首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The compound eye of male (haploid) Xyleborus ferrugineus beetles was examined with scanning and transmission electron microscopy. The eye externally consists of ca. 19 to 33 facets. Each ommatidium is composed of a thickly biconvex lenslet with about 50 electron dense and rare layers, but at the junction area between two lenslets there are only about 35 to 37 layers that can be distinguished. A very short (3.4–4.0 m) acone type crystalline cone is located directly beneath the lenslet. Each ommatidium is surrounded by pigment cells, and pigment granules also appear throughout the cytoplasm of the retinular cells. Some pigment granules are even present below the basement membrane. There are 8 retinular cells. The rhabdomeres of 2 centrally situated photoreceptor cells fuse into a rhabdom which is enveloped by the rhabdomeres of 6 peripheral retinular cells. The rhabdomeres of the 6 peripheral retinular cells join laterally to form a rhabdomeric ring around the central rhabdom. No tracheation was observed among the retinular cells. Virus-like particles are evident near the nucleus in each Semper cell of the crystalline cone.This research was supported by the Director of the Research Division, C.A.L.S., University of Wisconsin, Madison; and in part by research grant No. RR-00779 from the Division of Research Resources, National Institutes of Health and by funds from the Schoenleber Foundation, Milwaukee, WI to D.M.N.  相似文献   

2.
Summary The compound eye of female (diploid) Xyleborus ferrugineus beetles was examined with scanning and transmission electron microscopy. The eye is emarginate, and externally consists of roughly 70–100 facets. Each ommatidium is composed of a thickly biconvex lenslet with about 50 electron dense and rare layers. The lens facet overlies a crystalline cone of the acone type which is roughly hourglass-shaped. Pigment cells envelop the entire ommatidium, and pigment granules also are abundant throughout the cytoplasm of the 8 retinular cells. The rhabdomeres of 2 centrally situated photoreceptor cells effectively fuse into a rhabdom that extends from the base of the crystalline cone deeply into the ommatidium. Six distal peripheral retinular cells encircle the 2 central cells, and their rhabdomeres join laterally to form a rhabdomeric ring around the central rhabdom. The rhabdom and rhabdomeric ring are effectively separated by the cytoplasm of the two central retinular cells which contains the usual organelles and an abundance of shielding pigment granules. Eight axons per ommatidium gather in a tracheae-less fascicle before exiting the eye through the fenestrate basement membrane. No tracheation was observed among the retinular cells. Each Semper cell of each observed crystalline cone contained an abundance of virus-like particles near the cell nucleus. The insect is laboratory reared, and the visual system seems very amenable to photoreceptor investigations.This research was supported by the Director of the Research Division, C.A.L.S., University of Wisconsin, Madison; and in part by research grant No. RR-00779 from the Division of Research Resources, National Institutes of Health and by funds from the Schoenleber Foundation, Milwaukee, WI to D.M.N.  相似文献   

3.
Retinular cells of the compound eyes of stomatopods (mantis shrimps) contain screening pigment granules that migrate radially in response to light. To clarify the role of the cytoskeleton in these movements, we have performed light microscopy and ultrastructural analyses of cytoskeletal organelles in retinular cells. Rhodamine phalloidin staining indicates that filamentous actin is a component of microvillar rhabdomeres and zonula adherens between retinular cells. Ultrastructural studies reveal three populations of microtubules in retinular cells that differ in their orientations and labilities to fixation. Two of these populations are oriented longitudinally in cells: the soma microtubules, found primarily in a column in the cell soma, and the more labile palisade microtubules, which extend alongside the palisade vacuole near the rhabdomere. The third, most labile microtubule population, and filaments 9–30 nm in diameter, are oriented radially in retinular cells, some within cytoplasmic bridges that span the palisade. The radial microtubules and filaments are appropriately oriented for participating in pigment granule migration. Determination of microtubule polarities in retinular cells by decoration with endogenous tubulin indicates that palisade and soma microtubules contain subpopulations having opposite polarity orientations, as has been observed in neuronal dendrites. In contrast, neighboring pigment cells contain microtubules uniformly oriented with minus ends towards the nucleus, as has been observed in most cell types studied.  相似文献   

4.
Zusammenlassung Es wurden Ommatidien der dorsalen Augenhälfte von Megachile-, einer solitären Bienenart, elektronenmikroskopisch untersucht. Die Kristallkegelmasse der Semperschen Zellen (euconer Typ) stößt in breiter Front an die Cornealinse und bildet dadurch gegenüber anderen euconen Augen vermutlich ein verbessertes optisches System. Die 4 Fortsätze der Semperschen Zellen ziehen bis zur Basalmembran, wo she anschwellen und dicht mit Schirmpigment gefüllt sind.Die Hauptpigmentzellen enden distal in einem schmalen Bereich an der Cornea, proximal kurz unterhalb vom Kristallkegel. Die Nebenpigmentzellen rind in ihrem gesamten Verlauf von der Cornea bis zur Basalmembran mit Pigmentgrana angefüllt. Die bei Apis beschriebene basale Pigmentzelle jedes Ommatidiums gibt es bei Megachile nicht. An ihre Stelle treten die erwähnten basalen Anschwellungen der Fortsätze der Semperschen Zellen.Die Retinulae bestehen aus je 9 Sehzellen. Sie bilden ein Rhabdom vom geschlossenen Typ, das im distalen Teil des Ommatidiums aus den in der Mitte sich breitflächig berührenden und gleichartig ausgerichteten Mikrovilli der beiden Sehzellen Nr. 1 und 5 besteht. Diese beiden Rhabdomere werden auf der einen Seite von den Rhabdomeren der Zellen 2–4, auf der anderen von denen der Zellen 6–8 flankiert, die wiederum allesamt gleichartig, jedoch rechtwinklig zu ersteren angeordnet sind.Basalwärts folgt ein Bereich, in dem rich die Rhabdomere der Sehzellen 2–4 und 6–8 verlängern, wobei sich 3 und 7 breit berÜhren. Die Mikrovilli der Zellen 1 und 5 erscheinen an die Peripherie abgedrängt. Die 9. Retinulazelle ist im basalen Drittel am Rhabdom beteiligt.Die Pigment- und Semperschen Zellen besitzen außer den üblichen Organellen Centriolen, gewinkelt angeordnet oder in Tandem-Stellung. In den Retinulazellen entsprechen these den Basalkörpern von Cilien, die nach distal Tubuli (gelegentlich werden auch Fibrillen mit periodischen Strukturen gefunden) aussenden, nach basal dagegen Wurzelfibrillen, die sich zu einem Wurzelfaden vereinigen. — Die Ergebnisse werden diskutiert und vor allem mit denen, die an Apis erzielt werden, verglichen.
Fine structure of the compound eye in the leaf-cutter bee Megachile rotundata (F.) (hymenoptera, apidae)
Summary Ommatidia in the dorsal part of the compound eye in female Megachile (a solitary bee) were studied with the electron microscope. The crystalline conesubstance of the Semper (type cells eucone) borders a wide area of the cornea, which probably implies an improved optical system compared with other eucone eyes. The four processes of the Scraper cells extend to the basement membrane, where they enlarge and are filled with screening pigment. The iris pigment cells end distally by impinging on a small area of the cornea and (unlike other ommatidia with an eucone form of crystalline cone) they do not overlap the corneal cells. The retinal pigment cells are entirely filled with pigment granules. A basal pigment cell as described in each ommatidium in Apis does not occur in Megachile. Instead, one finds the basal swellings of the Semper cell processes mentioned above.Usually the retinula consists of nine retinular cells arranged in a closed rhabdom. In the distal part of the ommatidium, this rhabdom is built by microvilli of the retinular cells number 1 and 5, aligned in one direction each perpendicular to the next. These two rhabdomeres are bordered on one side by the rhabdomeres of cell 2–4, and on the other side by those of cells 6–8. Again, these rhabdomeres are all aligned in one direction perpendicular to that of cell 1 and 5. Further down towards the base, there is an area in which the rhabdomeres of the retinular cells 2–4 and 6–8 face another as mentioned above, whereas those microvilli belonging to cell 1 and 5 seem to be forced away towards the periphery of the rhabdom.In addition to common organelles, both the pigment cells and Semper cells contain centrioles arranged at an angle or in tandem. In the retinular cells, they correspond to the basal bodies of cilia, and they give rise to tubules (sometimes striated fibrils are found). However, towards to base they give rise to striated fibrils which unite in a root fibre. — The results are discussed and compared with those known of Apis.


Fur ihre technische Hilfe danken wir besonders herzlich Frl. A. Hennig.  相似文献   

5.
Abstract The compound (apposition) eyes of Tanais cavolinii are not well developed: the number of ommatidia is small and there are certain irregularities in structure. The refractive components are formed by the cornea and the cone. The latter is built up by two cone cells. In addition, there are two accessory cone cells confined to the distal part of the cone. The eight pigmented retinular cells extend from the cornea to the basement membrane. Proximal to the cone, they form a fused continuous rhabdom, which in cross section has a rectangular outline. In the middle part of the rhabdom, the microvilli are arranged perpendicular to the long axis of the rhabdom when seen in cross section. The microvilli outside of this area can be arranged either parallel or perpendicular to the microvilli of the middle part. Other irregularities occur in the ommatidium, e.g. the position of the retinular cell nuclei, which are found at different levels. Extensions from the cone cells fuse and form a mesh proximal to the rhabdom. Between the mesh and basal lamina is a basal cell type enveloping the proximal parts of the retinular cells and their axons. These cells also form the basal lamina, which delimits the compound eye from the haemocoel. No special pigment cells are present in the compound eye of Tanais cavolinii.  相似文献   

6.
Summary The ultrastructure of the compound eye of the Australian tipulid fly,Ptilogyna spectabilis, is described. The ommatidia are of the acone type. The rhabdom corresponds to the basic dipteran pattern with six outer rhabdomeres from retinular cells 1–6 (R1-6) that surround two tiered central rhabdomeres from R7 and 8. Distally, for about 8 m, the rhabdom is closed. For the remainder, where the rhabdomere of R8 replaces that of R7, the rhabdom is open, and the rhabdomeres lie in a large central ommatidial extracellular space. In the proximal two thirds of the rhabdom, the central space is partitioned by processes from the retinular cells so that the individual rhabdomeres are contained in pockets.At night the rhabdom abuts the cone cells, but during the day it migrates some 20 m proximally and is connected to a narrow (1–2 m) cone cell tract. This tract is surrounded by two primary pigment cells, which occupy a more lateral position at night and thus act like an iris. Pigment in secondary pigment cells also migrates so as to screen orthodromic light above the rhabdom during the day. Between midday and midnight, the rhabdom changes in length and cross-sectional area as a result of asynchrony of the shedding and synthetic phases of photoreceptor membrane turnover. The effects of these daily adaptive changes on photon capture ability are discussed with regard to the sensitivity of the eye.  相似文献   

7.
Summary Ostracodes, like other crustaceans, have a simple naupliar eye that is built upon a theme of three eye cups surrounded by a layer of screening pigments. The single naupliar eye of the ostracodeVargula graminicola is situated medially on the dorsal-anterior side of the body and has three fused eye cups, two dorso-lateral and one ventral. Each eye cup has the following components: (1) pigment cells between the eye cups, (2) tapetal cells, (3) retinular cells with (4) microvillar rhabdomeres, and (5) axons extending into the protocerebrum. Typically two retinular cells contribute lateral microvilli to each rhabdom. The two dorso-lateral eye cups have about 40 retinular cells (20 rhabdoms) and the ventral eye cup has about 30 retinular cells (15 rhabdoms). Typical of myodocopid naupliar eyes (as reported from light microscopic studies), no lens cells or cuticular lenses were observed. The presence of tapetal cells identifies theVargula eye as a maxillopod-ostracode type crustacean naupliar eye. It is unlikely that the naupliar eye ofV. graminicola functions in image formation, rather it probably functions in the mediation of simple taxis towards and away from light.  相似文献   

8.
The lateral compound eye of Scutigera coleoptrata was examined by electron microscopy. Each ommatidium consists of a dioptric apparatus, formed by a cornea and a multipartite eucone crystalline cone, a bilayered retinula and a surrounding sheath of primary pigment and interommatidial pigment cells. With reference to the median eye region, each cone is made up of eight cone segments belonging to four cone cells. The nuclei of the cone cells are located proximally outside the cone near the transition area between distal and proximal retinula cells. The connection between nuclear region and cone segment is via a narrow cytoplasmic strand, which splits into two distal cytoplasmic processes. Additionally, from the nuclear region of each cone cell a single cytoplasmic process runs in a proximal direction to the basement membrane. The bilayered rhabdom is usually made up of the rhabdomeres of 9–12 distal retinula cells and four proximal retinula cell. The pigment shield is composed of primary pigment cells (which most likely secrete the corneal lens) and interommatidial pigment cells. The primary pigment cells underlie the cornea and surround, more or less, the upper third of the crystalline cone. By giving rise to the cornea and by functioning as part of the pigment shield these pigment cells serve a double function. Interommatidial pigment cells extend from the cornea to the basement membrane and stabilise the ommatidium. In particular, the presence of cone cells, primary pigment cells as well as interommatidial pigment cells in the compound eye of S. coleoptrata is seen as an important morphological support for the Mandibulata concept. Furthermore, the phylogenetic significance of these cell types is discussed with respect to the Tetraconata.  相似文献   

9.
Ong JE 《Tissue & cell》1970,2(4):589-610
The nauplius eye consists of one median and two lateral ocelli, each within a pigment cup. The three pigment cups are made up from two multi-nucleate pigment cells: each cell forming one lateral cup and half of the median cup. The three cups are lined on the insides by tapetal cells which contain layers of reflectile crystals. Each of the ocelli contains six sensory cells which protrude from the rims of the pigment cups and the protruding parts are sheathed by the conjunctiva cells. The whole eye is enveloped by a thin membrane which also sheaths the proximal parts of the five nerve bundles that leave the eye. All the sensory cells of the lateral ocelli are similar and have rhabdomeric microvilli on the terminal end, and contain phaosomes and a multitude of other organelles and cytoplasmic inclusions. The complex median ocellus contains a superior group of three retinular cells, linked by interdigitating processes, and an inferior group consisting of a large central cell enclosed in two cup-shaped peripheral retinular cells. A two-tiered rhabdome arrangement exists, with a rather complex inferior rhabdome set made up of a central rhabdomere and two hemi-annulate rhabdomeres. The cytoplasm of the retinular cells of the median ocellus lack phaosomes but instead contain double-walled tubular elements, possibly formed by the inpushings of microvilli into adjacent cells. The possible functional significance of the unique arrangement seen in the median ocellus is discussed. The retinular cells are of the inverse type. There are no efferent nerve fibres from the brain nor any nervous connection between the lateral and the median ocelli.  相似文献   

10.
The pair of eyes on each side of Tetranychus urticae consists of fifteen retinular cells, six pigment cells, six corneal cells, and one vitreous cell. Five rhabdomeres lie beneath the anterior lens, twelve beneath the posterior lens. The pigment and corneal cells appear to determine the positions at which rhabdomeres occur. The volumes of all rhabdomeres have been measured. A pair of fibrous masses are associated with tendons at the dorsal apodemes; the nerves of these ‘apodemal organs’ join the optic nerves en route to the brain. There are a pair of optic neuropiles, each surmounted by a large secretory cell.  相似文献   

11.
Summary A Drosophila visual mutant rdgA has photoreceptive cells which degenerate gradually after eclosion. Fine structure of the retinular cells of rdgA KS60 and rdgA K014 was studied during early stages of degeneration to determine the initial morphological defects. The retinular cells of these two alleles showed the following structural abnormality within 1 day after eclosion: (1) rhabdomeres were small and irregular in shape; (2) cisternae of the rough endoplasmic reticulum were more numerous than those in normal retinular cells; (3) submicrovillar cisternae were absent; and (4) lysosomes were fewer than normal. Three-dimensional reconstruction of serial sections of the ommatidia showed that the degeneration of mutant rhabdomeres proceeds more rapidly in regions remote from the nuclei. These results suggest that the process of turnover of rhabdomeric microvilli is abnormal in rdgA. We also confirmed an increase of lysosomes and destruction of cellular organelles, as reported by previous investigators at more advanced stages of degeneration.  相似文献   

12.
The lateral ocelli of Scolopendra cingulata and Scolopendra oraniensis were examined by electron microscopy. A pigmented ocellar field with four eyes arranged in a rhomboid configuration is present frontolaterally on both sides of the head. Each lateral ocellus is cup-shaped and consists of a deeply set biconvex corneal lens, which is formed by 230–2,240 cornea-secreting epithelial cells. A crystalline cone is not developed. Two kinds of photoreceptive cells are present in the retinula. 561–1,026 cylindrical retinula cells with circumapically developed microvilli form a large distal rhabdom. Arranged in 13–18 horizontal rings, the distal retinula cells display a multilayered appearance. Each cell layer forms an axial ring of maximally 75 rhabdomeres. In addition, 71–127 club-shaped proximal retinula cells make up uni- or bidirectional rhabdomeres, whose microvilli interdigitate. 150–250 sheath cells are located at the periphery of the eye. Radial sheath cell processes encompass the soma of all retinula cells. Outside the eye cup there are several thin layers of external pigment cells, which not only ensheath the ocelli but also underlie the entire ocellar field, causing its darkly pigmented. The cornea-secreting epithelial cells, sheath cells and external pigment cells form a part of the basal matrix extending around the entire eye cup. Scolopendromorph lateral ocelli differ remarkably with respect to the eyes of other chilopods. The dual type retinula in scolopendromorph eyes supports the hypothesis of its homology with scutigeromorph ommatidia. Other features (e.g. cup-shaped profile of the eye, horizontally multilayered distal retinula cells, interdigitating proximal rhabdomeres, lack of a crystalline cone, presence of external pigment and sheath cells enveloping the entire retinula) do not have any equivalents in scutigeromorph ommatidia and would, therefore, not directly support homology. In fact, most of them (except the external pigment cells) might be interpreted as autapomorphies defining the Pleurostigmophora. Certain structures (e.g. sheath cells, interdigitating proximal rhabdomeres, discontinuous layer of cornea-secreting epithelial cells) are similar to those found in some lithobiid ocelli (e.g. Lithobius). The external pigment cells in Scolopendra species, however, must presently be regarded as an autapomorphy of the Scolopendromorpha.  相似文献   

13.
Abstract The ommatidia of the compound eyes of Artemia salina L. are normally composed of four crystalline cone cells containing glycogen. The cells are enveloped by two so-called “cellules épidermiques juxta-cristallines”. There are also six pigmented retinula cells, all contributing to the rhabdom. A peculiar feature of the Artemia crystalline cone cells is that their elongated parts, the so-called cone cell roots, widen and flatten proximally, forming interdigitating “endfeet”. The basement membrane thus consists of a cellular portion combined with the basal lamina. The main mass of the rhabdom of the Artemia eye is built up by five retinula cells, two contributing a smaller part. The microvilli are oriented in four directions, two being orthogonal. The sixth cell contributes on two small portions to the rhabdom in the distalmost and a more proximal position. The rest of it runs axon-like outside the omnatidium. Where the sixth cell wedges in, the direction of the microvilli is changed and has no orthogonal pattern. Two rhabdom types of compound eyes are distinguished: the decapod or banded or layered rhabdom: and the anostracan rhabdom with continuous rhabdomeres.  相似文献   

14.
Summary The fine structure of photoreceptors is described in miracidia of Fasciola hepatica, Heronimus chelydrae, Allocreadium lobatum, and Spirorchis sp., and in a spirorchiid cercaria. All have in common eyespots consisting of pigment cells with chambers occupied by rhabdomeres consisting of retinular cell dendrites with numerous microvilli. Photoreceptors of the miracidia show a bilateral asymmetry which is most pronounced in H. chelydrae with a pair of well separated eyespots unequal in size. The smaller right one consists of a pigment cell and two rhabdomeres; the larger left eyespot has an anterior pigment cell with two rhabdomeres and a posterior cell containing one rhabdomere. Photoreceptors in the other species of miracidia also have five rhabdomeres but contain only two pigment cells which are closely apposed. Each contains a pair of lateral rhabdomeres and a fifth one occupies a posteromedian extension of the left pigment cell. In the number of rhabdomeres, their relationship to pigment cells and the resulting asymmetry, photoreceptors are more alike in the distantly related species of miracidia studied than they are in ocellate cercariae or even in the miracidium and cercaria of the same species or two closely related ones. From the asymmetry of photoreceptors in larvae of certain flatworms other than digenetic trematodes, it seems that eyespots of miracidia have retained an ancestral pattern whereas the diversity of photoreceptors in cercariae reflects the varied phototactic behavior of those larvae which complete their life cycles by all the means known for cercariae with a free-swimming period. In both miracidia and cercariae, photoreceptors show an anterior-posterior organization that would seem to be concerned with orientation of the larvae with respect to light.Supported in part by a David Ross Fellowship of the Purdue Research Foundation and in part by U.S.P.H.S. Grants 1T1 GM 1392 01 and 2T1 Al 106 07. We express thanks to Dr. Keith Dixon for aid in obtaining and processing miracidia of Fasciola hepatica; to Prof. Clark P. Read for his valuable comments and suggestions; and to Profs. Charles W. Philpott and Richard H. White for advice concerning electron microscopy.  相似文献   

15.
The ocellus of the cockroach,Periplaneta americana (Blattariae)   总被引:3,自引:0,他引:3  
Summary The ocelli of Periplaneta americana were studied by light and electron microscopy. The view that the ocellus of the cockroach represents a degenerated structure can no longer be supported. All organelles necessary for function are present.The club-shaped retinular cells lie homogeneously distributed in the cupule of the ocellus. Rhabdoms are seen as sickle-, y-, x-or star-shaped structures with up to six cells in formation. Cells were found which had formed two rhabdomeres.The mass of cell organelles lies in the cytoplasm between the cell nucleus and the rhabdom. Smooth endoplasmic reticulum is wound into a spindle formation of considerable size at the origin of the axon in some cells. A cylindrical body in which 10–40 microtubules are packed, as yet unknown in insect retinular cells, is described.The receptory area of the ocellus terminates in a tapetum which contains granules, soluble in alcohol. The axon bundles of the retinular cells run through the tapetum and immediately thereafter make synaptic contact with dendrites of the ocellar nerve cells, while still within the ocellus.The authors are indebted to Mrs. Margaret Weber-Wood for her linguistic assistance  相似文献   

16.
Abstract Both species have small sessile compound eyes. The dioptric apparatus of J. albifrons consists of a biconvex lens and a pyriform crystalline cone, the latter formed by two principal and two accessory cone cells. A. aquaticus has a reduced lens and a round cone formed by two to four principal cone cells with two to no accessory cone cells. Distal pigment cells and pigmented retinular cells lie between the ommatidia in J. albifrons. A. aquaticus has only the pigmented retinular cells. Both species have a fused, continuous (unhanded) rhabdom formed by eight retinular cells (R1—8), one of which (R8) is situated distally. The retinular cells R1—7 form, in J. albifrons, a cylinder-shaped middle portion with three microvillar directions (60° apart) and a proximal star-shaped portion. The entire rhabdom of A. aquaticus is star-shaped. Distal pigment-cell processes and basal cells form the fenestrated membrane in J. albifrons and “eye-cup cells” in A. aquaticus.  相似文献   

17.
Ultrastructurally, the compound eyes of the luminescent marine ostracodes Vargula graminkola and V. tsujii are similar. These ostracodes have two lateral compound eyes, with relatively few ommatidia (13 and 20 respectively). They exhibit apposition type compound eyes as seen in many other arthropods. Each ommatidium includes: a flat, ectodermal cuticular covering, corneagen cells, two long cone cells that give rise to a large conspicuous crystalline cone, retinular cells, pigment cells, a microvillar rhabdom and proximal axonal neurons. The axons merge to form an optic nerve that extends into the brain through a short, muscular stalk that is surrounded externally by a cuticle. The number of retinular cells is typically six per ommatidium in V. graminicola and eight per ommatidium in V. tsujii. Screening pigment cells surround each ommatidium forming a layer that is about 5–15 pigment granules thick. In addition to pigment cells, the cytoplasm of the retinular cells includes numerous screening pigment granules. In light/dark adaptation, there are no obvious morphological differences in the orientation of the rhabdom or in the organization of the screening pigments. Both Vargula species studied are nocturnally active and bioluminescent suggesting that these eyes are capable receptors of the bright conspecific luminescence.  相似文献   

18.
Morphology and functional aspects of the scotopic compound eye of the moth Diatraea saccharalis, studied using light and electron microscopy, is presented. An ommatidium is composed of a laminate corneal lens, four Semper cells, a refractive cone, two primary pigment cells, six screening pigment cells, a crystalline tract that functions as an optical waveguide, and six to eight sensory retinular cells. Accessory light regulators consist of screening pigment cells that, in the dark-adapted position, increase receptor sensitivity by permitting light rays to cross over to adjacent ommatidia and specialized tracheal regions that enhance sensitivity by reflecting light back toward sensory receptors.  相似文献   

19.
In the developingDrosophilaeye,BarH1andBarH2, paired homeobox genes expressed in R1/R6 outer photoreceptors and primary pigment cells, are essential for normal eye morphogenesis. Here, we show evidence thatBarH1ectopically expressed under the control of thesevenlessenhancer (sev-BarH1) causes two types of cone cell transformation: transformation of anterior/posterior cone cells into outer photoreceptors and transformation of equatorial/polar cone cells into primary pigment cells.sev-BarH1repressed the endogenous expression of theroughhomeobox gene in R3/R4 photoreceptors, while theBarH2homeobox gene was activated bysev-BarH1in an appreciable fraction of extra outer photoreceptors. In primary pigment cells generated by cone cell transformation, the expression ofcut,a homeobox gene specific to cone cells, was completely replaced with that ofBarhomeobox genes. Extra outer photoreceptor formation was suppressed and enhanced, respectively, by reducing the activity of Ras/MAPK signaling and by dosage reduction ofyan,a negative regulator of the pathway, suggesting interactions betweenBarhomeobox genes (cell fate determinants) and Ras/MAPK signaling in eye development.  相似文献   

20.
Summary The superposition eye of the cockchafer, Melolontha melolontha, exhibits the typical features of many nocturnal and crepuscular scarabaeid beetles: the dioptric apparatus of each ommatidium consists of a thick corneal lens with a strong inner convexity attached to a crystalline cone, that is surrounded by two primary and 9–11 secondary pigment cells. The clear zone contains the unpigmented extensions of the secondary pigment cells, which surround the cell bodies of seven retinula (receptor) cells per ommatidium and a retinular tract formed by them. The seven-lobed fused rhabdoms are composed by the rhabdomeres of the receptor cells 1–7. The rhabdoms are optically separated from each other by a tracheal sheath around the retinulae. The orientation of the microvilli diverges in a fan-like fashion within each rhabdomere. The proximally situated retinula cell 8 does not form a rhabdomere. This standard form of ommatidium stands in contrast to another type of ommatidium found in the dorsal rim area of the eye. The dorsal rim ommatidia are characterized by the following anatomical specializations: (1) The corneal lenses are not clear but contain light-scattering, bubble-like inclusions. (2) The rhabdom length is increased approximately by a factor of two. (3) The rhabdoms have unlobed shapes. (4) Within each rhabdomere the microvilli are parallel to each other. The microvilli of receptor 1 are oriented 90° to those of receptors 2–7. (5) The tracheal sheaths around the retinulae are missing. These findings indicate that the photoreceptors of the dorsal rim area are strongly polarization sensitive and have large visual fields. In the dorsal rim ommatidia of other insects, functionally similar anatomical specializations have been found. In these species, the dorsal rim area of the eye was demonstrated to be the eye region that is responsible for the detection of polarized light. We suggest that the dorsal rim area of the cockchafer eye subserves the same function and that the beetles use the polarization pattern of the sky for orientation during their migrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号