首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study we investigated the changes of plasma lipids, lipoproteins, and tissue lipids that occur during the late embryonic life (5 days before hatching) and the postnatal period (0, 2, 7, 14, and 30 days after hatching) of the chick. The chick emerges from the egg with extreme hypercholesterolemia associated with a high level of cholesterol-rich VLDL + IDL. The density gradient profile of plasma lipoproteins showed that the concentrations of VLDL + IDL and LDL decreased during the first week of postnatal life, whereas HDL concentration increased sharply around hatching and remained stable afterwards. All plasma lipoprotein classes of the newborn chick (2 days from hatching) were enriched in cholesterol and cholesteryl esters; 2 weeks after hatching, the relative amount of cholesterol and cholesteryl esters decreased. In the newborn chick, plasma VLDL + IDL consisted of two populations of cholesteryl ester-rich lipoproteins: the main one (designated apoB-VLDL) contained apoB and no apoA-I; the other (designated apoA-I-VLDL) contained predominantly apoA-I. In the newborn chick there was an accumulation of free and esterified cholesterol in the liver and, to a lesser extent, in the skeletal muscle. These cholesterol deposits were depleted 2 to 7 days after hatching. The depletion in skeletal muscle was preceded by and associated with a striking increase in the synthesis of apoA-I in this tissue, as demonstrated by immunological methods and apoA-I mRNA measurements. In addition, apoA-I-containing HDL were secreted in vitro by explants of skeletal muscle of the newborn chick. The synthesis of apoA-I in the skeletal muscle decreased to the level found in the adult animal 1 week after hatching. It is likely that the rise of HDL and apoA-I in plasma observed 1-2 days after hatching reflects the production of apoA-I-containing HDL by skeletal muscle. We suggest that the cholesterol overload in skeletal muscle might stimulate the production of apoA-I which, in turn, would promote the removal of cholesterol from this tissue. The hypothesis that metabolic stimuli play a role in inducing apoA-I synthesis in skeletal muscle is supported by the observation that feeding the newborn chick a diet rich in proteins and lipids and free of carbohydrates delays the fall of apoA-I mRNA which normally occurs 1 week after hatching.  相似文献   

2.
Infection and inflammation induce the acute-phase response (APR), leading to multiple alterations in lipid and lipoprotein metabolism. Plasma triglyceride levels increase from increased VLDL secretion as a result of adipose tissue lipolysis, increased de novo hepatic fatty acid synthesis, and suppression of fatty acid oxidation. With more severe infection, VLDL clearance decreases secondary to decreased lipoprotein lipase and apolipoprotein E in VLDL. In rodents, hypercholesterolemia occurs attributable to increased hepatic cholesterol synthesis and decreased LDL clearance, conversion of cholesterol to bile acids, and secretion of cholesterol into the bile. Marked alterations in proteins important in HDL metabolism lead to decreased reverse cholesterol transport and increased cholesterol delivery to immune cells. Oxidation of LDL and VLDL increases, whereas HDL becomes a proinflammatory molecule. Lipoproteins become enriched in ceramide, glucosylceramide, and sphingomyelin, enhancing uptake by macrophages. Thus, many of the changes in lipoproteins are proatherogenic. The molecular mechanisms underlying the decrease in many of the proteins during the APR involve coordinated decreases in several nuclear hormone receptors, including peroxisome proliferator-activated receptor, liver X receptor, farnesoid X receptor, and retinoid X receptor. APR-induced alterations initially protect the host from the harmful effects of bacteria, viruses, and parasites. However, if prolonged, these changes in the structure and function of lipoproteins will contribute to atherogenesis.  相似文献   

3.
Hyperlipidemia is a prominent feature of the nephrotic syndrome. Lipoprotein abnormalities include increased very low and low density lipoprotein (VLDL and LDL) cholesterol and variable reductions in high density lipoprotein (HDL) cholesterol. We hypothesized that plasma cholesteryl ester transfer protein (CETP), which influences the distribution of cholesteryl esters among the lipoproteins, might contribute to lipoprotein abnormalities in nephrotic syndrome. Plasma CETP, apolipoprotein and lipoprotein concentrations were measured in 14 consecutive untreated and 7 treated nephrotic patients, 5 patients with primary hypertriglyceridemia, and 18 normolipidemic controls. Patients with nephrotic syndrome displayed increased plasma concentrations of apoB, VLDL, and LDL cholesterol. The VLDL was enriched with cholesteryl ester (CE), shown by a CE/triglyceride (TG) ratio approximately twice that in normolipidemic or hypertriglyceridemic controls (P < 0.001). Plasma CETP concentration was increased in patients with untreated nephrotic syndrome compared to controls (3.6 vs. 2.3 mg/l, P < 0.001), and was positively correlated with the CE concentration in VLDL (r = 0.69, P = 0.004) and with plasma apoB concentration (r = 0.68, P = 0.007). Treatment with corticosteroids resulted in normalization of plasma CETP and of the CE/TG ratio in VLDL. An inverse correlation between plasma CETP and HDL cholesterol was observed in hypertriglyceridemic nephrotic syndrome patients (r = -0.67, P = 0.03). The dyslipidemia of nephrotic syndrome includes increased levels of apoB-lipoproteins and VLDL that are unusually enriched in CE and likely to be atherogenic. Increased plasma CETP probably plays a significant role in the enrichment of VLDL with CE, and may also contribute to increased concentrations of apoB-lipoproteins and decreased HDL cholesterol in some patients.  相似文献   

4.
Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol/phospholipid-rich lipoproteins in the in vitro-formed LDL2 appears to be the main reason for their compositional difference from native LDL2. These results demonstrate that the formation of LP-B as the major apolipoprotein B-containing product of VLDL lipolysis only requires LPL as a catalyst and albumin as the fatty acid acceptor. However, under physiological circumstances, other modulating agents are necessary to prevent the accumulation and interaction of phospholipid/cholesterol-rich apolipoprotein C- and E-containing particles.  相似文献   

5.
Interactions of high density lipoproteins (HDL) with very low (VLDL) and low (LDL) density lipoproteins were investigated during in vitro lipolysis in the presence of limited free fatty acid acceptor. Previous studies had shown that lipid products accumulating on lipoproteins under these conditions promote the formation of physical complexes between apolipoprotein B-containing particles (Biochim. Biophys. Acta, 1987. 919: 97-110). The presence of increasing concentrations of HDL or delipidated HDL progressively diminished VLDL-LDL complex formation. At the same time, association of HDL-derived apolipoprotein (apo) A-I with both VLDL and LDL could be demonstrated by autoradiography of gradient gel electrophoretic blots, immunoblotting, and apolipoprotein analyses of reisolated lipoproteins. The LDL increased in buoyancy and particle diameter, and became enriched in glycerides relative to cholesterol. Both HDL2 and HDL3 increased in particle diameter, buoyancy, and relative glyceride content, and small amounts of apoA-I appeared in newly formed particles of less than 75 A diameter. Association of apoA-I with VLDL or LDL could be reproduced by addition of lipid extracts of lipolyzed VLDL or purified free fatty acids in the absence of lipolysis, and was progressively inhibited by the presence of increasing amounts of albumin. We conclude that lipolysis products promote multiple interactions at the surface of triglyceride-rich lipoproteins undergoing lipolysis, including physical complex formation with other lipoprotein particles and transfers of lipids and apolipoproteins. These processes may facilitate remodeling of lipoproteins in the course of their intravascular metabolism.  相似文献   

6.
The regulation of the hepatic catabolism of normal human very-low-density lipoproteins (VLDL) was studied in human-derived hepatoma cell line HepG2. Concentration-dependent binding, uptake and degradation of 125I-labeled VLDL demonstrated that the hepatic removal of these particles proceeds through both the saturable and non-saturable processes. In the presence of excess unlabeled VLDL, the specific binding of 125-labeled VLDL accounted for 72% of the total binding. The preincubation of cells with unlabeled VLDL had little effect on the expression of receptors, but reductive methylation of VLDL particles reduced their binding capacity. Chloroquine and colchicine inhibited the degradation of 125I-labeled VLDL and increased their accumulation in the cell, indicating the involvement of lysosomes and microtubuli in this process. Receptor-mediated degradation was associated with a slight (13%) reduction in de novo sterol synthesis and had no significant effect on the cellular cholesterol esterification. Competition studies demonstrated the ability of unlabeled VLDL, low-density lipoproteins (LDL) and high-density lipoproteins (HDL) to effectively compete with 125I-labeled VLDL for binding to cells. No correlation was observed between the concentrations of apolipoproteins A-I, A-II, C-I, C-II and C-III of unlabeled lipoproteins and their inhibitory effect on 125I-labeled VLDL binding. When unlabeled VLDL, LDL and HDL were added at equal contents of either apolipoprotein B or apolipoprotein E, their inhibitory effect on the binding and uptake of 125I-labeled VLDL only correlated with apolipoprotein E. Under similar conditions, the ability of unlabeled VLDL, LDL and HDL to compete with 125I-labeled LDL for binding was a direct function of only their apolipoprotein B. These results demonstrate that in HepG2 cells, apolipoprotein E is the main recognition signal for receptor-mediated binding and degradation of VLDL particles, while apolipoprotein B functions as the sole recognition signal for the catabolism of LDL. Furthermore, the lack of any substantial regulation of beta-hydroxy-beta-methylglutaryl-CoA reductase and acyl-CoA:cholesterol acyltransferase activities subsequent to VLDL degradation, in contrast to that observed for LDL catabolism, suggests that, in HepG2 cells, the receptor-mediated removal of VLDL proceeds through processes independent of those involved in LDL catabolism.  相似文献   

7.
The effects on serum cholesterol level were examined in rats fed on various xenobiotics. The hypercholesterolemia induced by polychlorinated biphenyls (PCB) was characterized in rats, from which lipoproteins were isolated by ultracentrifugation. A dietary addition of 0.03% PCB, 0.3% chloretone, 0.1% aminopyrine, or 0.2% 2,6-di-tert-butyl-p-cresol (BHT) resulted in a significant increase in serum cholesterol, although the chemical structure of each of these xenobiotics was different. The serum cholesterol level was markedly increased by one month of PCB feeding, the effect of PCB on the serum phospholipid level being similar. The serum triglyceride level transiently increased within 7 days of feeding with PCB diet. PCB feeding resulted in the elevation of all lipoproteins, including VLDL, LDL, HDL1, and HDL2, a marked increase being observed in HDI1. Both HDL1 and HDL2 isolated from PCB-treated rats contained more apolipoprotein A-I (apo A-I) and less apo E than normal. VLDL isolated from PCB-treated rats had more cholesterol and apo E, but less apo C than that of the control animals. These data demonstrate that PCB feeding resulted in increased VLDL rich in cholesterol and apo E, and increased HDL rich in apo A-I. This experimentally induced hypercholesterolemia resulting in apo A-I-rich HDL would be a useful model for investigating the metabolism of apo-A-I and HDL.  相似文献   

8.
A study was undertaken to determine the relative association of lipid and apolipoproteins among lipoproteins produced during lipolysis of very low density lipoproteins (VLDL) in perfused rat heart. Human VLDL was perfused through beating rat hearts along with various combinations of albumin (0.5%), HDL2, the infranatant of d greater than 1.08 g/ml of serum, and labeled sucrose. The products were resolved by gel filtration, ultracentrifugation, and hydroxylapatite chromatography. The composition of the lipoprotein products was assessed by analysis of total lipid profiles by gas-liquid chromatography and immunoassay of apolipoproteins. A vesicle particle, which trapped and retained 1-2% of medium sucrose, co-isolated with VLDL and VLDL remnants by gel filtration chromatography but primarily with the low density lipoprotein (LDL) fraction when isolated by ultracentrifugation. The vesicle was resolved from apoB-containing LDL lipolysis products by hydroxylapatite chromatography of the lipoproteins. The vesicle lipoprotein contained unesterified cholesterol (34%), phosphatidylcholine and sphingomyelin (50%), cholesteryl ester (6%), triacylglycerol (5%), and apolipoprotein (5%). The apolipoprotein consisted of apoC-II (7%), apoC-III (93%), and trace amounts of apoE (1%). When viewed by electron microscopy the vesicles appeared as rouleaux structures with a diameter of 453 A, and a periodicity of 51.7 A. The mass represented by the vesicle particle in terms of the initial amount in VLDL was: cholesterol (5%), phosphatidylcholine and sphingomyelin (3%), apoC-II (0.5%), apoC-III (2.2%). The majority of the apoC and E released from apoB-containing lipoproteins was associated with neutral-lipid core lipoproteins proteins which possessed size characteristics of HDL. The vesicles were also formed in the presence of HDL and serum and were not disrupted by serum HDL. It is concluded that lipolysis of VLDL in vitro results in the production of VLDL remnants and LDL apoB-containing lipoproteins, as well as HDL-like lipoproteins. A vesicular lipoprotein which has many characteristics of lipoprotein X found in cholestasis, lecithin: cholesterol acyltransferase deficiency, and during Intralipid infusion is also formed. The majority of apolipoprotein C and E released from apoB-containing lipoproteins is associated with the HDL-like lipoprotein. It is suggested that the formation and stability of the vesicle lipoprotein may be related to the high ratio of cholesterol/phospholipid in this particle.  相似文献   

9.
Changes of lipoprotein secretion and composition in response to CCl4 treatment were studied in monolayer cultures of rat primary hepatocytes. (1) CCl4 decreased secretion of very low density lipoproteins (VLDL) by about 85%, while high density lipoprotein (HDL) secretion was less affected (about 40%). The effect was concentration-dependent. (2) CCl4 significantly inhibited secretion of VLDL- and HDL-associated triglycerides and cholesterol esters. VLDL- and HDL-associated cholesterol was not affected, while secretion of phospholipids was increased. (3) Hepatocytes secreted the apolipoproteins B48, B100, E, C, and A-I. CCl4 reduced secretion of apoproteins associated with VLDL by almost 20%, and by about 75% when associated with HDL. The de novo synthesis of apolipoproteins was attenuated by CCl4. (4) CCl4 caused variations in the apolipoprotein composition in VLDL and HDL. CCl4 intoxication of the liver affected the morphology and/or function of the lipoproteins, which drastically impaired their ability to act as transport vehicles for lipids from the liver to the circulation.  相似文献   

10.
Selective breeding of baboons has produced families with increased plasma levels of large high density lipoproteins (HDL1) and very low (VLDL) and low (LDL) density lipoproteins when the animals consume a diet enriched in cholesterol and saturated fat. High HDL1 baboons have a slower cholesteryl ester transfer, which may account for the accumulation of HDL1, but not of VLDL and LDL. To investigate the mechanism of accumulation of VLDL + LDL in plasma of the high HDL1 phenotype, we selected eight half-sib pairs of baboons, one member of each pair with high HDL1, the other member with little or no HDL1 on the same high cholesterol, saturated fat diet. Baboons were fed a chow diet and four experimental diets consisting of high and low cholesterol with corn oil, and high and low cholesterol with lard, each for 6 weeks, in a crossover design. Plasma lipids and lipoproteins and hepatic mRNA levels were measured on each diet. HDL1 phenotype, type of dietary fat, and dietary cholesterol affected plasma cholesterol and apolipoprotein (apo) B concentrations, whereas dietary fat alone affected plasma triglyceride and apoA-I concentrations. HDL1 phenotype and dietary cholesterol alone did not influence hepatic mRNA levels, whereas dietary lard, compared to corn oil, significantly increased hepatic apoE mRNA levels and decreased hepatic LDL receptor and HMG-CoA synthase mRNA levels. Hepatic apoA-I message was associated with cholesterol concentration in HDL fractions as well as with apoA-I concentrations in the plasma or HDL. However, hepatic apoB message level was not associated with plasma or LDL apoB levels. Total plasma cholesterol, including HDL, was negatively associated with hepatic LDL receptor and HMG-CoA synthase mRNA levels. However, compared with low HDL1 baboons, high HDL1 baboons had higher concentrations of LDL and HDL cholesterol at the same hepatic mRNA levels. These studies suggest that neither overproduction of apoB from the liver nor decreased hepatic LDL receptor levels cause the accumulation of VLDL and LDL in the plasma of high HDL1 baboons. These studies also show that, in spite of high levels of VLDL + LDL and HDL1, the high HDL1 baboons had higher levels of mRNA for LDL receptor and HMG-CoA synthase. This paradoxical relationship needs further study to understand the pathophysiology of VLDL and LDL accumulation in the plasma of animals with the high HDL1 phenotype.  相似文献   

11.
PURPOSE OF REVIEW: Dyslipoproteinemia is a cardinal feature of the metabolic syndrome that accelerates atherosclerosis. Recent in-vivo kinetic studies of dyslipidemia in the metabolic syndrome are reviewed here. RECENT FINDINGS: The dysregulation of lipoprotein metabolism may be caused by a combination of overproduction of VLDL apolipoprotein B-100, decreased catabolism of apolipoprotein B-containing particles, and increased catabolism of HDL apolipoprotein A-I particles. Nutritional modifications and increased physical exercise may favourably alter lipoprotein transport by collectively decreasing the hepatic secretion of VLDL apolipoprotein B and the catabolism of HDL apolipoprotein A-I, as well as by increasing the clearance of LDL apolipoprotein B. Conventional and new pharmacological treatments, such as statins, fibrates and cholesteryl ester transfer protein inhibitors, can also correct dyslipidemia by several mechanisms, including decreased secretion and increased catabolism of apolipoprotein B, as well as increased secretion and decreased catabolism of apolipoprotein A-I. SUMMARY: Kinetic studies provide a mechanistic insight into the dysregulation and therapy of lipid and lipoprotein disorders. Future research mandates the development of new tracer methodologies with practicable in-vivo protocols for investigating fatty acid turnover, macrophage reverse cholesterol transport, cholesterol transport in plasma, corporeal cholesterol balance, and the turnover of several subpopulations of HDL particles.  相似文献   

12.
Rat HDL are known to increase testosterone production by cultured Leydig cells either following gonadotropin stimulation or cholesteryl ester depletion. However, rat HDL contain apolipoprotein E and have a high affinity for the members of the low density receptor family such as LDL receptor, LDL receptor related protein and VLDL receptor. In contrast with the adrenal cells, the contribution of apo A-I and apo E pathways in HDL cholesterol uptake has not been yet evidenced in rat Leydig cells. Recent data provided evidence that hCG stimulates scavenger receptor BI expression in testes. In order to investigate if testosterone production can be stimulated by apo E depleted HDL, we compared the level of testosterone stimulation by HDL with or without apo E first, in presence of saturating dose of hCG (1 IU/ml) and second, after depletion of cholesterol synthesis by pravastatin, an inhibitor of HMG-CoA reductase. In presence of hCG, HDL with or without apo E increased testosterone production respectively by 37 and 25%. Pravastatin at 100 g/ml inhibited the cholesterol synthesis and the testosterone production by 25% and decreased the cholesteryl content by 25%. The addition of HDL with or without apo E (50 g protein HDL/ml) completely overcame the depletion of cellular cholesteryl esters and the inhibition of testosterone production induced by pravastatin. In the presence of heparin, apo E depleted HDL overcame the testosterone production induced by pravastatin, indicating that uptake of HDL without apo E via a secretion of apo E by the cells themselves was not involved. Therefore, in absence of apo E, it is suggested that rat Leydig cells used HDL to regulate steroidogenesis via an apolipoprotein A-I pathway.  相似文献   

13.
The biosynthesis and secretion of very-low-density lipoproteins (VLDL) and high-density lipoproteins (HDL) by cultured normal rat hepatocytes was investigated with particular emphasis on its modification by monensin. This acidic ionophore coordinately inhibited the rates of secretion of the several VLDL apolipoproteins and the VLDL lipids, suggesting an effect late in the process of biosynthesis and secretion, probably at the stage of exiting from the Golgi apparatus. The secretion of immunoreactive albumin into the medium was comparably inhibited, implying that the pathway and mechanisms involved in albumin secretion may be closely similar to those for VLDL synthesis and secretion. Secretion of phospholipids and of apolipoproteins E and A-I in the HDL fraction increased progressively with time over 18 h in control incubations but was strongly inhibited by monensin. During extended incubation with monensin at high concentrations (10 microM), there was a net release to the medium of a number of hepatocyte proteins, including some that comigrated with apolipoprotein A-I and apolipoprotein C, making it appear that monensin increased the secretion of these apolipoproteins. However, using labeled amino acids, it was shown by autoradiography and by immunoprecipitation that secretion of newly-synthesized, radioactive apolipoprotein A-I and apolipoprotein C was actually inhibited by monensin. These results are compatible with the conclusion that HDL synthesis and secretion may occur by mechanisms closely related to those for synthesis and secretion of albumin and VLDL.  相似文献   

14.
In vitro metabolism of apolipoprotein E   总被引:1,自引:0,他引:1  
Apolipoprotein E plays a major role in the uptake of chylomicrons and of very-low-density lipoprotein (VLDL) remnants by the liver. It has also been clearly demonstrated that apolipoprotein E rapidly and spontaneously exchanges between lipoproteins. To assess whether all lipoprotein-bound apolipoprotein E is available to participate in spontaneous transfer and/or exchange, the present study followed the fate of radiolabeled apolipoprotein E in an in vitro system. The results show that in vitro, apolipoprotein E can be considered as having both a spontaneously exchangeable pool and a nonexchangeable pool. Based upon specific radioactivity data, only a limited amount of apolipoprotein E originating in VLDL or in high-density lipoproteins (HDL) was capable of in vitro exchange with that in other lipoprotein fractions. Lipolysis of VLDL triacylglycerol by milk lipoprotein lipase, however, resulted in complete transfer of VLDL apolipoprotein E mass and radioactivity to HDL, supporting the potential for transformation of exchangeable apolipoprotein to a transferable pool in vivo. The results of these studies indicate that during the course of lipoprotein metabolism, conformational changes occur which alter the accessibility of apolipoprotein E. Such dynamic heterogeneity may have implications for the regulation of lipoprotein metabolism.  相似文献   

15.
The aim of the present study was to investigate the associations between total adiposity, body fat distribution, and plasma lipoprotein levels within groups of women defined on the basis of apolipoprotein E phenotypes, in order to verify whether apoE polymorphism could modify these associations. In women having only apolipoprotein E3 isoforms (n = 24), body fat mass, the waist: hip circumference ratio, and computed tomography-derived total and intra-abdominal fat areas were all positively correlated with very low density lipoprotein (VLDL) and low density lipoprotein (LDL) lipids and apolipoprotein B concentrations. These body fatness variables were also negatively correlated with plasma high density lipoprotein (HDL) cholesterol concentration. These associations were, however, altered in the groups of women carrying either apoE2 or E4 isoforms. Indeed, in women carrying the apoE2 isoform (n = 22), body fatness variables were predominantly associated with VLDL components concentration (0.05 greater than P less than 0.01) and with LDL triglyceride content. No association was found between adiposity and LDL cholesterol or apolipoprotein B levels in these women. In contrast, no relationship was found between total adiposity, regional fat accumulation, and VLDL fraction in women carrying the apolipoprotein E4 isoform (n = 17). In this latter group, computed tomography-measured total abdominal fat accumulation was positively correlated with LDL apolipoprotein B (r = 0.58, P less than 0.05) concentration, whereas intra-abdominal fat accumulation was positively correlated with both LDL cholesterol and apolipoprotein B concentrations (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Normal human plasma contains a fraction of very low density lipoprotein (VLDL) which, unlike most VLDL, contains no apolipoprotein E and, unlike apo-E-containing VLDL, is enriched in phosphatidylethanolamine. This fraction made up 0.28 +/- 0.09 of total VLDL triglyceride. Interconversion of the two isolated VLDL fractions was not detected during incubation (2 h, 37 degrees C) and they may represent the physical forms of apo-B corresponding to distinct metabolic pathways in plasma.  相似文献   

17.
There was a rapid transfer of radioactive peptides to other lipoprotein fractions during the first 30 min after the intravenous injection of 125I-labeled rat very low density lipoprotein (VLDL) into rats. After this initial redistribution of radioactivity, label disappeared slowly from all lipoprotein fractions. The disappearance of 125I-labeled human VLDL injected into rats was the same as that of rat VLDL. Most of the radioactivity transferred from VLDL to low density (LDL) and high density (HDL) lipoproteins was associated with two peptides, identified in these studies by polyacrylamide gel electrophoresis as zone IVa and IVb peptides (fast-migrating peptides, possibly analogous to some human C apolipoproteins), although radioactivity initially associated with zone I (analogous to human apolipoprotein B) and zone III (not characterized) was also transferred to LDL and HDL. That the transfer of label from VLDL to LDL and HDL primarily involved small molecular weight peptides was confirmed in studies using VLDL predominantly labeled in these peptides by in vitro transfer from 125I-labeled HDL. Both zone I and zone IV radioactivity was rapidly removed from VLDL during the first 5 min after injection. However, although most of the zone IV radioactivity was recovered in LDL and HDL, only 12% of the label lost from zone I of VLDL was recovered in other lipoproteins, with the remainder presumably having been cleared from the plasma compartment. We have concluded that, during catabolism of rat VLDL apoprotein, there is a rapid transfer of small molecular weight peptides to both LDL and HDL. During the catabolic process, most of the VLDL is rapidly removed from the circulation, with only a small portion being transformed into LDL molecules.  相似文献   

18.
Six mouse monoclonal antibodies against rabbit apolipoprotein E (apo E) have been developed. Of these monoclonal antibodies, clone 5 revealed a high affinity for purified apo E, very low density lipoprotein (VLDL) and beta-VLDL. This monoclonal antibody was used to prepare an immunoaffinity column. Coupled to Sepharose 4B, this antibody allowed complete removal of lipoproteins containing apo E from plasma of New Zealand white (NZW) rabbits; 62, 46, 14, and 3% of VLDL-, IDL-, LDL-, and HDL-protein, respectively, were bound to the anti-apo E affinity column. The bound VLDL was significantly rich in free cholesterol (FC) and cholesteryl esters (CE) relative to the unbound VLDL, whereas bound IDL, LDL and HDL were significantly rich in FC only. All of the bound fractions were characterized by significantly increased ratios of FC/phospholipids (PL). These results indicate that the two lipoprotein populations with and without apo E have different lipid compositions. The relatively high content of cholesterol in lipoproteins containing apo E suggests a contribution of apo E to plasma cholesterol transport.  相似文献   

19.
Discrete apolipoprotein E-containing lipoproteins can be identified when EDTA plasma is fractionated on columns of 4% agarose. The present study has demonstrated, by physical and metabolic criteria, that these apolipoprotein E-containing lipoprotein subclasses may be further isolated by immunoaffinity chromatography. Whole plasma was first bound to an anti-apolipoprotein E immunoadsorbent prior to gel filtration on 4% agarose. After elution from the affinity column and dialysis, the bound fraction was chromatographed on 4% agarose. Discrete subfractions of apolipoprotein E could be demonstrated within elution volumes similar to those observed in the original plasma. When whole plasma was first submitted to gel filtration and the apolipoprotein E-containing lipoproteins of either intermediate- or of high-density lipoprotein (HDL) size were subsequently bound to anti-apolipoprotein E columns, the bound eluted fractions maintained their size and physical properties as shown by electron microscopy and by rechromatography on columns of 4% agarose. The metabolic integrity of apolipoprotein E-containing very-low-density lipoproteins (VLDL) was examined by coinjection into a cynomolgus monkey of 125I-labeled apolipoprotein E-rich and 131I-labeled apolipoprotein E-deficient human VLDL which had been separated by immunoaffinity chromatography. The plasma specific activity time curves of the apolipoprotein B in VLDL, intermediate-density (IDL) and low-density (LDL) lipoproteins demonstrated rates of decay and precursor-product relationships similar to those obtained after injection of whole labeled VLDL, supporting the metabolic integrity of VLDL isolated by immunoaffinity chromatography.  相似文献   

20.
The lipid transport system of 3-month-old male C57BL/6J obese (ob/ob) mice was investigated. Serum lipoproteins were separated by density gradient ultracentrifugation and characterized by their chemical and electrophoretic properties as well as their relative apolipoprotein contents, defined according to molecular weight and charge. Obese, ob/ob mice exhibited a marked hyperlipoproteinemia resulting from large increases in low-density lipoproteins (LDL, d 1.021-1.058 g/ml) and high-density lipoproteins (HDL, d 1.058-1.137 g/ml), particularly, the HDL2 subclass (d 1.058-1.109 g/ml). This increase in lipoproteins was entirely responsible for their hypercholesterolemia and hyperphospholipidemia. By contrast, these obese mice had a net decrease in very-low-density lipoproteins (VLDL, d less than 1.016 g/ml) and intermediate-density lipoproteins (IDL, d 1.016-1.021 g/ml), which accounted for their moderate hypotriglyceridemia. The chemical composition of heterogeneous light LDL (d 1.021-1.040 g/ml and dense LDL (d 1.040-1.058 g/ml) overlapped by HDL-like particles was highly modified. These modifications consisted of increases in the percentages of cholesteryl ester and phospholipid and decreases in that of triacylglycerol. There were also marked changes in the relative values of the apolipoproteins of VLDL, but principally, IDL and LDL. IDL and light LDL were poorer in apolipoproteins BH (Mr 340,000-320,000) and eventually in apolipoprotein BL (Mr 220,000-200,000) and enriched in apolipoproteins E (Mr 37,000-35,000) and C-A-II (Mr approximately equal to 12,000). A similar and very significant change occurred in VLDL for both the apolipoproteins BL and C-A-II. Dense LDL, mainly poorer in apolipoprotein BH and enriched in apolipoprotein A-I (Mr 28,000-27,000), closely resembled HDL2 in all the groups, and were enriched in apolipoproteins C-A-II in only the obese mice. We suggest that ob/ob mice are probably protected against atheromata because of the low VLDL and IDL levels, and the increase in HDL2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号