首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ST1481 (gimatecan) is a novel lipophilic camptothecin with a promising preclinical pharmacological profile. On the basis of its high antitumor efficacy when delivered by the oral route, the compound is suitable for prolonged administration. This schedule of treatment has been reported as the most appropriate to exploit the antiangiogenic effects of cytotoxic drugs. The aim of the study was to investigate the antiangiogenic and antitumor effects of oral ST1481 in human tumor xenografts. In spite of a marginal drug effect against the s.c. growing A549 lung carcinoma following administration with an intermittent schedule (q4dx4 times, maximum tolerated dose: 2 mg/kg), tumor growth was strongly inhibited by a daily low-dose (0.5 mg/kg) prolonged administration. Immunohistochemical analysis showed a reduced number of microvessels in tumors of both treated groups versus controls and a significantly higher reduction in the daily versus the q4dx4-treated tumors (P < 0.0001, by Student's t test). In our experimental model, the relation between microvessel density and tumor size (r = 0.738, by the Spearman rank test) suggests a role of inhibition of tumor vasculature in tumor response. Significant inhibition of tumor angiogenesis (P < 0.0001 versus control tumors) was observed even with a very low drug dose (0.06 mg/kg) in the orthotopically implanted (i.d.) MeWo melanoma, under conditions causing minimal tumor growth inhibition. Additional evidences of the antiangiogenic activity of ST1481 were provided by antimotility effects on endothelial cells, in vivo inhibition of vascularization in the Matrigel assay, and down-regulation of the expression of the proangiogenic basic fibroblast growth factor in A549 tumor cells associated with inhibition of the pathway involving Akt. In conclusion, the available results support the possibility that the antiangiogenic properties of ST1481 contribute to its antitumor potential and that this effect might be enhanced by the continuous low-dose treatment.  相似文献   

2.
A new strategy for fast, convenient high-throughput screening of liposomal formulations was developed, utilizing the automation of the so-called ethanol-injection method. This strategy was illustrated by the preparation and screening of the liposomal formulation library of a potent second-generation photosensitizer, temoporfin. Numerous liposomal formulations were efficiently prepared using a pipetting robot, followed by automated size characterization, using a dynamic light scattering plate reader. Incorporation efficiency of temoporfin and zeta potential were also detected in selected cases. To optimize the formulation, different parameters were investigated, including lipid types, lipid concentration in injected ethanol, ratio of ethanol to aqueous solution, ratio of drug to lipid, and the addition of functional phospholipid. Step-by-step small liposomes were prepared with high incorporation efficiency. At last, an optimized formulation was obtained for each lipid in the following condition: 36.4 mg·mL(-1) lipid, 13.1 mg·mL(-1) mPEG(2000)-DSPE, and 1:4 ethanol:buffer ratio. These liposomes were unilamellar spheres, with a diameter of approximately 50?nm, and were very stable for over 20 weeks. The results illustrate this approach to be promising for fast high-throughput screening of liposomal formulations.  相似文献   

3.
Cationic liposomes can be designed and developed in order to be an efficient gene delivery system for mammalian cells. Dendritic cell (DC) vaccines can be used to treat cancer, as cationic liposomes can deliver tumor antigens to cells while cells remain active. However, most methods used for liposome production are not able to reproduce in large scale the physicochemical and biological properties of liposomes produced in laboratory scale. In this context, ethanol injection method achieved promising results, although requiring post-treatment for size reduction and/or to remove residual ethanol. Thus, the purpose of this study was to generate cationic liposomes suitable for gene therapies via ethanol injection method in only one step (VEI) and compared to those submitted to a size reduction processes by microfluidization (MFV). For this, the method to produce cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and 1,2-dioleoylphosphatidylethanolamine (DOPE) was optimized using a statistical design approach. As a result, the size of VEI decreased from 290?nm to 110?nm and the polydispersity from 0.54 to 0.17. In the case of MFV, size decreased from 128?nm to 107?nm and polydispersity from 0.40 to 0.18. ST and MFV before and after optimization were also characterized in terms of morphology by transmission electron microscopy (TEM) and structure by differential scanning calorimetry (DSC). Finally, to show their potential in gene/immune therapies applications, DCs were stimulated by such liposomes. Cells internalized liposomes, increasing expression of the costimulatory molecule CD86 and inducing T lymphocyte proliferation.  相似文献   

4.
The purpose of this study was to establish a new experimental approach to determine the maximum amount of campothecin (CPT) that can be incorporated in liposomes, and to use this method to compare the CPT-incorporation capacity of various liposome formulations. Small, CPT-saturated liposomes were prepared by dispersing freeze-dried blends of lipids and drug in phosphate buffer, and subsequent probe-sonication. Excess precipitated CPT could be separated from the liposomes by ultra-centrifugation. The small and homogeneous liposome size obtained gave a good and reproducible recovery of liposomes in the supernatant (>80%), whereas the acidic pH (pH 6.0) kept CPT in its hydrophobic lactone form, which is poorly soluble in the buffer. The maximum CPT-incorporation capacity of 12 different liposome formulations was investigated, using the described method, and was found to vary widely. With liposomes made of neutral and anionic phospholipids, the solubili ty of CPT in the buffer was improved by approximately a factor of 10 (from ∼2.7 to 15–50 μg/mL) as compared with buffer. With cationic liposomes containing 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), a maximum CPT-solubilization of ∼100-fold, the buffer solubility was reached, probably owing to an electrostatic interaction between the cationic lipids and the carboxylate-CPT isomer. Increasing DOTAP fractions within egg-phosphatidylcholine (EPC)/DOTAP liposomes reached a CPT-incorporation plateau at ∼20 mol% DOTAP. The presented approach appears suitable to study the incorporation capacity of any drug component within small vesicles as long as the liposome incorporation is high relative to the intrisic water solubility of the drug.  相似文献   

5.
A dynamic light scattering study of the size distribution of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) liposomes formed by the injection method is presented. By this method, an aliquot of methanol stock solution containing the surfactant is injected into water. The main aim of the present work was to determine under which conditions a monomodal and narrow size distribution could be obtained. The influence of several parameters on the size distribution was investigated. Firstly, we examined the influence of the POPC concentration in the initial stock methanol solution, when the POPC concentration in the final aqueous solution remains constant; secondly, the influence of POPC concentration in the aqueous phase, while the lipid concentration in the stock methanol remains constant. In both cases narrow monomodal size distributions of liposomes, centered between 40 and 70 nm, are obtained at low concentrations of POPC, in the stock methanol solution (相似文献   

6.
Unilamellar liposomes are conventionally prepared by rapid injection of an ethanolic solution of lipids into an aqueous medium. The aim of the present study was to control, more efficiently, vesicle diameter by using an alternative solvent. The results show that isopropanol injection is a good alternative to ethanol injection for the manufacture of liposomes. Particle size can be controlled by the variation of process parameters, such as stirring speed of the aqueous phase and injection flow rate of lipid-isopropanol solution. Diameter of vesicles obtained by this method is less affected by the nature of phospholipid, as well as lipid concentration, than in the ethanol-injection process. In addition, the vesicles are generally smaller (approximately 40-210?nm). Accurate characterization of the particles, by fluorescence, (31)P-NMR, and cryo-transmission electron microscopy, showed that particles are formed of a single lipid bilayer around an aqueous cavity. We thus provide the scientific community with a fully characterized alternative method to produce unilamellar vesicles.  相似文献   

7.
Unilamellar liposomes are conventionally prepared by rapid injection of an ethanolic solution of lipids into an aqueous medium. The aim of the present study was to control, more efficiently, vesicle diameter by using an alternative solvent. The results show that isopropanol injection is a good alternative to ethanol injection for the manufacture of liposomes. Particle size can be controlled by the variation of process parameters, such as stirring speed of the aqueous phase and injection flow rate of lipid-isopropanol solution. Diameter of vesicles obtained by this method is less affected by the nature of phospholipid, as well as lipid concentration, than in the ethanol-injection process. In addition, the vesicles are generally smaller (approximately 40–210?nm). Accurate characterization of the particles, by fluorescence, 31P-NMR, and cryo–transmission electron microscopy, showed that particles are formed of a single lipid bilayer around an aqueous cavity. We thus provide the scientific community with a fully characterized alternative method to produce unilamellar vesicles.  相似文献   

8.
A modified and derived ethanol injection (MDEI) process was developed to produce liposomes. The aim of the present study was to more efficiently control the vesicle diameter than with the conventional ethanol injection method. A hot ethanolic solution of lipids (60°C) was injected into a hot aqueous buffer (70°C). Then, ethanol was removed by rotary evaporation under reduced pressure. The size of the liposomes could be controlled by the ratio of ethanol to hydroalcoholic solution before evaporation. The concentration of lipids, the charge of lipids, and the type of aqueous phase had little effect on the vesicle diameter when the process involved a ratio of 33% (v/v) ethanol. In addition, it was possible to obtain lipid concentrations 10- to 30-fold higher that the conventional ethanol injection method. The encapsulation of a hydrophilic compound was feasible with this MDEI process. The observation by cryogenic transmission electron microscopy revealed that these liposomes were predominantly unilamellar at a ratio as high as 33 or 50% (v/v) ethanol. Thus, the results showed that MDEI is an appropriate alternative for the manufacture of liposomes with respect to the ethanol injection process.  相似文献   

9.
A novel scalable liposome preparation technique for pharmaceutical application is presented. Previous experiments have shown that the concept of continuous crossflow injection is a promising approach. For the characterization of the process, we focus on the influencing parameters like the lipid concentration, the injection hole diameter, the injection pressure, the buffer flow rate, and system performance. These experiments demonstrate that the injection hole diameter and the system performance do not influence the vesicle forming process and that a minimum of buffer flow rate is required to affect batch homogeneity. In contrast, strongly influencing parameters are lipid concentration in combination with increasing injection pressures. After exceeding the upper pressure limit of the linear range, where injection velocities remain constant, the vesicle batches are narrowly distributed, also when injecting higher lipid concentrations. Reproducibility and scalability data show similar results with respect to vesicle size and size distribution and demonstrate the stability and robustness of the novel continuous liposome preparation technique.  相似文献   

10.
A DNA transfection method by laser microbeam pricking has been recently reported (Kurata, S. et al. Exp. Cell Res. 162, 372 (1986]. The volume of external fluid transferred into the cell by the method was determined through the injection of diphtheria toxin fragment A (Yamaizumi, M. et al. Cell 15, 245 (1978]. Using these results and the results on laser DNA transfection efficiency (Kurata, S. et al. Exp. Cell Res. 162, 372 (1986], the approximate number of DNA molecules necessary to transform the recipient cell was estimated.  相似文献   

11.
12.
We have developed a new methodology to examine effector-cell-mediated immune attack using liposomes as targets. Hydrogen peroxide-associated killing of liposomes was observed with fluorescence intensification microscopy. Liposomes were composed of 98-99 mol % egg phosphatidylcholine and 1-2 mol % dinitrophenyl lipid hapten. Anti-dinitrophenyl IgG antibody was used to opsonize liposomes. Liposomes were loaded with dihydroxymandelic acid (DHMA) and peroxidase. Macrophage- or neutrophil-mediated recognition of liposomes triggers the release of H2O2 and other oxidative products. Upon interaction of H2O2 or OH radical with liposome contents, DHMA dimerizes forming a fluorescent derivative. Our studies indicate that individual living neutrophils and macrophages deposit oxidative products in a heterogenous fashion among bound targets.  相似文献   

13.
We have developed a new methodology to examine effector-cell-mediated immune attack using liposomes as targets. Hydrogen-peroxide-associated killing of liposomes was observed with fluorescence intensification microscopy. Liposomes were composed of 98-99 mol % egg phosphatidylcholine and 1-2 mol % dinitrophenyl lipid hapten. Anti-dinitrophenyl IgG antibody was used to opsonize liposomes. Liposomes were loaded with dihydroxymandelic acid (DHMA) and peroxidase. Macrophage- or neutrophil-mediated recognition of liposomes triggers the release of H2O2 and other oxidative products. Upon interaction of H2O2 or OH radical with liposome contents, DHMA dimerizes forming a fluorescent derivative. Our studies indicate that individual living neutrophils and macrophages deposit oxidative products in a heterogeneous fashion among bound targets.  相似文献   

14.
Methods for encapsulation of a drug into liposomes should preferably result in a high encapsulation efficiency and a high encapsulation capacity. Our studies were focussed on the establishment of an efficient encapsulation procedure of the radical scavenging protein, rh-Cu/Zn-SOD, into liposomes with the cross flow injection method. Limitations to increase the encapsulation efficiency are caused by the enclosed aqueous volume, by the lipid concentration, the aspired vesicle size and the final ethanol concentration. Our research was performed to maximize the encapsulation following several strategies of injecting higher lipid concentrations into the aqueous phase. The one way triple technique, a sophisticated preparation procedure is presented, which enables three times higher encapsulation rates in comparison to standard procedures. Additionally, scalability studies demonstrate reproducibility independent of the preparation volume. Vesicle size distribution and encapsulation efficiency remain constant. Furthermore, special attention is paid on reproducibility of prepared liposomes, scale-up and on long term stability of the lipid vesicles.  相似文献   

15.
Folz RJ  Nepluev I 《BioTechniques》2000,29(4):762, 764-5, 766-8
We present a simple and efficient RT-PCR method for the detection and quantitation of any poly(A)-containing mRNA that is not affected by contaminating genomic DNA and does not rely on exhaustive DNase digestion protocols. The technique described here requires the use of an antisense primer designed to contain 6-8 bp cDNA-specific sequence and an additional 17 Ts located on the 5' end to take advantage of the poly(A) tail. A second cDNA-specific sense primer can be used that does not need to be separated by intronic DNA sequence.  相似文献   

16.
Bacteriophage lambda attaches to Gram-negative bacteria using the outer membrane protein LamB as its receptor. Subsequently, DNA is injected by the bacteriophage into the host cell for replication and expression. The mechanism of DNA injection, however, is poorly understood. In order to begin to characterize DNA injection, a quantitative kinetic assay to detect injection into reconstituted LamB liposomes is described. The technique involves monitoring the increase in fluorescence of liposome-encapsulated ethidium bromide, which occurs as DNA enters the aqueous compartment of the vesicles. The data indicate that injection is several times faster than indicated by earlier studies and is complete within 1 min. Such assays which allow direct observation of this process are necessary first steps toward a mechanistic understanding.  相似文献   

17.
M Bartolf  C A Price 《Biochemistry》1979,18(9):1677-1680
Chloroplasts were isolated from spinach leaves and the intact chloroplasts separated by centrifugation on gradients of silica sol. Chloroplasts prepared in this way were almost completely free of cytoplasmic rRNA. The purified chloroplasts were incubated with 32PO4 in the light. The nucleic acids were then extracted and the RNA was fractionated into poly(A)-lacking RNA and poly(A)-containing RNA (poly(A)-RNA) via oligo(dT)-cellulose chromatography. The poly(A)-RNA had a mean size of approximately 18--20 S as determined by polyacrylamide gel electrophoresis. The poly(A)-RNA was digested with RNase A and RNase T1, and the resulting poly(A) segments were subjected to electrophoresis on a 10% w/v polyacrylamide gel 98% v/v formamide). Radioactivity was incorporated into both poly(A)-RNA and poly(A)-lacking RNA and into the poly(A) segments themselves. The poly(A) segments were between 10 and 45 residues long and alkaline hydrolysis of poly(A) segments followed by descending paper chromatography showed that they were composed primarily of adenine residues. There was no 32PO4 incorporation into acid-insoluble material in the dark. We conclude that isolated chloroplasts are capable of synthesizing poly(A)-RNA.  相似文献   

18.
Activity-driven delivery of AMPA receptors is proposed to mediate glutamatergic synaptic plasticity, both during development and learning. In hippocampal CA1 principal neurons, such trafficking is primarily mediated by the abundant GluR-A subunit. We now report a study of GluR-B(long), a C-terminal splice variant of the GluR-B subunit. GluR-B(long) synaptic delivery is regulated by two forms of activity. Spontaneous synaptic activity-driven GluR-B(long) transport maintains one-third of the steady-state AMPA receptor-mediated responses, while GluR-B(long) delivery following the induction of LTP is responsible for approximately 50% of the resulting potentiation at the hippocampal CA3 to CA1 synapses at the time of GluR-B(long) peak expression-the second postnatal week. Trafficking of GluR-B(long)-containing receptors thus mediates a GluR-A-independent form of glutamatergic synaptic plasticity in the juvenile hippocampus.  相似文献   

19.
Food conditioning worsened following a luliberine analogue surfagon administration in short-sleeping (SS) rats. Castration mostly inhibited the peptide effect. The findings suggest a possibility of the peptide effect occurring even without steroids.  相似文献   

20.
Previous studies have suggested that mouse molar ameloblast differentiation was triggered by the predentin-dentin. Knowing that enamel is absent on the lingual surface of the mouse incisor, the aim of this study was to compare in heterotopic tissue recombinations the behavior of mouse molar inner dental epithelium associated with lingual or labial mouse incisor dentin. It was shown that root-analogue and crown-analogue incisor dentin promotes ameloblast differentiation of competent molar inner dental epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号