首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since 17 beta-estradiol (E2)-stimulated growth in human breast cancer cell lines has been shown to be accompanied by increased production of epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha) and their receptor, we investigated the effects of E2 and these growth factors on the growth of human breast epithelial cells (HBEC) in primary culture. HBEC from normal, benign, and malignant tissues were cultured in serum-free medium [DME:F12(1:1), 5 mg/ml BSA, 10 ng/ml cholera toxin, 0.5 micrograms/ml cortisol, 10 micrograms/ml insulin] in the presence and absence of E2, EGF, and TGF-alpha. Tritiated-thymidine ([3H]TdR) incorporation into DNA was used as a measure of cell growth. E2 did not stimulate growth of any of the cultures at all concentrations examined (10(-9) to 10(-6) M). In contrast, EGF ranging from 1 to 100 ng/ml consistently increased the growth of cells of all three breast tissue types in a dose-dependent manner. The EGF stimulation was inhibited by MAb 528, a monoclonal antibody against the EGF receptor. TGF-alpha was equally or more effective in stimulating proliferation, although its dose-response range was different than that of EGF. E2 and EGF together acted in a synergistic manner in 50% of the samples examined. These studies suggest that E2 can exert effects on HBEC growth via modulation of the cells' response to EGF.  相似文献   

2.
Conditions have been described for the selective growth, serial cultivation, and postconfluent morphological differentiation in vitro of normal adult human uroepithelial cells (HUC) on collagen gel substrates in a serum-free medium without the deliberate addition of undefined components and without a requirement for a polypeptide growth factor. The culture medium used (F12) was the standard Ham's F12 medium (0.3 mM calcium) supplemented with 1 microgram/ml hydrocortisone, 5 micrograms/ml transferrin, 10 micrograms/ml insulin, 0.1 mM nonessential amino acids, 2.0 mM L-glutamine, 2.7 mg/ml D-glucose, 10(-4) M ethanolamine or 10(-4) M phosphoethanolamine, and 5 X 10(-8) M selenium. HUC grown in F12 on Type I collagen gel substrates had a generation time of 33 hours and could be serially passed 3-5 times during log phase of growth (20-25 population doublings) before spontaneously senescing. Transmission electron microscopy showed that cultures of HUC grown entirely in serum-free F12 on collagen gel substrates morphologically differentiate postconfluence to resemble in some respects the stratified uroepithelium in vivo, although neither a basal lamina nor an asymmetric unit membrane develop. The addition of epidermal growth factor (EGF) to the F12 did not improve either the growth rate or the lifespan in vitro of HUC. In contrast, the addition of fetal bovine serum (FBS) to F12 was mitogenic to HUC in a dose-dependent manner in the concentration range 0.01-1.00% (4-400 micrograms/ml protein), but higher concentrations of FBS did not improve growth further. The generation time of HUC in 1% FBS-F12 decreased to 21 hours, and the potential population doublings in vitro increased to 31-36. Small amounts (140 micrograms/ml) of bovine pituitary extract (BPE) were similarly mitogenic to HUC in F12. Altering the calcium concentration in the standard Ham's F12 medium (0.3 mM), however, did not improve the growth of HUC in serum-containing or serum-free medium. Higher calcium concentrations (0.30-0.90 mM) were neither mitogenic nor inhibitory to HUC growth, but resulted in decreasing viability of HUC in growing cultures, suggesting an accelerating rate of cellular differentiation. In contrast HUC in low calcium, serum-free F12 (0.1 mM) failed to stratify and morphologically differentiate even in postconfluent cultures. This failure of HUC to differentiate in low calcium F12 medium did not confer a long-term growth advantage.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The effects of 17 beta-estradiol (E2), epidermal growth factor (EGF) and insulin, alone or in association on guinea-pig uterine epithelial cell proliferation were examined in serum-free culture conditions. Primary cultures of epithelial cells were made quiescent by serum depletion, then incubated in a chemically defined medium. In this medium, insulin increased DNA synthesis but not in a dose-dependent manner for concentrations ranging from 0.2 to 10 micrograms/ml. A significant effect of EGF was found only for the highest concentration tested (100 ng/ml). E2 alone or in the presence of insulin (1 microgram/ml) had no effect whatsoever on the concentration tested (10(-10)-10(-5)M). Insulin (10 micrograms/ml) plus EGF (100 ng/ml) exerted on DNA synthesis and cell proliferation a significant additive effect which was identical to the growth stimulation induced by 10% fetal calf serum. The effects of insulin plus EGF were not modified by the addition of E2. These findings suggest that E2 is not directly mitogenic for uterine epithelial cells in defined culture conditions and that the mitogenic response to optimal concentration of insulin plus EGF is independent of E2.  相似文献   

4.
A medium consisting of a rich basal nutrient mixture supplemented with bovine insulin (10 micrograms/ml), human transferrin (10 micrograms/ml), human cold-insoluble globulin (5 micrograms/ml), and ethanolamine (0.5 mM) supported the growth of the A431 human epidermoid cell line in the absence of serum with a generation time equal to that of cells in serum-containing medium. Addition of epidermal growth factor (EGF) to this culture medium at concentration mitogenic for other cell types resulted in a marked inhibition of A431 cell growth. Inhibitory effects of EGF were observed at 1 ng/ml and near-maximal effects were observed at 10 ng/ml. The inhibitory effect of EGF could be reversed by the omission of EGF in subsequent medium changes and could be prevented by the addition of anti-EGF antibody to the culture medium. Inhibition of A431 cell growth by EGF also could be demonstrated in serum-containing medium.  相似文献   

5.
The factors required for the active proliferation of low-density rabbit costal chondrocytes exposed to 9:1 (v/v) mixture of Dulbecco's modified Eagle's medium and Ham's F12 medium have been defined. Low-density primary cultures of rabbit costal chondrocytes proliferated actively when the medium was supplemented with high-density lipoprotein (300 micrograms/ml), transferrin (60 micrograms/ml), fibroblast growth factor (FGF) (1 ng/ml), hydrocortisone (10(-6) M), and epidermal growth factor (EGF) (30 ng/ml). Insulin, although it slightly decreased the final cell density, was required for reexpression of the cartilage phenotype at confluence. Optimal proliferation of low-density chondrocyte cultures was only observed when dishes were coated with an extracellular matrix (ECM) produced by cultured corneal endothelial cells, but not on plastic. Furthermore, serum-free chondrocyte cultures seeded at low density and maintained on ECM-coated dishes gave rise to a homogeneous cartilage-like tissue composed of spherical cells. These chondrocytes therefore seem to provide a good experimental system for analyzing factors involved in supporting proliferation of chondrocytes and their phenotypic expression.  相似文献   

6.
The present study demonstrates that nerve growth factor (NGF) possesses both antimitogenic and mitogenic activities. To this end, we have employed clonal PC12 rat pheochromocytoma cells and two PC12 variant sublines, U2 and U7. When PC12 cells are exposed to NGF in culture media that are otherwise either permissive (15% serum) or restrictive (1% serum) for proliferation, neuronal differentiation occurs and mitosis ceases. Variant lines of PC12 cells have been selected that continue to proliferate in the presence of NGF in permissive medium but which nevertheless retain NGF receptors and certain NGF responses. In contrast to the parent PC12 cells, when such variants were exposed to NGF in growth-restrictive media, cell proliferation was markedly stimulated. The mitogenic activity of NGF was detectable at 0.1 ng/ml (4 pM) and was maximal at 3 ng/ml (100 pM). Possible contamination of the NGF preparation by epidermal growth factor (EGF) or mitogenic proteolytic enzymes was ruled out by the use of anti-EGF and diisopropylfluoro-phosphate, respectively. These findings show that NGF shares the capacity to stimulate cell division with a variety of other peptide hormones and suggest that the mitogenic activity of NGF could play a role in development of the peripheral nervous system as well as in promotion of in vivo growth of certain neural crest-derived neoplasms.  相似文献   

7.
MDCK cells maintained on extracellular matrix (ECM)-coated dishes and exposed to Dulbecco's modified Eagle's medium (DME) supplemented with transferrin and either high-density lipoproteins (HDLs) or phosphatidyl choline (PC) liposomes have a growth rate and final cell density similar to those of cultures exposed to serum-supplemented DME. When MDCK cells are exposed to a medium consisting of a mixture (1:1) of DME and F12 medium (D/F), the addition of transferrin (10 μg/ml) alone supports cell growth and the presence of HDLs or PC liposomes is no longer required. MDCK cells exposed to D/F medium supplemented with transferrin can be passaged for more than 50 generations in total absence of serum. The F12 components that support growth in the absence of HDLs or PC liposomes are biotin (which is absent in DME) and choline (which is present in insufficient concentration in DME). Supplementation of DME with transferrin, biotin (3.6 ng/ml), and choline (10 μg/ml) allows optimal growth of MDCK cells and permits serial propagation through more than 50 generations. The growth requirement of MDCK cells for HDLs or PC liposomes can therefore be replaced by adequate concentrations of biotin and choline. The widely observed fact that a combination of DME/F12 medium is more effective than DME alone in supporting cell growth may be due in part to the lack of biotin and suboptimal choline concentration in DME.  相似文献   

8.
Epidermal growth factor (EGF), which stimulates tyrosine-specific protein kinase activity both in vivo and in vitro, inhibits proliferation of A431 human epidermoid carcinoma cells. After mutagenesis clonal cell lines that were resistant to the growth inhibitory effects of EGF were selected. All six variants examined contained decreased EGF-stimulated protein kinase. The number of EGF receptors in variant cells decreased in parallel with EGF-stimulated protein kinase activity so that the specific activity of EGF-stimulated protein kinase per EGF receptor remained constant in variant cell lines with up to tenfold reductions in both activities. This result suggests that both EGF binding and kinase activities reside in the same or closely coupled molecules. The effect of EGF on growth of two resistant variants was examined in detail. Clone 29 contains approximately 50% and clone 4 contains approximately 20% of the EGF-stimulated protein kinase activity of the parental A431 cell line. In serum-supplemented medium, EGF stimulated proliferation of clone 29 but did not affect growth of clone 4. In a 1:1 mixture of DME and F-12 medium without serum, EGF caused both clone 29 and clone 4 to grow as well as in 10% serum. These variants, which were selected for resistance to the growth inhibitory effects of EGF, thus exhibit a strong mitogenic response to EGF. This result suggests that resistance to the growth inhibitory effect of EGF may involve both a decrease in EGF-stimulated protein kinase and an alteration in the response pathway.  相似文献   

9.
1. A defined medium supporting the proliferation and differentiation of adipocyte precursors isolated from inguinal fat pads of 8-12-day-old mice was developed. 2. It consists of a 1:1 mixture of DME and WAJC404A media supplemented with insulin (10 micrograms/ml), transferrin (10 micrograms/ml), fibroblast growth factor (10 ng/ml) and high density lipoproteins (HDL) (90 micrograms protein/ml). 3. DME-F12 medium (1:1 mixture) used as a nutrient mixture in the defined medium of rat and human adipocyte precursors was inadequate for cultivating mouse adipocyte precursors. 4. HDL had a definite beneficial effect on both preadipocyte growth and differentiation. 5. Differentiation was enhanced by addition of dexamethasone (10(-9) M) but could be almost completely inhibited by transforming growth factor beta 1 (TGF-beta 1). 6. TGF-beta 1 was shown to be effective only when present in the early stages of differentiation.  相似文献   

10.
In this study the effects of retinoic acid on the binding and mitogenic activity of epidermal growth factor (EGF) in mouse fibroblast Balb/c 3T6 cells are further examined. Retinoic acid treatment of 3T6 cells results in a sixfold enhancement of 125I-labeled mouse EGF binding when assayed at 37 degrees C. In both retinoic acid-treated and control cells, cell-associated 125I-EGF is rapidly internalized, degraded, and secreted. Retinoic acid treatment does not seem to have a significant effect on the rate of internalization and degradation of EGF. At 0 degrees C, internalization of EGF is strongly inhibited in both retinoic acid-treated and control cells. Under these conditions retinoic acid-treated cells still exhibit a tenfold higher level of EGF binding compared to control cells. When exposed to high concentrations of EGF both retinoic acid-treated and control cells "down-regulate" their EGF receptors. And although the growth rate of retinoic acid-treated cells is about half that of control cells, the rate at which EGF binding capacity is restored after down-regulation is about three times as fast as in control cells. No direct antagonism on EGF binding was observed between the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and retinoic acid. EGF is a potent mitogen for 3T6 cells in serum-free medium; retinoic acid inhibits the mitogenic activity of EGF even though it increases EGF binding. Retinoic acid also inhibits cell proliferation induced by sarcoma growth factor (SGF) and insulin.  相似文献   

11.
Chicken, ovine or human growth hormones have no mitogenic effect on chicken heart mesenchymal cells, which are proliferatively quiescent at low culture densities in medium containing heparinized, heat-defibrinogenated rooster plasma at 10%. Sm-C/IGF-I (15 ng/ml; 2 nM), MSA/rIGF-II (50 ng/ml; 7 nM), insulin (10,000 ng/ml; 1750 nM) or proinsulin (16,000 ng/ml; 1750 nM), however, cause these cells to increase threefold in number during four days of incubation. While EGF alone at 100 ng/ml causes threefold multiplication at four days and brain FGF causes a sixfold increase, EGF acts synergistically with Sm-C/IGF-I, MSA/rIGF-II, insulin or proinsulin to cause 18-fold multiplication, and brain FGF acts synergistically with IGFs to cause 20-fold multiplication. EGF and brain FGF, however, show no mitogenic synergy. Addition to the plasma-containing culture medium of a monoclonal antibody to Sm-C/IGF-I nearly abolishes the mitogenic effect of added EGF or brain FGF but does not affect the autonomous (mitogenic hormone-independent) proliferation of RSV-infected chicken heart mesenchymal cells. These findings support the somatomedin hypothesis for growth hormone action and suggest that potentiation of the activity of other mitogenic hormones, like EGF and FGF, makes a significant contribution to control of cell proliferation by the GH/IGF axis.  相似文献   

12.
Mammary epithelial cells from virgin Balb/c mice were isolated by collagenase digestion and cultured within collagen gels in serum-free basal medium containing insulin (10 micrograms/ml). Previous work has shown that linoleate or its metabolite, prostaglandin E2 (PGE2), stimulate the growth of these cells only in the presence of a growth stimulant such as epidermal growth factor (EGF). Since PGE2 can stimulate cyclic AMP (cAMP) production, the role of cAMP in linoleate and EGF-stimulated growth was examined. The cAMP phosphodiesterase inhibitor, IBMX (0.1 mM), was found to augment growth when cells were cultured in the presence of both EGF and linoleate or PGE2, but not either factor alone. These results indicated that EGF does not stimulate proliferation via cyclic AMP mediated events but could synergize with cAMP events if cAMP levels were elevated by PGE2. When assayed in cells plated on top of collagen-coated culture dishes, cellular cyclic AMP levels were stimulated by PGE2, but only marginally by EGF. Although the stimulation of endogenous cAMP by PGE2 and IBMX was insufficient to stimulate growth in the absence of EGF, exogenous dibutyryl-cAMP (greater than 100 micrograms/ml) was able to do so showing that a sustained, and high level of cAMP (greater than 100 micrograms/ml) could stimulate growth in insulin-containing basal medium. EGF was capable of enhancing the cellular sensitivity to dibutyryl-cAMP but the converse was not observed. cAMP stimulation of growth was dependent upon a superphysiological concentration of insulin (10 micrograms/ml) or a physiological concentration of somatomedin-C. These results indicate that the proliferation of mouse mammary epithelial cells can be stimulated separately or in synergism by cAMP-dependent or -independent events.  相似文献   

13.
Prostatic epithelium proliferates in a defined medium consisting of basal medium RPMI1640 containing transferring (1 microgram/ml), EGF (10 ng/ml), and insulin (3.7 micrograms/ml or 0.1 IU/ml). Although neither dexamethasone nor retinyl acetate affected the proliferation of prostatic epithelium in RPMI1640 containing transferrin alone, they modify the mitogenic effect of EGF and insulin. Dexamethasone at 10(-10) M or retinyl acetate at about 3 X 10(-9) M inhibits proliferation stimulated by EGF. Higher concentrations of dexamethasone (10(-8) - 10(-6) M) or retinyl acetate (3 X 10(-8) - 10(-7) M) enhance the mitogenic activity of EGF. Dexamethasone had a similar effect in the presence of insulin. However, retinyl acetate stimulated, but did not significantly inhibit, proliferation in the presence of insulin. These results suggest that both dexamethasone and retinyl acetate, and possibly other glucocorticoids and retinoids, may regulate the proliferation of prostate epithelium by a dose-dependent modification of the activity of insulin and EGF.  相似文献   

14.
Epidermal growth factor (EGF) is one of growth factors that are thought to mediate the stimulatory effects of estrogen on the proliferation of uterine epithelial cells. The present study was attempted to obtain direct evidence for the mitogenic effects of EGF on uterine epithelial cells, and to prove that EGF and EGF receptors are expressed in these cells. Mouse uterine epithelial cells were isolated from immature female mice and cultured with or without EGF for 5 days. EGF (1 to 100 ng/ml) significantly increased the number of uterine epithelial cells, and the maximal growth (141.9+/- 8.3% of controls) was obtained at a dose of 10 ng/ml. In addition, EGF (0.1 to 100 ng/ml) increased the number of DNA-synthesizing cells immunocytochemically detected by bromodeoxyuridine uptake to the nucleus. Northern blot analysis revealed that the uterine epithelial cells expressed both EGF mRNA (4.7 kb) and EGF receptor mRNAs (10.5, 6.6, and 2.7 kb) These results suggest that the proliferation of uterine epithelial cells is regulated by the paracrine and/or autocrine action of EGF. Our previous study demonstrated the mitogenic effect of IGF-I on uterine epithelial cells. To examine whether the EGF- and IGF-I signaling act at the same level in the regulation of the proliferation of uterine epithelial cells, the cultured cells were simultaneously treated with IGF-I and EGF. IGF-I was found to additively stimulate the mitogenic effects of EGF, suggesting that the EGF-induced growth of uterine epithelial cells is distinct from IGF-I-induced growth.  相似文献   

15.
Summary This report describes the development of a culture system for long-term growth and cloning of human fetal adrenocortical cells. Optimal conditions for stimulating clonal growth were determned by testing the efficacy of horse serum (HS), fetal bovine serum (FBS), fibroblast growth factor (FGF), epidermal growth factor (EGF), fibronectin, and a combination of growth factors, UltroSer G, in stimulating growth from low density. Optimal conditions for clonal growth were achieved using fibronectin-coated dishes and DME/F12 medium with 10% FEBS, 10% HS, 2% UltroSer G, and 100 ng/ml FGF or 100 pM EGF. Conditions for growth at clonal density were found to be optimal for growth of early passage, nonclonal cultures at higher densities. The improved growth conditions used for cloning were shown to allow continued long-term growth of nonclonal human adrenocortical cells without fibroblasts overgrowth. All cells in cultures grown in HS, FBS, and UltroSer G had morphologic characteristics of adrenocortical cells, whereas cells grown in FBS only rapidly became overgrown with fibroblasts. Clonal and nonclonal early passage human adrenocortical cells had smilar mitogenic responses to FGF and EGF. Whereas FGF, EGF, and UltroSer G showed similar stimulation of DNA synthesis and clonal growth in human adrenocortical cells and human adrenal gland fibroblasts, the tumor promoter 12-O-teradecanoylphorbol-13-acetate stimulated growth only in adrenocortical cells and was strongly inhibitory to growth in fibroblasts. In both cell types, forskolin inhibited DNA synthesis. Human adrenocortical cell cultures were functional and synthesized cortisol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate. The improved growth conditions for clonal growth of human adrenocortial cells also provided optimal conditions for long-term growth of cultured rat adrenocortical cells and ncreased the cloning efficiency of cultured bovine adrenocortical cells. This work was supported by Research grants AG-00936 and AG-06108 from the National Institute on Aging, Bethesda, MD.  相似文献   

16.
The cooperative action of 17 beta-estradiol (E2) and polypeptide growth factors in stimulating proliferation of human breast cancer cells in vitro was investigated. To prevent background estrogenic stimulation, only phenol red-free media were used. When cultured in media supplemented with steroid-stripped serum in which all polypeptide growth factor activity had been chemically inactivated, MCF7 cells were unable to proliferate and became virtually quiescent. In the additional presence of insulin, epidermal growth factor (EGF), and E2, however, cells proliferated as rapidly as did cells cultured in media supplemented with fetal calf serum. Analysis by DNA flow cytometry showed that in the absence of external growth factors, MCF7 cells became arrested predominantly in the G1/G0 phase of the cell cycle. Upon addition of insulin in combination with EGF and E2, however, cells reentered the cell cycle with a high degree of synchrony. When added alone, E2 induced only slight mitogenic effects under these growth factor-defined conditions. In contrast, this steroid induced optimal proliferation in conventional steroid-stripped serum, which in itself contained considerable mitogenic activity. Insulin (at 10 micrograms/ml) was the most potent stimulator of MCF7 cell proliferation under growth factor-defined conditions, resulting in a more than sixfold increase in cell number after 96 hours. Other growth factors such as platelet-derived growth factor (PDGF), transforming growth factor beta (TGF beta), and EGF had little effect by themselves and only slightly influenced insulin-induced proliferation. At suboptimal concentrations of insulin (10-100 ng/ml), however, strong synergism was observed between E2 and insulin in inducing MCF7 proliferation. Using the CG5 cell line, a highly E2-sensitive MCF7 variant, synergism with E2 was already observed at 1 ng/ml insulin. It is concluded that MCF7 cells require insulin (or insulin-like growth factors) for proliferation. At suboptimal insulin concentrations, E2 acts synergistically with insulin, possibly by inducing autocrine production of polypeptide growth factors by these cells.  相似文献   

17.
Growth requirements of ferret tracheal epithelial cells in primary culture   总被引:1,自引:0,他引:1  
In mass cell culture conditions, protease dissociated ferret tracheal epithelial cells (FTE) proliferated in growth factor-supplemented F12 medium to high cell densities (0.5 X 10(5) cells/cm2) with an average population doubling time of 24 hr. The growth factor constituents of the F12 medium included epidermal growth factor (25 ng/ml), insulin (1 microgram/ml), transferrin (10 micrograms/ml), hydrocortisone (18 ng/ml), hypothalamus extract (30-100 micrograms/ml), and conditioned medium from mouse 3T3 fibroblasts. Growth of these cells under clonal conditions was achieved by the partial replacement of F12 medium with M199 medium which was attributed, in part, to the presence of vitamin A in M199 medium. Serum did not stimulate the growth of FTE cells. The epithelial cell nature of these cells in culture was confirmed by ultrastructural features and by immunofluorescent staining for fibronectin.  相似文献   

18.
Mitogenic properties of the insulin derived from pig brain were compared with the action of pancreatic (standard) pig insulin and epidermal growth factor (EGF) using the culture of Swiss 3T3 cells. The brain insulin, likely as the pancreatic insulin, induced uptake of 14C-thymidine by resting cells in a dose-dependent manner at concentration of 0.5-2.0 micrograms/ml in culture medium. However, at equal concentrations of these hormones the proliferating effect of the brain insulin appeared to be 2-fold higher than the effect of the pancreatic hormone. At the same time the mitogenic action of both hormones was lower than that of EGF (10 ng/ml). The additive effect of the brain insulin and EGF, administered in combination, was more pronounced than the effect of the pancreatic insulin combined with EGF. The data obtained suggest a possible participation of brain insulin in the process of nerve cell proliferation.  相似文献   

19.
The conditioned medium from Sertoli cells contains a potent mitogen(s) that can markedly stimulate the proliferation of 4 different cell lines of endoderm or mesoderm origin in the presence or absence of serum. With A431 cells, conditioned medium produced in a dose-dependent manner up to a 5.2-fold increase in cell number after 5 days in culture. Addition of follicle-stimulating hormone (FSH), testosterone, retinol, and insulin to the Sertoli cells increased the secretion of the mitogenic activity. The ability of Sertoli cell conditioned medium (SCCM) to displace 125I-labeled epidermal growth factor (125I-EGF) from formalin-fixed A431 cells was also examined. The SCCM from Sertoli cells incubated with insulin contained 1.42 ng eq of EGF/ml; testosterone, retinol, and FSH (in the presence of insulin) further increased the secretion of this EGF competing activity to 2.09, 2.56, and 3.22 ng eq/ml, respectively. The amount of EGF competing activity was positively correlated with mitogenic activity. Separation of SCCM by gel filtration on Bio-Gel P-10 produced three major peaks of EGF-competing activity at apparent Mr = 1800-2100, 3800-4200, and 8000-9500. Chromatographing SCCM (in the presence of protease inhibitors) on size exclusion high performance liquid chromatography revealed two peaks of EGF competing activity at Mr about 8000 and 2000 coincident with and proportional to peaks of mitogenic activity. This activity was heat-sensitive and resistant to reducing agents, and addition of an equivalent amount of EGF as that present in SCCM produced an inhibition in growth of the A431 cells compared to a 3-fold stimulation with SCCM. Thus, the Sertoli cells secrete a potent mitogen that is distinct from EGF and alpha TGF. This factor that we have termed Sertoli cell-secreted growth factor is hormonally regulated by FSH, testosterone, and retinol and may play an important role in controlling spermatogenesis.  相似文献   

20.
Mammary epithelial cells were isolated from mid-pregnant BALB/c mice, grown within collagen gels and maintained on DME/F12 (1:1) media containing 10% bovine calf serum and 10 μ/ml insulin. Initial time-course and dose-response studies showed that epidermal growth factor (EGF)-induced autophosphorylation of the EGF-receptor (EGF-R) in these cells was maximal 5 min after exposure to 75 ng/ml EGF. Mammary epithelial cells displaying little or no growth during their first 2 days in primary culture cells were found to contain low levels of EGF-R. However, EGF-induced autophosphorylation of the EGF-R in these cells was extremely intense. Subsequent studies demonstrated that during the proliferative and plateau phases of growth, EGF-R levels progressively increased, while conversely EGF-induced autophosphorylation of the EGF-R decreased over time in primary culture. These results demonstrate that EGF-R levels and autophosphorylation do not show a direct correlation with mammary epithelial cell mitogen-responsiveness. Intense EGF-R autophosphorylation appears to be required for initiating growth, but sustained mammary epithelial cell proliferation occurs when EGF-R autophosphorylation is low. This inverse relationship between EGF-R levels and autophosphorylation may reflect changes in receptor affinity and function during the various phases of mammary epithelial cell growth in primary culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号