritional strategies should maximize milk component yield, which is proportional to market value as well as food value when milk nutrients are consumed directly by farmers and their families. Moving away from Holsteins toward smaller breeds such as Jerseys, Holstein-Jersey crosses or locally adapted breeds (e.g. Vechur) would also reduce lactose production and improve metabolic, environmental and economic efficiencies. Forages containing condensed tannins or polyphenol oxidase enzymes have reduced rumen protein degradation; ruminants capture this protein more efficiently for meat and milk. Although these forages generally have lower yields and persistence, genetic modification would allow insertion of these traits into more widely cultivated forages. Ruminants will retain their niches because of their ability to produce valuable human food from low value feedstuffs. Employing these emerging strategies will allow improved productive efficiency of ruminants in both developing and developed countries.  相似文献   

8.
Cattle are the world’s largest consumers of plant biomass. Digestion of this biomass by ruminants generates high methane emissions that affect global warming. In the last decades, the specialisation of cattle breeds and livestock systems towards either milk or meat has increased the milk production of dairy cows and the carcass weight of slaughtered cattle. At the animal level and farm level, improved animal performance decreases feed use and greenhouse gas emissions per kg of milk or carcass weight, mainly through a dilution of maintenance requirements per unit of product. However, increasing milk production per dairy cow reduces meat production from the dairy sector, as there are fewer dairy cows. More beef cows are then required if one wants to maintain the same meat production level at country scale. Meat produced from the dairy herd has a better feed efficiency (less feed required per kg of carcass weight) and emits less methane than the meat produced by the cow-calf systems, because the intake of lactating cows is largely for milk production and marginally for meat, whereas the intake of beef cows is entirely for meat. Consequently, the benefits of breed specialisation assessed at the animal level and farm level may not hold when milk and meat productions are considered together. Any change in the milk-to-meat production ratio at the country level affects the numbers of beef cows required to produce meat. At the world scale, a broad diversity in feed efficiencies of cattle products is observed. Where both productions of milk per dairy cow and meat per head of cattle are low, the relationship between milk and meat efficiencies is positive. Improved management practices (feed, reproduction, health) increase the feed efficiency of both products. Where milk and meat productivities are high, a trade-off between feed efficiencies of milk and meat can be observed in relation to the share of meat produced in either the dairy sector or the beef sector. As a result, in developing countries, increasing productivities of both dairy and beef cattle herds will increase milk and meat efficiencies, reduce land use and decrease methane emissions. In other regions of the world, increasing meat production from young animals produced by dairy cows is probably a better option to reduce feed use for an unchanged milk-to-meat production ratio.  相似文献   

9.
Appetite control is a major issue in normal growth and in suboptimal growth performance settings. A number of hormones, in particular leptin, activate or inhibit orexigenic or anorexigenic neurotransmitters within the arcuate nucleus of the hypothalamus, where feed intake regulation is integrated. Examples of appetite regulatory neurotransmitters are the stimulatory neurotransmitters neuropeptide Y (NPY), agouti-related protein (AgRP), orexin and melanin-concentrating hormone and the inhibitory neurotransmitter, melanocyte-stimulating hormone (MSH). Examination of messenger RNA (using in situ hybridization and real-time PCR) and proteins (using immunohistochemistry) for these neurotransmitters in ruminants has indicated that physiological regulation occurs in response to fasting for several of these critical genes and proteins, especially AgRP and NPY. Moreover, intracerebroventricular injection of each of the four stimulatory neurotransmitters can increase feed intake in sheep and may also regulate either growth hormone, luteinizing hormone, cortisol or other hormones. In contrast, both leptin and MSH are inhibitory to feed intake in ruminants. Interestingly, the natural melanocortin-4 receptor (MC4R) antagonist, AgRP, as well as NPY can prevent the inhibition of feed intake after injection of endotoxin (to model disease suppression of appetite). Thus, knowledge of the mechanisms regulating feed intake in the hypothalamus may lead to mechanisms to increase feed intake in normal growing animals and prevent the wasting effects of severe disease in animals.  相似文献   

10.
The aim of the present study was to assess the heat tolerance of animals of two Portuguese (Alentejana and Mertolenga) and two exotic (Frisian and Limousine) cattle breeds, through the monitoring of physiological acclimatization reactions in different thermal situations characterized by alternate periods of thermoneutrality and heat stress simulated in climatic chambers. In the experiment, six heifers of the Alentejana, Frisian and Mertolenga breeds and four heifers of the Limousine breed were used. The increase in chamber temperatures had different consequences on the animals of each breed. When submitted to heat stress, the Frisian animals developed high thermal polypnea (more than 105 breath movements per minute), which did not prevent an increase in the rectal temperature (from 38.7°C to 40.0°C). However, only a slight depression in food intake and in blood thyroid hormone concentrations was observed under thermal stressful conditions. Under the thermal stressful conditions, Limousine animals decreased food intake by 11.4% and blood triiodothyronine (T3) hormone concentration decreased to 76% of the level observed in thermoneutral conditions. Alentejana animals had similar reactions. The Mertolenga cattle exhibited the highest capacity for maintaining homeothermy: under heat stressful conditions, the mean thermal polypnea increased twofold, but mean rectal temperature did not increase. Mean food intake decreased by only 2% and mean T3 blood concentration was lowered to 85,6% of the concentration observed under thermoneutral conditions. These results lead to the conclusion that the Frisian animals had more difficulty in tolerating high temperatures, the Limousine and Alentejana ones had an intermediate difficulty, and the Mertolenga animals were by far the most heat tolerant.  相似文献   

11.
Physiological responses to changes in energy balance are tightly regulated by the endocrine system through glucocorticoids, IGF-I and thyroid hormones. Changes in these hormones were studied in eight captive female Steller sea lions that experienced changes in food intake, body mass, body composition, and blood metabolites during summer and winter. During a period of energy restriction, one group of sea lions was fed reduced amounts of Pacific herring and another was fed an isocaloric diet of walleye pollock, after which both groups returned to their pre-experimental diets of herring. Cortisol was negatively and IGF-I was positively associated with changes in body mass during periods of energy restriction (mass loss associated with increase in cortisol and decrease in IGF-I) and refeeding (body mass maintenance associated with stable hormone concentrations in summer and compensatory growth linked to decrease in cortisol and increase in IGF-I in winter). Cortisol and IGF-I were also correlated with changes in lipid and lean mass, respectively. Consequently, these two hormones likely make adequate biomarkers for nutritional stress in sea lions, and when combined provide indication of the energetic strategy (lipid vs lean mass catabolism) animals adopt to cope with changes in nutrient intake. Unlike type of diet fed to the sea lions, age of the animals also impacted hormonal responses, with younger animals showing more intense hormonal changes to nutritional stress. Thyroid hormones, however, were not linked to any physiological changes observed in this study.  相似文献   

12.
For ruminants, dietary protein is the first limiting component to the utilization of low-quality forage. Throughout gestation, low-protein intake may result in prenatal programming that causes various metabolic disturbances and physiological modulations to dams and their developing embryos. We studied the effect of long-term low-protein diet (LPD) on physiological, biochemical, and molecular parameters of the energy status in gestating beef cows. LPD resulted in significant reductions in feed intake and heart rate and promoted a negative retained energy status already after 3 weeks. Elevated levels of plasma creatinine and non-esterified fatty acids indicate endogenous degradation of fat and protein as a response to the demands in energy and nitrogen. Increasing levels of β-hydroxybutyrate confirmed the negative energy status obtained by the physiological measurements. At the molecular level, subcutaneous fat, Hsp90, Hsp70, and proteasome subunits decreased significantly after 3 months on LPD, in parallel with an increase of adipocyte fatty acid-binding protein. These results may indicate a decrease in turn-over of proteins, at the cost of induced lipolysis, and suggest that the response to protein deprivation, when examined in an energy-storing tissue, includes downregulation of the constitutive heat shock proteins involved in the protein degradation pathway of energy production and upregulation of tissue-specific genes such as those involved in energy production from fat degradation.  相似文献   

13.
Heat stress may adversely affect physiochemical and immune responses of livestock and alter biological functions. The comfort or thermoneutral zone for livestock, which has long been a subject of research, mainly depends on species, breed, and health. Heat stress is associated with impaired livestock productivity due to reductions in feed intake, growth rates and immunity and changes in blood constituents and biological pathways. In ruminants, elevated temperatures have deleterious consequences on protein synthesis. Exposure of ruminant animals to elevated temperatures may induce release of heat shock proteins (HSPs); HSPs usually enter the blood circulation during tissue damage and causes cell necrosis or death. Additionally, hyperthermia is associated with augmented production of cellular reactive oxygen species (ROS), which cause protein degradation and further decrease protein synthesis by preventing protein translation. Moreover, it has been suggested that high environmental temperatures lead to increased inflammatory signalling in tissues via activation of the nuclear factor kappa B (NF-κB) and tumor necrosis factor alpha (TNF-α) pathways as well as via alteration of skin colour gene (melanocortin 1 receptor (MC1R) and premelanosome protein (PMEL)) expression. Previous proteomics analyses have suggested that heat stress can reduce adenosine triphosphate (ATP) synthesis, alter gluconeogenesis precursor supply, and induce lipid accumulation in the liver with subsequent disturbance of liver structure. This review focuses on the scientific evidence regarding the impact of heat stress on immune and inflammatory responses, antioxidant status, stress biomarkers, skin colour gene (PMEL and MC1R) expression and proteomic profiles in ruminants.  相似文献   

14.
Heat stress and reduced feed intake negatively affect intestinal integrity and barrier function. Our objective was to compare ileum protein profiles of pigs subjected to 12 hours of HS, thermal neutral ad libitum feed intake, or pair-fed to heat stress feed intake under thermal neutral conditions (pair-fed thermal neutral). 2D-Differential In Gel Electrophoresis and gene expression were performed. Relative abundance of 281 and 138 spots differed due to heat stress, compared to thermal neutral and pair-fed thermal neutral pigs, respectively. However, only 20 proteins were different due to feed intake (thermal neutral versus pair-fed thermal neutral). Heat stress increased mRNA expression of heat shock proteins and protein abundance of heat shock proteins 27, 70, 90-α and β were also increased. Heat stress reduced ileum abundance of several metabolic enzymes, many of which are involved in the glycolytic or TCA pathways, indicating a change in metabolic priorities. Stress response enzymes peroxiredoxin-1 and peptidyl-prolyl cis-trans isomerase A were decreased in pair-fed thermal neutral and thermal neutral pigs compared to heat stress. Heat stress increased mRNA abundance markers of ileum hypoxia. Altogether, these data show that heat stress directly alters intestinal protein and mRNA profiles largely independent of reduced feed intake. These changes may be related to the reduced intestinal integrity associated with heat stress.  相似文献   

15.
Two breeds of dairy cattle, one selected for intra-specific fighting and dominance ability (Hérens, H), the other not selected for this behavioural trait (Brune des Alpes, BA), submitted to the same management techniques, were compared with respect to their social behaviour (dominance, agonistic behaviour, social tolerance, social motivation, social distance), fear reactions, ease of handling and physiological correlates.As expected, cows from the H breed were dominant over the BA cows, they were also less fearful either in response to novel objects or in surprise effect tests and had higher social distances at pasture.On the contrary, H cows were less aggressive in undisturbed groups and more tolerant in a food-competition test than BA cows. There were no differences between the two breeds either in aggressive acts in encounters with unfamiliar animals, or in persistence in conflict situations.Furthermore, H cows were less easy to handle in a standardised test, and tended to be less socially motivated than BA cows. Lastly, H cows had higher plasma testosterone levels, and tended to present a lower increase in plasma cortisol level after a surprise effect than BA cows.Thus, the breeders' selection for fighting and dominance ability in H breed appears to have led to several behavioural and hormonal changes.  相似文献   

16.
Heat stress is one of the major limiting factors of production efficiency in the swine industry. The aims of the present study were 1) to observe if hemorheological and hematological parameters could be associated to physiological acclimation during the first days of heat stress exposure and 2) to determine if water restriction could modulate the effect of thermal heat stress on physiological, hematological and hemorheological parameters. Twelve Large White male pigs were divided into an ad libitum and a water restricted group. All pigs were submitted to one week at 24°C (D-7 to D-1). Then, at D0, temperature was progressively increased until 32°C and maintained during one week (D1 to D7). We performed daily measurements of water and feed intake. Physiological (i.e., skin temperature, rectal temperature, respiratory rate), hematological and hemorheological parameters were measured on D-6, D-5, D0, D1, D2 and D7. Water restriction had no effect on physiological, hematological and hemorheological parameters. The first days of heat stress caused an increase in the three physiological parameters followed by a reduction of these parameters suggesting a successful acclimation of pigs to heat stress. We showed an increase in hematocrit, red blood cell aggregation and red blood cell aggregation strength during heat stress. Further, we observed an important release of reticulocytes, an increase of red blood cell deformability and a reduction of feed intake and blood viscosity under heat stress. This study suggests that physiological acute adaptation to heat stress is accompanied by large hematological and hemorheological changes.  相似文献   

17.
The feed efficiency of ruminant meat and dairy livestock can be significantly influenced by factors within their living environments. In particular, events perceived by the animals as stressful (such as parturition, transport or handling) have been found to affect susceptibility to infection. It has been well documented that even minor stress such as weighing can result in an increase in colonisation and faecal shedding of enteric pathogens such as Salmonella enterica and Escherichia coli O157:H7. Such infections affect both ruminant overall health and therefore performance, and are a particular problem for the meat production industries. Prior explanations for stress enhancing the likelihood of infection is that activation of the sympathetic nervous system under stress leads to the release of neuroendocrine mediators such as the catecholamine stress hormones noradrenaline and adrenaline, which may impair innate and adaptive immunity. More recently, however, another equally compelling explanation, viewed through the lens of the newly recognised microbiological discipline of microbial endocrinology is that the myriad of bacteria within the ruminant digestive tract are as responsive to the hormonal output of stress as the cells of their host. Work from our laboratories has shown that enteric pathogens have evolved systems for directly sensing stress hormones. We have demonstrated that even brief exposure of enteric pathogens to physiological concentrations of stress hormones can result in massive increases in growth and marked changes in expression of virulence factors such as adhesins and toxins. Happy, less stressed ruminants may therefore be better-nourished animals and safer sources of meat. This article reviews evidence that stress, as well as affecting nutrition, in ruminants is correlated with increased risk of enteric bacterial infections, and examines the molecular mechanisms that may be at work in both processes.  相似文献   

18.
The severity of heat stress conditions in high-yielding dairy cows is currently underestimated. The present study aimed to determine the heat load threshold of the temperature-humidity index (THI) on physiological parameters of lactating Holstein-Friesian cows under a continental climatic zone in Germany. Physiological parameter measurements, such as respiration rate (RR), measured hourly, and heart rate (HR) and rectal temperature (RT), both measured twice daily, were performed in a total of 139 multiparous cows on three randomly chosen measurement days per week. In addition, the ambient temperature and relative humidity of the barn were recorded every 5 min to calculate the current THI. The physiological parameter data were linked to the THI, and the heat load thresholds were determined using the broken-stick model. The heat load duration effect of each physiological parameter was obtained by regression analysis. Considering the increases in the physiological parameters, our study provided reliable data to determine heat load thresholds for lactating high-yielding dairy cows in a moderate climatic zone. The heat load threshold could be determined for RR in standing cows (THI = 70) and lying cows (THI = 65) and for HR (THI = 72) and RT (THI = 70) in standing cows. The heat load duration also demonstrated a significant effect on the increases in physiological parameters among dairy cows. In particular, the present study enabled a strategy to be devised to initiate heat mitigation in high-yielding dairy cows when they are exposed to THIs above 65.  相似文献   

19.
The prediction of the control of nutrient partitioning, particularly energy, is a major issue in modelling dairy cattle performance. The proportions of energy channelled to physiological functions (growth, maintenance, gestation and lactation) change as the animal ages and reproduces, and according to its genotype and nutritional environment. This is the first of two papers describing a teleonomic model of individual performance during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. The conceptual framework is based on the coupling of a regulating sub-model providing teleonomic drives to govern the work of an operating sub-model scaled with genetic parameters. The regulating sub-model describes the dynamic partitioning of a mammal female's priority between life functions targeted to growth (G), ageing (A), balance of body reserves (R) and nutrient supply of the unborn (U), newborn (N) and suckling (S) calf. The so-called GARUNS dynamic pattern defines a trajectory of relative priorities, goal directed towards the survival of the individual for the continuation of the specie. The operating sub-model describes changes in body weight (BW) and composition, foetal growth, milk yield and composition and food intake in dairy cows throughout their lifespan, that is, during growth, over successive reproductive cycles and through ageing. This dynamic pattern of performance defines a reference trajectory of a cow under normal husbandry conditions and feed regimen. Genetic parameters are incorporated in the model to scale individual performance and simulate differences within and between breeds. The model was calibrated for dairy cows with literature data. The model was evaluated by comparison with simulations of previously published empirical equations of BW, body condition score, milk yield and composition and feed intake. This evaluation showed that the model adequately simulates these production variables throughout the lifespan, and across a range of dairy cattle genotypes.  相似文献   

20.
Comparative investigations were made between wild and domestic ruminants from arid and semi-arid regions and those species from non-arid areas in an attempt to evaluate the adaptations of these ruminants in terms of the effects of heat stress and dehydration on food intake and digestibility. The effect of (a) an intermittent heat load (a daily light cycle of 12 h at 22 degrees C and 12 h at 40 degrees C) compared to 22 degrees C throughout the day and (b) dehydration level of 15% weight loss, with and without the heat load, on the intake and digestibility of a poor quality hay was investigated in the Grant's gazelle, Oryx, the domestic Turkana goats, fat-tailed sheep, zebu cattle, Thomson's gazelle and wildebeest. The intermittent heat load with water available ad libitum depressed the food intake of zebu cattle and Turkana goats by more than 40%. It had no significant effect on the food intake of the other species. The Thomson's and Grants gazelle, oryx, wildebeest and fat-tailed sheep appear well adapted to withstanding a periodic heat load. Dehydration at 22 degrees C caused a marked depression on food intake of all the species investigated. Dehydration together with a heat load caused no further reduction in the food intake by the Grants's gazelle, oryx, and goats but it did cause a further reduction in the intake in the other species. The small non-domestic ruminants (i.e. Grant's and Thomson's gazelle) appear much more digestive efficient than any of their domestic counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号