首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
To understand the different responses of recombinant Chinese hamster ovary (rCHO) cells to low culture temperature regarding specific productivity (q), 12 parental clones and their corresponding amplified clones producing a humanized antibody were cultivated at 32 and 37 degrees C. The specific growth rate of all clones, including both parental and amplified clones, decreased by 30-63% at 32 degrees C, compared to rates at 37 degrees C. In contrast, their specific antibody productivity (qAb) was significantly enhanced at 32 degrees C. Furthermore, the degree of qAb enhancement at 32 degrees C varied a lot from 4- to 25-fold among the parental clones. At 32 degrees C, most of the amplified clones, regardless of methotrexate (MTX) levels, also showed enhanced qAb but to a lesser extent than their parental clones. However, clone 14 amplified at 0.32 microM MTX (clone 14-0.32) and clone 20 amplified at 1 microM MTX (clone 20-1.00), unlike their parental clones, did not show enhanced qAb at 32 degrees C. Thus, it was found that the enhancing effect of low culture temperature on q of rCHO cells depends on clones. Taken together, the results obtained here emphasize the importance of clonal selection for the successful application of low culture temperature to the enhanced foreign protein production in rCHO cells.  相似文献   

4.
A predictive model for Pichia pastoris expression of highly active recombinant Candida rugosa LIP1 was developed by combining the Gompertz function and response surface methodology (RSM) to evaluate the effect of yeast extract concentration, glucose concentration, temperature, and pH on specific responses. Each of the responses (maximum population densities, specific growth rate (mumax), protein concentration, and minimum lag phase duration) was determined using the modified Gompertz function. RSM and 4-factor-5-level central composite rotatable design (CCRD) were adopted to evaluate the effects of growth parameters, such as temperature (21.6-38.4 degrees C), glucose concentration (0.3-3.7%), yeast extract (0.16-1.84%), and pH (5.3-8.7) on the responses of P. pastoris growth kinetics.Based on ridge maximum analysis, the optimum population density conditions were: temperature 24.4 degrees C, glucose concentration 2.0%, yeast extract 1.5%, and pH 7.6. The optimum specific growth rate conditions were: temperature 28.9 degrees C, glucose concentration 2.0%, yeast extract 1.1%, and pH 6.9. The optimum protein concentration conditions were: temperature 24.2 degrees C, glucose concentration 1.9%, yeast extract 1.5%, and pH 7.6. Based on ridge minimum analysis, the minimal lag phase conditions were: temperature 32.3 degrees C, glucose concentration 2.1%, yeast extract 1.1%, and pH 5.4. For the predicted value, the maximum population density, specific growth rate, protein concentration, and minimum lag phase duration were 15.7 mg/ml, 3.4 h(-1), 0.78 mg/ml, and 4.2 h, and the actual values were 14.3 +/- 3.5 mg/ml, 3.6 +/- 0.6 h(-1), 0.72 +/- 0.2 mg/ml, and 4.4 +/- 1.6 h, respectively.  相似文献   

5.
6.
To investigate the effect of culture pH in the range of 6.85-7.80 on cell growth and erythropoietin (EPO) production at 32.5 and 37.0 degrees C, serum-free suspension cultures of recombinant CHO cells (rCHO) were performed in a bioreactor with pH control. Lowering culture temperature from 37.0 to 32.5 degrees C suppressed cell growth, but cell viability remained high for a longer culture period. Regardless of culture temperature, the highest specific growth rate (mu) and maximum viable cell concentration were obtained at pH values of 7.00 and 7.20, respectively. Like mu, the specific consumption rates of glucose and glutamine decreased at 32.5 degrees C compared to 37.0 degrees C. In addition, they increased with increasing culture pH. Culture pH at 32.5 degrees C affected specific EPO productivity (q(EPO)) in a different fashion from that at 37 degrees C. At 37 degrees C, the q(EPO) was fairly constant in the pH range of 6.85-7.80, while at 32.5 degrees C, the q(EPO) was significantly influenced by culture pH. The highest q(EPO) was obtained at pH 7.00 and 32.5 degrees C, and its value was approximately 1.5-fold higher than that at pH 7.00 and 37.0 degrees C. The proportion of acidic EPO isoforms, which is a critical factor for high in vivo biological activity of EPO, was highest in the stationary phase of growth, regardless of culture temperature and pH. Although cell viability rapidly decreased in death phase at both 32.5 and 37.0 degrees C, the significant degradation of produced EPO, probably by the action of proteases released from lysed cells, was observed only at 37.0 degrees C. Taken together, through the optimization of culture temperature and pH, a 3-fold increase in maximum EPO concentration and a 1.4-fold increase in volumetric productivity were obtained at pH 7.00 and 32.5 degrees C when compared with those at 37.0 degrees C. These results demonstrate the importance of optimization of culture temperature and pH for enhancing EPO production in serum-free, suspension culture of rCHO cells.  相似文献   

7.
Recombinant CHO cells of DG44 origin (CS*13-1.00), expressing a chimeric antibody against the S surface antigen of the Hepatitis B virus, were cultivated in single-stage and two-stage depth filter perfusion systems (DFPS) under varying temperature, pH, and oxygen tension conditions to determine their effects on recombinant antibody production. A long-term culture was carried out in a single-stage depth filter for 81 days, during which an occasional clog interrupted the experiment. However, this problem was solved via trypsin injection. The DFPS showed a steady production of monoclonal antibody at a concentration of 100∼150 mg/L. As the cultivation temperature was increased from 33 to 37°C, the monoclonal antibody (Mab) concentration increased from 80.33 to 133.47 mg/L. Likewise, the glucose uptake rate (GUR) and lactate production rate (LPR) also increased. With an increase in pH from 6.95 to 7.61, the Mab concentration increased from 61.64 to 94.31 mg/L. When the oxygen tension was increased from 60 to 80%, the Mab concentration increased from 93.78 to 128.30 mg/L.  相似文献   

8.
To investigate the effect of culture temperature on erythropoietin (EPO) production and glycosylation in recombinant Chinese hamster ovary (CHO) cells, we cultivated CHO cells using a perfusion bioreactor. Cells were cultivated at 37 degrees C until viable cell concentration reached 1 x 10(7) cells/mL, and then culture temperature was shifted to 25 degrees C, 28 degrees C, 30 degrees C, 32 degrees C, 37 degrees C (control), respectively. Lowering culture temperature suppressed cell growth but was beneficial to maintain high cell viability for a longer period. In a control culture at 37 degrees C, cell viability gradually decreased and fell below 80% on day 18 while it remained over 90% throughout the culture at low culture temperature. The cumulative EPO production and specific EPO productivity, q(EPO), increased at low culture temperature and were the highest at 32 degrees C and 30 degrees C, respectively. Interestingly, the cumulative EPO production at culture temperature below 32 degrees C was not as high as the cumulative EPO production at 32 degrees C although the q(EPO) at culture temperature below 32 degrees C was comparable or even higher than the q(EPO) at 32 degrees C. This implies that the beneficial effect of lowering culture temperature below 32 degrees C on q(EPO) is outweighed by its detrimental effect on the integral of viable cells. The glycosylation of EPO was evaluated by isoelectric focusing, normal phase HPLC and anion exchange chromatography analyses. The quality of EPO at 32 degrees C in regard to acidic isoforms, antennary structures and sialylated N-linked glycans was comparable to that at 37 degrees C. However, at culture temperatures below 32 degrees C, the proportions of acidic isoforms, tetra-antennary structures and tetra-sialylated N-linked glycans were further reduced, suggesting that lowering culture temperature below 32 degrees C negatively affect the quality of EPO. Thus, taken together, cell culture at 32 degrees C turned out to be the most satisfactory since it showed the highest cumulative EPO production, and moreover, EPO quality at 32 degrees C was not deteriorated as obtained at 37 degrees C.  相似文献   

9.
Discovery of the cold-inducible RNA-binding protein (CIRP) in mouse fibroblasts suggests that growth suppression at hypothermic conditions is due to an active response by the cell rather than due to passive thermal effects. To determine the effect of down-regulated CIRP expression on cell growth and erythropoietin (EPO) production in recombinant Chinese hamster ovary (rCHO) cells at low culture temperature, stable CHO cell clones with reduced CIRP expression level were established by transfecting (rCHO) cells with the CIRP siRNA vector with a target sequence of TCGTCCTTCCATGGCTGTA. For comparison of the degree of specific growth rate (micro) reduction at low culture temperature, three CIRP-reduced clones with different mu and three control clones transfected with null vector were cultivated at two different temperatures, 32 degrees C and 37 degrees C. Unlike mouse fibroblasts, alleviation of hypothermic growth arrest of rCHO cells by CIRP down-regulation was insignificant, as shown by statistical analysis using the t-test (P<0.18, n=3). The ratios of mu at 32 degrees C to micro at 37 degrees C of CIRP-reduced clones and control clones were 0.29+/-0.03 and 0.25+/-0.03 on an average, respectively. Furthermore, it was also found that overexpression of CIRP did not inhibit rCHO cell growth significantly at 37 degrees C. Taken together, the data obtained show that down-regulation of only CIRP in rCHO cells, unlike mouse fibroblasts, is not sufficient to recover growth arrest at low-temperature culture (32 degrees C).  相似文献   

10.
11.
Recombinant Chinese hamster ovary (CHO) parental clones expressing a humanized antibody against S surface antigen of hepatitis B virus were obtained by cotransfection of heavy chain (HC) and light chain (LC) cDNA expression vectors into dihydrofolate reductase (DHFR)-deficient CHO cells. When 23 representative parental clones were subjected to stepwise selection for increasing methotrexate (MTX) resistance, such as 0.02, 0.08, 0.32, and 1.0 microM, their clonal variations in regard to antibody expression were found to be significant. Among 23 parental clones, only one clone (hu17) showed the significant increment of specific antibody productivity (q(Ab)) with increasing MTX concentration up to 0.32 microM. Compared with the parental clone (hu17), the q(Ab) of hu17 resistant at 0.32 microM MTX (hu17-0.32) was enhanced approximately 12.5-fold. To clarify the reason for the occurrence of clonal variations, Southern blot analyses of chromosomal DNAs derived from each amplified clone at 0.32 microM MTX were performed. Only the hu17-0.32 clone did not experience severe genetic rearrangement during gene amplification, and it had only one 49-kb amplification unit including the LC and HC cDNAs. A fluorescent MTX competition assay showed that the resistance against MTX toxicity of the other clones without enhanced q(Ab) at 0.32 microM MTX was obtained by mechanisms such as an impaired MTX transport system. Taken together, the data obtained here show that clonal variations in regard to antibody expression are found to be significant because clones can acquire MTX resistance by mechanisms other than DHFR-mediated gene amplification despite the stepwise selection.  相似文献   

12.
The human host cell line, F2N78, is a new somatic hybrid cell line designed for therapeutic antibody production. To verify its potential as a human host cell line, recombinant F2N78 cells that produce antibody against rabies virus (rF2N78) were cultivated at different culture pH (6.8, 7.0, 7.2, 7.4, and 7.6) and temperatures (33.0 °C and 37.0 °C). Regardless of the culture temperature, the highest specific growth rate was obtained at a pH of 7.0–7.4. Lowering the culture temperature from 37.0 °C to 33.0 °C suppressed cell growth while allowing maintenance of high cell viability for a longer period. However, it did not enhance antibody production because specific antibody productivity did not increase at 33.0 °C. The highest maximum antibody concentration was obtained at 37.0 °C and pH 6.8. The N-linked glycosylation of the antibody was affected by the culture pH rather than the temperature. Nevertheless, G1F was dominant and G2F occupied a larger portion than G0F in all culture conditions. Compared to the same antibody produced from recombinant CHO cells, the antibody produced from rF2N78 cells has more galactose capping and was more similar to human plasma IgG. Taken together, the results obtained here demonstrate the potential of F2N78 as an alternative human host cell line for therapeutic antibody production.  相似文献   

13.
Methanogenic cultures were enriched from an air-dried rice field soil and incubated under anaerobic conditions at 30 degrees C with cellulose as substrate (ET1). The culture was then transferred and further incubated at either 15 degrees C (E15) or 30 degrees C (E30), to establish stable cultures that methanogenically degrade cellulose. After five transfers, the rates of CH(4) production became reproducible. At 30 degrees C, CH(4) production rates were (mean+/-S.D.) 15.2+/-0.7 nmol h(-1) ml(-1) culture for the next 16 transfers and at 15 degrees C, they were 0.38+/-0.07 nmol h(-1) ml(-1) for the next six transfers. When E30 was assayed at temperatures between 5-50 degrees C, CH(4) production rates increased with the temperature, reached a maximum at 40 degrees C and then decreased. The same temperature optimum was observed in E15, but with a lower maximum CH(4) production rate. The apparent activation energies of CH(4) production were similar (about 120 kJ mol(-1)4 mM at the beginning of the assay. The structure of the archaeal community was analyzed by molecular techniques. Total DNA was extracted from the microbial cultures before the transfer to different temperatures (ET1) and afterwards (E15, E30). The archaeal small subunit (SSU) ribosomal RNA-encoding genes (rDNA) of these DNA samples were amplified by PCR with archaeal-specific primers and characterized by terminal restriction fragment length polymorphism (T-RFLP). After obtaining a constant T-RFLP pattern in the cultural transfers at 15 and 30 degrees C, the PCR amplicons were used for the generation of clone libraries. Representative rDNA clones (n=10 for each type of culture) were characterized by T-RFLP and sequence analysis. In the primary culture (ET1), the archaeal community was dominated by clones representing 'rice cluster I', a novel lineage of methanogenic Euryarchaeota. However, further transfers resulted in the dominance of Methanosarcinaceae and Methanosaetaceae at 30 and 15 degrees C, respectively. This dominance was confirmed by fluorescence in situ hybridization (FISH) of archaeal cells. Obviously, different archaeal communities were established at the two different temperatures, but their activities nevertheless exhibited similar temperature optima.  相似文献   

14.
We studied the variation of small-scale swimming behaviour in eight Bosmina cornuta and ten B. pellucida clones in response to key environmental factors to test whether swimming behaviour and genotypes are linked in non-Daphnia cladocerans. We quantified (1) the short-term responses to changes in temperature, light intensity and pH, (2) the response to long-term temperature acclimation, and (3) the pH-related survival rates. Vertical swimming activity S was quantified in cuvette experiments as crossings of a line at 2 cm height per individual an hour. S differed significantly among species and conspecific clones. At any temperature, light intensity and pH tested, B. cornuta (clone variation: 40-58 crossings/ind.- h) showed a higher vertical swimming activity than B. pellucida (clone variation: 25-48 crossings/ind.- h). A short-term change of water temperature (range tested: 10-25C) only affected S of B. cornuta, whereas that of B. pellucida remained unaltered. In contrast, S increased with rising temperature following long-term temperature acclimation (range tested: 10-20C) in both species. Swimming activity was inversely related to the light intensity (range tested: 60-60,000 lux), but decrease of activity was stronger in B. pellucida (44′ 12 crossings/ind - h) than in B. cornuta (50′ 40 crossings/ind.- h). Short-term changes of pH (range tested: 4-6) did not influence swimming activity in any species, although a prolonged exposure (24 h) to pH 4 was lethal. Thus, Bosmina showed behavioural responses which permit to distinguish between the species and which are related to their seasonal succession and distribution pattern.  相似文献   

15.
应用生命表统计学等方法,比较了15、20、25和30℃4个温度下镜湖萼花臂尾轮虫种群内13个不同基因型克隆的生命表统计学参数和后代混交雌体百分率等生活史特征.结果表明:轮虫的世代时间、平均寿命、出生时的生命期望值、内禀增长率、净生殖率和后代混交雌体百分率对升高温度的反应均因克隆的不同而存在差异;温度、克隆及两者间的交互作用对其也都具有极显著影响.表明水环境在温度等方面所具有的时间异质性可能是镜湖萼花臂尾轮虫种群丰富的遗传变异得以维持的原因之一;自然选择出现在共存的克隆中,但其强度较低或作用时间较短是克隆共存的重要原因;遗传漂变可能在种群的基因型频率变化中起重要作用.不同基因型轮虫克隆的存在对其种群在水环境中的持续存在具有重要意义.  相似文献   

16.
To maximize the production of flag-tagged cartilage oligomeric matrix protein angiopoietin-1 (FCA1) from Chinese hamster ovary (CHO) cells, the effects of culture pH and temperature on cell growth and FCA1 production were investigated. Cells were cultivated in a bioreactor at different culture pH (6.7, 6.9, 7.2, and 7.5) and temperatures (33 and 37 °C). Lowering the culture temperature suppressed cell growth while allowing maintenance of high cell viability for a longer culture period. The specific FCA1 productivity (q FCA1) was increased at low culture temperature. Accordingly, the highest FCA1 concentration was obtained at pH 7.2 and 33 °C, and was approximately 4.0-fold higher than that at pH 7.2 and 37 °C. However, aggregates and a monomeric form of FCA1, which are undesirable due to reduced biological activity or immunogenicity, were significant at pH 7.2 and 33 °C. It was also found that the expression pattern of FCA1 was affected more significantly by culture pH than by the culture temperature. FCA1 aggregation dramatically decreased at culture pH 7.5 regardless of the culture temperature. Furthermore, the monomeric form of FCA1 was not observed. Taken together, optimization of culture temperature and culture pH (33 °C and pH 7.5) significantly improves the production of biologically active FCA1 with tetrameric or pentameric forms from CHO cells.  相似文献   

17.
CD157, a recently characterized leukocyte surface antigen, has recently been shown to induce tyrosine phosphorylation of a 130-kDa protein (p130) when cross-linked with its antibody (ligand). We have further investigated the detailed kinetics, behaviour and cell-type specificity of this CD157-stimulated p130 phosphorylation. We demonstrate that CD157-mediated p130 phosphorylation is ligand independent in recombinant CD157-expressing CHO, MCA102 and COS-7 cells but is ligand dependent in HL-60-differentiated monocytes (mHL-60) having enhanced CD157 expression. This p130 phosphorylation is activated only at lower temperatures (0-4 degrees C) in MCA102, COS-7 and mHL-60 cells but is temperature insensitive in CHO cells. We further demonstrate that the CHO/CD157 cell clones have approximately 22-28% slower rates of proliferation than that of a CHO/mock clone. But the MCA102 cell proliferation remains unaffected by CD157 expression. We postulate that the difference in the temperature sensitivity of p130 phosphorylation can be responsible for the discrepancy in the rates of MCA102/CD157 and CHO/CD157 cell proliferation.  相似文献   

18.
Recently, we demonstrated that a recombinant yeast pyruvate carboxylase expressed in the cytoplasm of BHK-21 cells was shown to partially reconstitute the missing link between glycolysis and TCA, increasing the flux of glucose into the TCA and achieving higher yields of recombinant erythropoietin. In the present study, a CHO cell line producing recombinant human granulocyte macrophage colony stimulating factor was used to evaluate the impact of PYC2 expression and reduced culture temperature. Temperature reduction from 37 to 33 degrees C revealed a reduced growth rate, a prolonged stationary phase and a 2.1-fold increase of the cell specific rhGM-CSF production rate for CHO-K1-hGM-CSF cells. The PYC2-expressing cell clones showed a decreased cell growth and a lower maximum cell concentration compared to the control expressing rhGM-CSF but no PYC2. However, only 65% lactate were produced in PYC2-expressing cells and the product yield was 200% higher compared to the control. The results obtained for CHO cells compared to BHK cells reported previously, indicated that the PYC2 expression dominantly reduced the lactate formation and increased the yield of the recombinant protein to be produced. Finally, the growth and productivity of PYC2-expressing CHO-K1-hGM-CSF cells under both temperature conditions were investigated. The average cell specific rhGM-CSF production increased by 3.2-fold under reduced temperature conditions. The results revealed that the expression of PYC2 and a reduced culture temperature have an additive effect on the cell specific productivity of CHO-K1-hGM-CSF cells.  相似文献   

19.
Early analytical clone screening is important during Chinese hamster ovary (CHO) cell line development of biotherapeutic proteins to select a clonally derived cell line with most favorable stability and product quality. Sensitive sequence confirmation methods using mass spectrometry have limitations in throughput and turnaround time. Next‐generation sequencing (NGS) technologies emerged as alternatives for CHO clone analytics. We report an efficient NGS workflow applying the targeted locus amplification (TLA) strategy for genomic screening of antibody expressing CHO clones. In contrast to previously reported RNA sequencing approaches, TLA allows for targeted sequencing of genomic integrated transgenic DNA without prior locus information, robust detection of single‐nucleotide variants (SNVs) and transgenic rearrangements. During clone selection, TLA/NGS revealed CHO clones with high‐level SNVs within the antibody gene and we report in another case the utility of TLA/NGS to identify rearrangements at transgenic DNA level. We also determined detection limits for SNVs calling and the potential to identify clone contaminations by TLA/NGS. TLA/NGS also allows to identify genetically identical clones. In summary, we demonstrate that TLA/NGS is a robust screening method useful for routine clone analytics during cell line development with the potential to process up to 24 CHO clones in less than 7 workdays.  相似文献   

20.
We have constructed interspecific somatic cell hybrids between a temperature-sensitive (ts) mutant cell line of mouse FM3A cells, ts85, that has a heat-labile ubiquitin-activating enzyme (E1) and a human diploid fibroblast cell line, IMR-90. A hybrid clone that could grow stably at a nonpermissive temperature (39 degrees C) was obtained. Segregation of the hybrid cells at a permissive temperature (33 degrees C) gave rise to temperature-sensitive clones. The electrophoresis of extracted histones and karyotype analysis of the segregants revealed a close correlation of the ability to grow at 39 degrees C, the presence of uH2A (ubiquitin-H2A semihistone) at 39 degrees C, and the presence of the human X chromosome. One of the hybrid clones that could grow at the nonpermissive temperature contained the X chromosome as the only human chromosome. The sodium dodecyl sulfate-polyacrylamide gel electrophoretic pattern of affinity-purified E1 showed that this hybrid clone contained both human and mouse type E1. Thus we conclude that the functional gene for human E1 is located on the X chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号