首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
木质纤维生产燃料乙醇工艺的研究进展   总被引:2,自引:0,他引:2  
利用丰富而廉价的木质纤维原料代替粮食生产燃料乙醇,对经济和社会的可持续发展有着重要的意义。以木质纤维为原料发酵生产燃料乙醇可分为4种工艺:分步糖水解化发酵法、同步糖化发酵法、同步糖化共发酵法和直接微生物转化法。介绍了以上4种工艺的研究进展,并对今后进一步研究提出了建议。  相似文献   

2.
目前,国家出台了《关于扩大生物燃料乙醇生产和推广使用车用乙醇汽油的实施方案》。以农作物秸秆和林业废弃物等为原料,利用纤维素酶技术生产燃料乙醇,可以避免"与人争粮"和"与粮争地"的问题,实现"保护生态环境、提升经济发展质量"的双赢。简述了纤维素酶生产技术中的几个关键点,对纤维素酶的商业化生产现状和主要的生产商进行了介绍。  相似文献   

3.
纤维质原料预处理技术   总被引:3,自引:0,他引:3  
随着石油资源的大量消耗和逐步枯竭,寻找可再生性的替代能源,特别是新的液态燃料,已成为维持人类社会可持续发展的紧迫任务。在可再生性替代能源——生物能源领域发展力度最大的品种是燃料乙醇。但是越来越多的人们已经认识到,随着世界人口的增长,用淀粉和糖类生产燃料和化工产品的发展将受到很大的限制。只有粮食、食糖生产过剩的国家,才能将大量以粮食和食糖作为原料生产的乙醇用作汽车燃料。而植物光合作用产物的绝大部分为植物的枝、干、叶等木质纤维素类,是纤维素、半纤维素和木质素等聚合物的复合物,其中纤维素和半纤维素都可以被转化成乙醇,理论得率可以同粮食相仿(大于400L/t)。因而,即使像美国那样粮食和土地资源非常丰富的国家,目前也十分重视利用植物纤维原料生产乙醇技术的研究。 近年来,纤维素乙醇技术发展较快,突破了一些关键技术的瓶颈,取得了一些进展。为此,我们特别邀请由山东大学微生物技术国家重点实验室主任曲音波教授领衔的团队,围绕纤维素乙醇生产相关技术,分别就纤维质原料预处理技术、纤维素酶生产技术等进展进行连载,希望更多的读者增加对纤维素乙醇技术的了解。  相似文献   

4.
燃料乙醇非粮化——我国发展纤维乙醇的挑战与对策   总被引:1,自引:0,他引:1  
在分析国内外燃料乙醇发展状况的基础上阐述了以非粮原料木质纤维素生产燃料乙醇的重要性,着重论述了发展纤维素燃料乙醇所面临的发展机遇和技术挑战,同时对我国纤维乙醇的产业化发展提出了建议。  相似文献   

5.
随着石油资源的大量消耗和逐步枯竭,寻找可再生性的替代能源,特别是新的液态燃料,已成为维持人类社会可持续发展的紧迫任务。在可再生性替代能源——生物能源领域发展力度最大的品种是燃料乙醇。但是越来越多的人们已经认识到,随着世界人口的增长,用淀粉和糖类生产燃料和化工产品的发展将受到很大的限制。只有粮食、食糖生产过剩的国家,才能将大量以粮食和食糖作为原料生产的乙醇用作汽车燃料。而植物光合作用产物的绝大部分为植物的枝、干、叶等木质纤维素类,是纤维素、半纤维素和木质素等聚合物的复合物,其中纤维素和半纤维素都可以被转化成乙醇,理论得率可以同粮食相仿(大于400L/t)。因而,即使像美国那样粮食和土地资源非常丰富的国家,目前也十分重视利用植物纤维原料生产乙醇技术的研究。 近年来,纤维素乙醇技术发展较快,突破了一些关键技术的瓶颈,取得了一些进展。为此,我们特别邀请由山东大学微生物技术国家重点实验室主任曲音波教授领衔的团队,围绕纤维素乙醇生产相关技术,分别就纤维质原料预处理技术、纤维素酶生产技术等进展进行连载,希望更多的读者增加对纤维素乙醇技术的了解。[编者按]  相似文献   

6.
植物木质素生物合成调控研究已在造纸树种与饲草品质的改良中取得了许多进展。随着对木质纤维原料乙醇发酵研究的兴起,植物木质素合成调控再次成为研究热点。该文总结了目前生物质能源利用的现状,同时针对木质素在木质纤维乙醇发酵中的限制作用,综述了近年来植物木质素合成调控的研究进展,提出了今后的研究方向和内容,并展望了木质素合成调控在木质纤维乙醇发酵中的应用。  相似文献   

7.
植物木质素合成调控与生物质能源利用   总被引:2,自引:0,他引:2  
植物木质素生物合成调控研究已在造纸树种与饲草品质的改良中取得了许多进展。随着对木质纤维原料乙醇发酵研究的兴起, 植物木质素合成调控再次成为研究热点。该文总结了目前生物质能源利用的现状, 同时针对木质素在木质纤维乙醇发酵中的限制作用, 综述了近年来植物木质素合成调控的研究进展, 提出了今后的研究方向和内容, 并展望了木质素合成调控在木质纤维乙醇发酵中的应用。  相似文献   

8.
木质纤维素类生物质作为一种廉价且储量丰富的可再生原料,可通过预处理、酶解和微生物发酵等过程转化为纤维素燃料乙醇,近几十年来受到世界各国的广泛关注。杨木是一种人工广泛种植的速生硬木,主要用于造纸工业,而伴随产生大量枝桠等废弃物。因其富含纤维素和半纤维素组分,被认为是纤维素乙醇生产的优良木质纤维素原料。聚焦于杨木在纤维素乙醇生产中的应用,介绍了杨木的组成及结构特点,重点综述了杨木在预处理技术、预处理原料的酶解、微生物发酵等方面的研究进展。最后,归纳总结了限制杨木在纤维素乙醇应用中的技术障碍及困难,进而分析提出了相应解决对策并展望了其应用前景。  相似文献   

9.
纤维乙醇研究现状及展望   总被引:1,自引:0,他引:1  
介绍了近年来国内外纤维乙醇的研究现状,阐述了目前纤维乙醇生产存在的问题,分析了纤维乙醇产业化亟待解决的关键技术,展望了纤维乙醇的发展。  相似文献   

10.
随着社会经济的高速发展,化石燃料不断消耗及其使用过程所带来的能源短缺、环境污染等问题日益凸显,寻找新的绿色可再生替代能源迫在眉睫。燃料乙醇作为资源丰富、积炭少、可减排温室气体及使用方便的优良燃油品质改善剂及清洁可再生能源,已成为国内外关注并推广使用的绿色燃料。主要对燃料乙醇生产技术的发展进行了综述,重点对燃料乙醇发展历程中各阶段乙醇生产的原料来源、工艺技术进行了论述,讨论了各代燃料乙醇生产过程中所遇到的瓶颈问题,并对其发展趋势进行了展望。目前,燃料乙醇的生产技术主要经历了三代发展,第一代以玉米等糖质和淀粉质粮食作物为原料的乙醇发酵已经实现商业化生产,虽然工艺成熟,但存在粮食安全问题;第二代以农作物秸秆等废弃植物纤维为原料的乙醇生产目前已具备产业化示范条件,其原料来源广泛,转化技术不断提高,最有发展前景;第三代以藻类等绿色植物为原料的燃料乙醇正处于研发阶段,是未来发展的希望。在燃料乙醇生产技术发展过程论述的基础上,讨论了目前其主要技术瓶颈及发展趋势,旨在为燃料乙醇生产的产业化、经济化及可持续化发展提供相关的理论依据。  相似文献   

11.
The production of ethanol for the energy market has traditionally been from corn and sugar cane biomass. The use of such biomass as energy feedstocks has recently been criticised as ill-fated due to competitive threat against food supplies. At the same time, ethanol production from cellulosic biomass is becoming increasingly popular. In this paper, we analyse rice husk (RH) as a cellulosic feedstock for ethanol biofuel production on the ground of its abundance. The global potential production of bioethanol from RH is estimated herein and found to be in the order of 20.9 to 24.3 GL per annum, potentially satisfying around one fifth of the global ethanol biofuel demand for a 10% gasohol fuel blend. Furthermore, we show that this is especially advantageous for Asia, in particular, India and China, where economic growth and demand for energy are exploding.  相似文献   

12.
The world in the 21st century is facing a dual crisis of increasing waste and global climate change. Substituting fossil fuels with waste biomass‐derived cellulosic ethanol is a promising strategy to simultaneously meet part of our energy needs, mitigate greenhouse gas (GHG) emissions, and manage municipal solid waste (MSW). However, the global potential of MSW as an energy source is as yet unquantified. Here, we report increasing trends of MSW generation, and waste biomass‐derived cellulosic ethanol potentials in relation to socio‐economic development across 173 countries, and show that globally, up to 82.9 billion litres of waste paper‐derived cellulosic ethanol can be produced worldwide, replacing 5.36% of gasoline consumption, with accompanying GHG emissions savings of between 29.2% and 86.1%.  相似文献   

13.
To date, cellulosic ethanol production has not been commercialized in the United States. However, government mandates aimed at increasing second-generation biofuel production could spur exploratory development in the cellulosic ethanol industry. We conducted an in-depth analysis of the fuelshed surrounding a starch-based ethanol plant near York, Nebraska that has the potential for cellulosic ethanol production. To assess the feasibility of supplying adequate biomass for year-round cellulosic ethanol production from residual maize (Zea mays) stover and bioenergy switchgrass (Panicum virgatum) within a 40-km road network service area of the existing ethanol plant, we identified ~14,000 ha of marginally productive cropland within the service area suitable for conversion from annual rowcrops to switchgrass and ~132,000 ha of maize-enrolled cropland from which maize stover could be collected. Annual maize stover and switchgrass biomass supplies within the 40-km service area could range between 429,000 and 752,000 metric tons (mT). Approximately 140–250 million liters (l) of cellulosic ethanol could be produced, rivaling the current 208 million l annual starch-based ethanol production capacity of the plant. We conclude that sufficient quantities of biomass could be produced from maize stover and switchgrass near the plant to support year-round cellulosic ethanol production at current feedstock yields, sustainable removal rates and bioconversion efficiencies. Modifying existing starch-based ethanol plants in intensive agricultural fuelsheds could increase ethanol output, return marginally productive cropland to perennial vegetation, and remove maize stover from productive cropland to meet feedstock demand.  相似文献   

14.
The potential of cellulases and cellulosomes for cellulosic waste management   总被引:15,自引:0,他引:15  
Lignocellulose is the most abundant plant cell wall component of the biosphere and the most voluminous waste produced by our society. Fortunately, it is not toxic or directly harmful, but our major waste disposal facilities--the landfills--are rapidly filling up with few realistic alternatives. Because cellulose is pure glucose, its conversion to fine products or fuels has remained a romantic and popular notion; however, the heterogeneous and recalcitrant nature of cellulosic waste presents a major obstacle for conventional conversion processes. One paradigm for the conversion of biomass to products in nature relies on a multienzyme complex, the cellulosome. Microbes that produce cellulosomes convert lignocelluose to microbial cell mass and products (e.g. ethanol) simultaneously. The combination of designer cellulosomes with novel production concepts could in the future provide the breakthroughs necessary for economical conversion of cellulosic biomass to biofuels.  相似文献   

15.
Lignocellulosic biomass is a sustainable feedstock for fuel ethanol production, but it is characterized by low mass and energy densities, and distributed production with relatively small scales is more suitable for cellulosic ethanol, which can better balance cost for the feedstock logistics. Lignocellulosic biomass is recalcitrant to degradation, and pretreatment is needed, but more efficient pretreatment technologies should be developed based on an in-depth understanding of its biosynthesis and regulation for engineering plant cell walls with less recalcitrance. Simultaneous saccharification and co-fermentation has been developed for cellulosic ethanol production, but the concept has been mistakenly defined, since the saccharification and co-fermentation are by no means simultaneous. Lignin is unreactive, which not only occupies reactor spaces during the enzymatic hydrolysis of the cellulose component and ethanol fermentation thereafter, but also requires extra mixing, making high solid loading difficult for lignocellulosic biomass and ethanol titers substantially compromised, which consequently increases energy consumption for ethanol distillation and stillage discharge, presenting another challenge for cellulosic ethanol production. Pentose sugars released from the hydrolysis of hemicelluloses are not fermentable with Saccharomyces cerevisiae used for ethanol production from sugar- and starch-based feedstocks, and engineering the brewing yeast and other ethanologenic species such as Zymomonas mobilis with pentose metabolism has been performed within the past decades. However strategies for the simultaneous co-fermentation of pentose and hexose sugars that have been pursued overwhelmingly for strain development might be modified for robust ethanol production. Finally, unit integration and system optimization are needed to maximize economic and environmental benefits for cellulosic ethanol production. In this article, we critically reviewed updated progress, and highlighted challenges and strategies for solutions.  相似文献   

16.
微生物木糖发酵产乙醇的代谢工程   总被引:1,自引:0,他引:1  
张颖  马瑞强  洪浩舟  张维  陈明  陆伟 《生物工程学报》2010,26(10):1436-1443
利用木质纤维素发酵生产乙醇具有广泛的应用前景。而自然界中缺少有效转化木糖为乙醇的微生物是充分利用纤维素水解产物、提高乙醇产率、降低生产成本的关键因素。多年来研究者利用分子生物学技术对微生物菌株进行了代谢工程改造,使其能更有效地利用木糖生产乙醇。以下主要对运动发酵单胞菌、大肠杆菌和酵母等候选产乙醇微生物的木糖代谢工程研究进展进行了概述。  相似文献   

17.
Cellulosic biofuel systems have the potential to significantly reduce the environmental impact of the world's transportation energy requirements. However, realizing this potential will require systems level thinking and scale integration. Until now, we have lacked modeling tools for studying the behavior of integrated cellulosic biofuel systems. In this paper, we describe a new research tool, the Biorefinery and Farm Integration Tool (BFIT) in which the production of fuel ethanol from cellulosic biomass is integrated with crop and animal (agricultural) production models. Uniting these three subsystems in a single combined model has allowed, for the first time, basic environmental and economic analysis of biomass production, possible secondary products, fertilizer production, and bioenergy production across various regions of the United States. Using BFIT, we simulate cellulosic ethanol production embedded in realistic agricultural landscapes in nine locations under a collection of farm management scenarios. This combined modeling approach permits analysis of economic profitability and highlights key areas for environmental improvement. These results show the advantages of introducing integrated biorefinery systems within agricultural landscapes. This is particularly true in the Midwest, which our results suggest is a good setting for the cellulosic ethanol industry. Specifically, results show that inclusion of cellulosic biofuel systems into existing agriculture enhances farm economics and reduces total landscape emissions. Model results also indicate a limited ethanol price effect from increased biomass transportation distance. Sensitivity analysis using BFIT revealed those variables having the strongest effects on the overall system performance, namely: biorefinery size, switchgrass yield, and biomass farm gate price.  相似文献   

18.
In cellulosic ethanol production, use of simultaneous saccharification and fermentation (SSF) has been suggested as the favorable strategy to reduce process costs. Although SSF has many advantages, a significant discrepancy still exists between the appropriate temperature for saccharification (45-50 °C) and fermentation (30-35 °C). In the present study, the potential of temperature-shift as a tool for SSF optimization for bioethanol production from cellulosic biomass was examined. Cellulosic ethanol production of the temperature-shift SSF (TS-SSF) from 16 w/v% biomass increased from 22.2 g/L to 34.3 g/L following a temperature shift from 45 to 35 °C compared with the constant temperature of 45 °C. The glucose conversion yield and ethanol production yield in the TS-SSF were 89.3% and 90.6%, respectively. At higher biomass loading (18 w/v%), ethanol production increased to 40.2 g/L with temperature-shift time within 24 h. These results demonstrated that the temperature-shift process enhances the saccharification ratio and the ethanol production yield in SSF, and the temperature-shift time for TS-SSF process can be changed according to the fermentation condition within 24 h.  相似文献   

19.
利用统合生物加工过程(Consolidated bioprocessing,CBP)生产纤维素乙醇是目前国内外的研究热点。CBP需要一种“集成化”微生物,既能生产水解木质纤维素的多种酶类又能利用水解木质纤维素产生的糖类发酵产乙醇。以酿酒酵母表面展示技术为依托,建立CBP菌株多酶共展示体系的研究主要分为以下两个方向:一是直接将纤维素酶展示在细胞表面,即非复合型纤维素酶体系;另一种是通过表面展示纤维小体(Cellulosome)将纤维素酶间接地锚定在细胞表面,即复合型纤维素酶体系,本文主要从以上两个方向阐述了近几年对于纤维素乙醇生物统合加工过程的研究进展。因纤维小体对纤维素的降解能力比非复合型纤维素酶体系更强,所以其在酿酒酵母细胞表面的组装研究受到越来越多的关注,为了更深入透彻地了解纤维小体的酵母展示技术,文中对纤维小体的结构与功能及其在纤维素乙醇发酵中的应用研究进行重点论述,并对该领域的发展方向进行展望。  相似文献   

20.
Optimized hydrolysis of lignocellulosic waste biomass is essential to achieve the liberation of sugars to be used in fermentation process. Ionic liquids (ILs), a new class of solvents, have been tested in the pretreatment of cellulosic materials to improve the subsequent enzymatic hydrolysis of the biomass. Optimized application of ILs on biomass is important to advance the use of this technology. In this research, we investigated the effects of using 1‐butyl‐3‐methylimidazolium acetate ([bmim][Ac]) on the decomposition of soybean hull, an abundant cellulosic industrial waste. Reaction aspects of temperature, incubation time, IL concentration, and solid load were optimized before carrying out the enzymatic hydrolysis of this residue to liberate fermentable glucose. Optimal conditions were found to be 75°C, 165 min incubation time, 57% (mass fraction) of [bmim][Ac], and 12.5% solid loading. Pretreated soybean hull lost its crystallinity, which eased enzymatic hydrolysis, confirmed by Fourier Transform Infrared analysis. The enzymatic hydrolysis of the biomass using an enzyme complex from Penicillium echinulatum liberated 92% of glucose from the cellulose matrix. The hydrolysate was free of any toxic compounds, such as hydroxymethylfurfural and furfural. The obtained hydrolysate was tested for fermentation using Candida shehatae HM 52.2, which was able to convert glucose to ethanol at yields of 0.31. These results suggest the possible use of ILs for the pretreatment of some lignocellulosic waste materials, avoiding the formation of toxic compounds, to be used in second‐generation ethanol production and other fermentation processes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:312–320, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号