首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The tumuour-promoting sesquiterpene lactone, thapsigargin, induced a dose-dependent increase of the cytoplasmic Ca2+ concentrations ([Ca2+]i) in human lymphocytes from a resting level between 100 and 150 nM up to about 1 μM. Half-maximum response was found at about 1 nM of thapsigargin, full response at 100 nM. The effect of thapsigargin on [Ca2+], expected that of phytohaemagglutinin (PHA) which raised [Ca2+]i to maximum 300 nM. In combination with phorbol 12-myristate 13-acetate (PMA), thapsigargin stimulated the proliferation of normal lymphocytes to the same extent as did PHA, whereas the thapsigargin /PMA treatment could not restore the defective proliferation of AIDS lymphocytes in spite of the increased [Ca2+]i. Thapsigargin or PMA added separately had no stimulatory effects on cell profileration. The thapsigargin/PMA treatment caused an increase in interleukin-2 (IL-2) production of the lymphocytes, which was much higher than that caused by the PHA treatment, even in AIDS lymphocytes. Moreover, the thapsigargin/PMA treatment stimulated the expression of the IL-2 receptors on both normal and AIDS lymphocytes, similar to the effect of PHA. It is concluded that thapsigargin exerts its effects on lymphocyte proliferation by increasing [Ca2+]i, and that the general defect of AIDS lymphocytes, rather than being ascribed to the initiating signal systems, is associated with later events related to DNA synthesis and proliferation.  相似文献   

2.
We have studied whether the decreased lymphocyte proliferative responses of AIDS lymphocytes to stimulation by mitogens and antigens may be overcome when challenged with a combination of calcium ionophore A23187 and phorbol ester PMA. Comparison of the proliferative response of lymphocytes from nine patients with AIDS with the response of lymphocytes from nine control subjects showed that the response of AIDS lymphocytes was severely decreased when stimulated with PHA and no further response could be achieved by stimulation with A23187/PMA. On the other hand, no significant difference between the PHA-induced rise of cytoplasmic free calcium concentration ([Ca2+]1) in normal and AIDS lymphocytes was observed. The percentage of cells expressing IL-2 receptors (CD25) was also normal both after addition of PHA and after addition of A23187/PMA and the expression was normal on both CD4 and CD8 cells. The production of IL-2 in normal lymphocytes stimulated with A23187/PMA was 33 times higher than that after stimulation with PHA. In AIDS lymphocytes the production of IL-2 induced by all activators was severely decreased compared to control subjects, although the production of IL-2 after stimulation with A23187/PMA was higher than that in control lymphocytes after stimulation with PHA. The present study shows that a direct activation of protein kinase C combined with mobilization of cytoplasmic calcium does not overcome the lymphocyte proliferative deficiency of AIDS lymphocytes.  相似文献   

3.
This report compares the ability of cyclosporin A and FK-506 to inhibit human T cell activation triggered via cell surface molecules that utilize different intracellular processes. We stimulated highly purified peripheral blood T lymphocytes with mitogens (Con A and PHA), ionomycin + PMA, or monoclonal antibodies specific for cell surface antigens involved in activation (CD2, CD3, CD28) either in combination with each other or in conjunction with PMA. Using measurements of the proliferative response, IL-2 production, and changes in intracellular Ca2+ ([Ca2+]i), we demonstrate that FK-506 exerts its inhibitory effect on early events of T-cell activation in a manner indistinguishable from that of CsA. An important finding in this study is the strict correlation between those activation pathways that are inhibited by FK-506 and CsA and the requirement that the sensitive pathways induce a measurable rise in [Ca2+]i. This correlation held even for the CD28/CD2 pathway which was previously shown to be calcium-independent; however by employing FACS analysis of [Ca2+]i within individual cells, a subset of cells activated via CD28/CD2 was found to respond with a measurable rise in [Ca2+]i. We also noted that the proliferative response induced by certain stimuli, such as ionomycin + PMA and PHA + PMA, was partially resistant to FK-506 and CsA, while IL-2 production was completely suppressed. The partial FK-506/CsA-resistance of these responses was shown to be determined by the amount of PMA added to the cultures. We conclude from our investigations that FK-506 and CsA inhibit highly similar signal transduction pathways in human T lymphocytes.  相似文献   

4.
Our studies assessed the effects of increases in intracellular calcium concentrations [( Ca2+]i) on leukotriene synthesis and membrane translocation of 5-lipoxygenase (5LO). The calcium ionophore ionomycin and the tumor promoter thapsigargin stimulated leukotriene production and translocation of 5-lipoxygenase to the membrane. Both agents elicited prolonged rises in [Ca2+]i. Leukotriene C4 production associated with [Ca2+]i in cells stimulated with various concentrations of ionomycin and thapsigargin suggests that a threshold [Ca2+]i level of approximately 300-400 nM is required. In the absence of extracellular Ca2+, both the ionomycin- and thapsigargin-induced rises in [Ca2+]i were transient, indicating that the prolonged [Ca2+]i elevation is due to an influx of extracellular Ca2+. Addition of EGTA to the external medium before, or at different times during, the treatment with ionomycin or thapsigargin instantaneously inhibited 5LO translocation and leukotriene synthesis, indicating that Ca2+ influx plays an essential role in 5LO membrane translocation and leukotriene synthesis. No leukotriene production was detected when cells were stimulated by a physiological stimulus of leukotriene D4. The addition of 100 nM leukotriene D4 triggered peak rises in [Ca2+]i that were comparable to those achieved by the ionomycin and thapsigargin. However, the leukotriene D4 induced rise was transient and rapidly declined to a lower but still elevated steady-state level, which was attributed to Ca2+ influx. Stimulation with 100 nM leukotriene D4 for 15 s increased the cellular levels of 1,4,5-inositol triphosphate (IP3), 1,3,4-IP3, and 1,3,4,5-inositol tetraphosphate (IP4).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Progesterone is an endogenous immunomodulator, and can suppress T-cell activation during pregnancy. When analyzed under a genome time scale, the classic steroid receptor pathway does not have any effect on ion fluxes. Therefore, the aim of this study was to investigate whether the non-genomic effects on ion fluxes by progesterone could immunosuppress phytohemagglutinin (PHA)-induced human peripheral T-cell activation. The new findings indicated that, first, only progesterone stimulated both [Ca2+]i elevation and pHi decrease; in contrast, estradiol or testosterone stimulated [Ca2+]i elevation and hydrocortisone or dexamethasone stimulated pHi decrease. Secondly, the [Ca2+]i increase by progesterone was dependent on Ca2+ influx, and the acidification was blocked by Na+/H+ exchange (NHE) inhibitor, 3-methylsulphonyl-4-piperidinobenzoyl, guanidine hydrochloride (HOE-694) but not by 5-(N,N-dimethyl)-amiloride (DMA). Thirdly, progesterone blocked phorbol 12-myristate 13-acetate (PMA) or PHA-induced alkalinization, but PHA did not prevent progesterone-induced acidification. Fourthly, progesterone did not induce T-cell proliferation; however, co-stimulation progesterone with PHA was able to suppress PHA-induced IL-2 or IL-4 secretion and proliferation. When progesterone was applied 72 h after PHA stimulation, progesterone could suppress PHA-induced T-cell proliferation. Finally, immobilization of progesterone by conjugation to a large carrier molecule (BSA) also stimulated a rapid [Ca2+]i elevation, pHi decrease, and suppressed PHA-induced proliferation. These results suggested that the non-genomic effects of progesterone, especially acidification, are exerted via plasma membrane sites and suppress the genomic responses to PHA. Progesterone might act directly through membrane specific nonclassical steroid receptors to cause immunomodulation and suppression of T-cell activation during pregnancy.  相似文献   

6.
The stimulation of polymorphonuclear leukocytes (PMNs) by chemoattractants triggers a rapid rise in cytosolic free calcium concentration(s) ([Ca2+]i), which quickly returns to base line, suggesting a role for calcium removal in the homeostasis of activated PMNs. To investigate cytosolic calcium homeostasis, PMNs were treated with a fluoroprobe and ionomycin to induce a sustained elevation of [Ca2+]i. The cells were then stimulated, and attenuation of the fluorescence signal was measured as an indication of calcium loss from the cytosol. The formyl peptide chemoattractant N-formyl-methionyl-leucyl-phenylalanine (fMLP), phorbol myristate acetate (PMA), and 1,2-dioctanoyl-sn-glycerol, but not the inactive phorbol ester 4 alpha-phorbol didecanoate, induced a dose-dependent decrease in [Ca2+]i in ionomycin-pretreated cells. However, the decline in [Ca2+]i caused by PMA was sustained and occurred following a lag time, whereas the response to fMLP was immediate, lasted approximately 2 min, and then was followed by a return of [Ca2+]i to its initial level. The restoration of [Ca2+]i required extracellular calcium. Varying the ionomycin concentration allowed studies at different initial [Ca2+]i, which in untreated PMNs was approximately 135 nM. In contrast to fMLP, PMA did not lower calcium at concentrations below 200 nM. The decline in [Ca2+]i induced by fMLP, but not PMA, was blocked by pertussis toxin. In contrast, the decrease in [Ca2+]i caused by PMA and 1,2-dioctanoyl-sn-glycerol, but not fMLP, was inhibited by the protein kinase C antagonists staurosporine, H-7, and sphingosine. These results suggest that formyl peptide chemoattractants transiently stimulate an activity which lowers [Ca2+]i to normal intracellular levels. Activation of this process appears to be independent of protein kinase C. An additional cytosolic calcium lowering activity, dependent on protein kinase C, operates at [Ca2+]i above 200 nM. Thus, activated PMNs can use at least two processes for attentuation of elevated cytosolic calcium levels.  相似文献   

7.
We have analyzed the role of membrane potential on T cell activation and cell proliferation. Depolarization of T lymphocytes, by increasing the extracellular concentration of K+ during a 1-hr exposure to PHA, results in a marked inhibition of cell proliferation. In parallel, depolarization of T cells prevented the normal increase in [Ca2+]i seen after PHA binding. In depolarized cells, PHA failed to induce IL 2 secretion, but, in contrast, IL 2 receptor expression was triggered normally and the cells were subsequently responsive to exogenous IL 2. Increasing [Ca2+]i in depolarized cells with the ionophore ionomycin, or bypassing the requirement for an increase in [Ca2+]i with TPA, restored the PHA-induced proliferative response in depolarized cells. These data confirm that a membrane potential-sensitive step, namely, Ca2+ influx and the resulting change in [Ca2+]i, is triggered by PHA. The inhibitory effects of depolarization are mediated through the impairment of IL 2 secretion, but not IL 2 receptor expression. T cell proliferation can therefore be regulated by altering membrane potential, which in turn modulates the extent of the change in [Ca2+]i. This study suggests a role for transmembrane potential in the regulation of the T cell proliferative response.  相似文献   

8.
The effects of thapsigargin on intracellular Ca2+ concentration ([Ca2+]i) and progesterone production were determined in granulosa cells from the two largest preovulatory follicles of laying hens. [Ca2+]i was measured in cells loaded with the Ca(2+)-responsive fluorescent dye Fura-2. Thapsigargin stimulated a 4.6 +/- 0.2-fold increase in [Ca2+]i from a resting level of 55 +/- 6 nM up to 233 +/- 23 nM (n = 8) in 100% of the cells tested (n = 86). However, two different response patterns were observed. Dependent on the cell populations, a maximally effective concentration of thapsigargin (100 nM) stimulated either a rapid (within 16 +/- 2 s) transient increase in [Ca2+]i or a slowly (99 +/- 20 s) developing and sustained increase in [Ca2+]i. Both [Ca2+]i responses were concentration (0.001-1 microM)-dependent with an EC50 around 40 nM. The transient [Ca2+]i response occurred in the absence of extracellular Ca2+ and was unaffected by pretreating the cells with the Ca2+ channel blockers methoxyverapamil (50 microM) or lanthanum (1 mM). The plateau phase of the sustained [Ca2+]i response returned to resting level in the absence of extracellular Ca2+, but remained elevated in the presence of methoxyverapamil (50 microM) or lanthanum (1 mM). Despite its ability to cause transient or prolonged increases in [Ca2+]i, thapsigargin (0.001-1 microM) did not affect basal or luteinizing hormone-stimulated progesterone production by chicken granulosa cells.  相似文献   

9.
10.
Angiotensin II (Ang II) increases intracellular calcium concentration ([Ca2+]i) in both normal and cancerous human breast cells in primary culture. Maximal [Ca2+]i increase is obtained using 100nM Ang II in both cell types; in cancerous breast cells, [Ca2+]i increase (delta[Ca2+]i) is 135+/-10nM, while in normal breast cells it reaches 65+/-5 nM (P<0.0001). In both cell types, Ang II evokes a Ca2+ transient peak mediated by thapsigargin (TG) sensitive stores; neither Ca2+ entry through L-type membrane channels or capacitative Ca2+ entry are involved. Type I Ang II receptor subtype (AT1) mediates Ang II-dependent [Ca2+]i increase, since losartan, an AT1 inhibitor, blunted [Ca2+]i increase induced by Ang II in a dose-dependent manner, while CGP 4221A, an AT2 inhibitor, does not. Phospholipase C (PLC) is involved in this signaling mechanism, as U73122, a PLC inhibitor, decreases Ang II-dependent [Ca2+]i transient peak in a dose-dependent mode.Thus, the present study provides new information about Ca2+ signaling pathways mediated through AT1 in breast cells in which no data were yet available.  相似文献   

11.
Principal differences in the kinetics and amplitude of Ca2+ response to norepinephrine were found between freshly isolated young differentiated brown fat cells. An increase in the Ca2+ concentration in the cytoplasm ([Ca2+]i) in the young cells was unusually slow (A[Ca2+]i = 0.03 nM/s) in comparison with that in the differentiated cells, and the Ca2+ influx from the outside was not induced by Ca2+ mobilization agents, such as thapsigargin and ionomycin. Ionomycin increased [Ca2+]i up to 150 nM in a Ca2+-free medium and up to 270 nM in the normal medium. This results in that the intracellular Ca2+ stores in freshly isolated young cells are rather poor, and the mechanism of capacitive calcium entry does not virtually function. The data on chemical modification of Ca2+ channels in the plasma membrane by thimerosal suggest that the conductance of these channels is low and/or their number in young brown fat cells is insignificant.  相似文献   

12.
IL-1 activates the Na+/H+ antiport in a murine T cell   总被引:1,自引:0,他引:1  
One of the early events following growth factor exposure is elevation of intracellular pH, a process mediated by the Na+/H+ antiport. We studied the effects of human rIL-1 alpha (HrIL-1 alpha) on intracellular pH (pHi) and calcium ([Ca2+]i) in a murine T cell line (MD10 cells), which proliferates in response to IL-1 alone. By using the intracellularly trapped fluorescent dyes (2(1),7(1)-bis-2-carboxyethyl)-5(and -6) carboxyfluorescein) and indo-1, we monitored immediate to early changes of pHi and [Ca2+]i in response to HrIL-1 alpha. Exposure to HrIL-1 alpha (120 pM) leads to an early, sustained intracellular alkalinization (delta pH = + 0.09 +/- 0.03) that plateaus within 20 min. Lower concentrations of the monokine (12 pM, 1.2 pM) have a positive but not statistically significant effect on pHi. These effects parallel the degree of MD10 IL-1R saturation predicted by the KD (49 pM) as assessed by 125I-HrIL-1 alpha binding by MD10 cells (Bmax = approximately 1300). Both the MD10 IL-1 receptor KD and the HrIL-1 alpha concentration required to induce early measurable alkaline pH shifts, however, exceed by three orders of magnitude the HrIL-1 alpha ED50 (50 fM) required for MD10 proliferation. The IL-1-induced rise in pHi is both sodium dependent and amiloride sensitive, indicative of activation of the Na+/H+ antiport. Additionally, PMA (100 nM) and IL-2 (2 nM) alkalinize MD10 cells, with the rise in pHi as a result of PMA exceeding the maximal IL-1 effect (delta pH = + 0.13 +/- 0.04). Furthermore, although PMA alkalinizes cells previously exposed to HrIL-1 alpha, the monokine does not alter the pHi of PMA-treated MD10 cells. Importantly, intracellular alkalinization induced by either HrIL-1 alpha or PMA is inhibited by staurosporine (1 mu iM). Finally, HrIL-1 alpha does not change MD10 [Ca2+]i, in either an acute or sustained fashion. These results indicate that IL-1 activates the Na+/H+ antiport in T cells by a mechanism that is unrelated to changes in [Ca2+]i but may involve protein kinase C activation.  相似文献   

13.
The aim of our study was to investigate the physiologic mechanisms involved in eosinophil activation as an essential prerequisite to disrupting the biochemical cascade that triggers inflammation, thereby attenuating the effect of this activation or, ideally, preventing it from occurring. We have, therefore, examined the nature of the fMLP- and PAF-induced [Ca2+]i rise and the relationship between the [Ca2+]i rise and O2- production in human umbilical cord blood-derived eosinophils cultured in the presence of IL-3 and IL-5. These cells responded to fMLP or PAF (1 microM each) with an increase in [Ca2+]i (217.3 +/- 22.1 and 197.8 +/- 22.1 nM respectively) which was associated with production of O2- (40.2 +/- 8.2 and 35.2 +/- 7.6 pmol/min/10(6) cells respectively). The role of Ca2+ in the induced respiratory burst was studied by changing the availability of Ca2+ in the intra- and extracellular compartments. Removal or chelation of extracellular Ca2+ induced a reduction of both the fMLP and PAF-induced [Ca2+]i rise and O2- production. Chelation of intracellular Ca2+ induced a concentration-dependent inhibition of fMLP- and PAF-induced [Ca2+]i rise and caused a decrease in O2- production. SK&F 96365 had a stimulatory effect on PAF-induced [Ca2+]i rise and on fMLP-induced O2- production, this phenomenon was not observed with extracellular Ca2+ removal or chelation. Furthermore, Ni2+ exhibited an inhibition of both fMLP and PAF-induced [Ca2+]i rise and O2- production. Finally, both fMLP and PAF induced an increase in divalent cation influx that was further augmented by thapsigargin. Our results indicate that fMLP and PAF dependent O2- production in human eosinophils require intra- and extracellular Ca2+ and that Ca2+ influx is necessary for optimal activation.  相似文献   

14.
At concentrations greater than 0.01 microM, thapsigargin (ThG) dose-dependently caused an increase in cytosolic free Ca2+ concentration ([Ca2+]i) in rat parotid acinar cells, as measured by the fluorescent Ca(2+)-indicator fura-2. In the absence of extracellular Ca2+, a transient increase in [Ca2+]i by ThG was observed, and subsequent addition of carbachol (CCh) did not produce a further [Ca2+]i response, suggesting that ThG released Ca2+ from the CCh-sensitive intracellular Ca2+ pool. Since ThG did not stimulate formation of inositol phosphates, the ThG-induced Ca2+ mobilization is independent of phosphoinositide breakdown. High concentrations (greater than 0.1 microM) of ThG induced amylase release from rat parotide acini, but the effect was very poor as compared with that of CCh or the protein kinase C activator, PMA (phorbol 12-myristate 13-acetate). Combined addition of ThG and PMA modestly potentiated amylase release induced by PMA alone. These results support the view that amylase release by muscarinic stimulation is mediated mainly by activation of protein kinase C rather than a rise in [Ca2+]i, although Ca2+ may modulate the secretory response.  相似文献   

15.
The in vitro effect of desipramine on renal tubular cell is unknown. In Madin-Darby canine kidney (MDCK) cells, the effect of desipramine on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Desipramine (>25 microM) caused a rapid and sustained rise of [Ca2+]i in a concentration-dependent manner (EC50=50 microM). Desipramine-induced [Ca2+]i rise was prevented by 40% by removal of extracellular Ca2+ but was not altered by L-type Ca2+ channel blockers. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which desipramine failed to release more Ca2+; in addition, pretreatment with desipramine partly decreased thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, did not change desipramine-induced [Ca2+]i rise. Incubation with 10-100 microM desipramine enhances or inhibits cell proliferation in a concentration- and time-dependent manner. The inhibitory effect of desipramine on proliferation was not extracellular Ca2+-dependent. Apoptosis appears to contribute to desipramine-induced cell death. Together, these findings suggest that desipramine increases baseline [Ca2+]i in renal tubular cells by evoking both extracellular Ca2+ influx and intracellular Ca2+ release, and can cause apoptosis.  相似文献   

16.
Tetanus toxin (TT) inhibits secretion of neurotransmitters from neurons and lysozyme from human macrophages (Mphi). Because these secretory events are associated with changes in cytosolic free calcium [Ca2+]i, we examined the effect of TT on Mphi calcium homeostasis and secretion in response to ionomycin and phorbol myristate acetate (PMA). Using Quin 2 to report [Ca2+]i, basal [Ca2]i was similar for control cells (133 nM) and Mphi treated with TT (127 nM). In response to ionomycin (50 nM) [Ca2+]i increased to 548 +/- 74 nM in control cells and to 357 +/- 36 nM in TT-treated Mphi (p less than 0.02, N = 12). Despite this rise in [Ca2+]i, neither control Mphi nor TT-treated Mphis secreted the lysosomal enzyme lysozyme in response to this concentration of ionomycin (50 nM). In both control and TT-treated Mphi, stimulation with a higher concentration of ionomycin (1000 nM) caused saturation of the quin 2 fluorescence signal. However, lysozyme secretion from TT-Mphi was inhibited. In response to the phorbol ester, PMA (3 uM), [Ca2+]i did not increase in either control Mphi or TT-treated Mphi. However, secretion of lysozyme from TT-treated Mphi was also inhibited in response to this stimulus (70.8% of control, p less than 0.02, N = 3). These data indicate that the ability of TT to inhibit secretion from Mphi is not directly linked to alterations of cytosolic calcium homeostasis.  相似文献   

17.
The effects of the cytokine IL-4 on resting and activated human B cells were compared with the effects of known "competence" signals able to drive resting B cells into the cell cycle, including anti-Ig, PMA, anti-CD20, and a recently described competence signal, anti-Bgp95. In proliferation assays, IL-4 was costimulatory with anti-Ig and anti-Bgp95 but not with anti-CD20 or PMA. IL-4 alone triggered increases in expression of class II DR/DQ and CD40, but it did not trigger increases in intracellular free calcium [Ca2+]i in resting B cells or induce resting B cells to leave G0 and enter the G1 phase of the cell cycle. Although IL-4 has some characteristics of competence signals, it was most effective if added to B cells up to 12 h after anti-Ig or anti-Bgp95 rather than before, and thus, in this respect, works more like a progression signal. Like IL-4, all four competence signals for B cells triggered increases in class II and CD40, but only IL-4 consistently induced increases in CD23 surface levels. IL-4 was costimulatory only with anti-Ig and anti-Bgp95, each of which can trigger increases in [Ca2+]i and new protein synthesis of the proto-oncogene c-myc, and can increase attachment of protein kinase C to the plasma membrane. IL-4 was not costimulatory with signals that 1) did not affect [Ca2+]i yet induced c-myc protein synthesis (anti-CD20), 2) only stimulated the translocation of protein kinase C (PMA), or 3) only stimulated increases in [Ca2+]i (calcium ionophore). These results suggest that resting human B cells require at least two intracytoplasmic signals before IL-4 can effectively promote B cell proliferation.  相似文献   

18.
HCO-3 modulation of histamine release and its relationship with the Ca2+ signal were studied in serosal rat mast cells. Histamine release was induced by Ca2+ mobilizing stimuli, namely compound 48/80, thapsigargin, Ca2+ chelators, ionophore A23187, and PMA and ionophore A23187 in a HCO-3-buffered medium or a HCO-3-free medium. The presence of HCO-3 reduced histamine release by 48/80, Ca2+ chelators, A23187, and PMA/A23187, but increased histamine release induced by thapsigargin. Histamine release by PMA was significantly higher in a HCO-3-free medium than in a HCO-3-free medium, as it was the PMA potentiation of histamine release by A23187. [Ca2+]i changes induced by these drugs were measured in fura-2-loaded mast cells. In thapsigargin and EGTA or BAPTA preincubated mast cells [Ca2+]i increase was higher in a HCO-3-buffered medium than in a HCO-3-free medium in the presence of Ca2+. On the contrary, in compound 48/80 and PMA/A23187 activated mast cells the [Ca2+]i increase is the same both in the presence and in the absence of HCO-3. The effect of HCO-3 on histamine release in serosal rat mast cells depends on the stimulus, but it is not related to the presence of Cl-. In thapsigargin-stimulated mast cells the effect of HCO-3 on histamine release may be related to the Ca2+ signal, but in compound 48/80, EGTA, and PMA/A23187-activated mast cells there is no relationship between intracellular Ca2+ and the inhibitory effect of HCO-3 on histamine release. Additionally, the PKC pathway is implicated in the inhibitory effect of HCO-3 on histamine release, the higher the chelation of calcium rendering the higher the enhancement of the response after adding calcium in the absence of HCO-3.  相似文献   

19.
E Koch  M Larak  F Ellendorff 《Cryobiology》1991,28(5):405-412
The effect of cryopreservation on in vitro reactivity of pig lymphocytes was studied. Peripheral blood mononuclear cells (PBMC) were frozen by controlled-rate freezing and stored in liquid nitrogen (LN2) between 4 and 36 days. Following thawing 74.7 +/- 2.6% of cells were recovered of which 94.5 +/- 0.9% were viable as determined by trypan blue exclusion. Functional parameters measured included the concentration of free intracellular Ca2+ ([Ca2+]i) in resting and mitogen-stimulated PBMC, mitogen and alloantigen-induced blastogenesis, as well as cell-mediated cytotoxicity. Irrespective of storage time and cell donor, [Ca2+]i in frozen-thawed PBMC (67.7 +/- 4.3 nM) was significantly lower (P less than 0.001) when compared to fresh cells (96.2 +/- 4.5 nM). In addition, cryopreserved PBMC only weakly responded with an increase of [Ca2+]i after stimulation by various concentrations of phytohemagglutinin (PHA). Following activation by PHA (2 micrograms/ml) for 4 days fresh lymphocytes (84,047 +/- 5475 cpm) incorporated significantly more (P less than 0.005) [3H]thymidine than frozen PBMC (66,001 +/- 4117 cpm). A similar difference in proliferation rates (P less than 0.05) between fresh (10,046 +/- 1915 cpm) and frozen-thawed PBMC (5852 +/- 1304 cpm) was observed in one-way mixed lymphocyte cultures (MLC), while the spontaneous incorporation of radiolabel was unchanged in frozen stored cells. By using MLC-derived cytotoxic effector cells (E) and [3H]thymidine-labeled concanavalin A blasts as targets (T), cryopreserved PBMC displayed a severe deficiency of cytotoxic effector functions at all tested E:T ratios. These results indicate that pig PBMC are very sensitive to LN2 storage although some immunological functions are more affected by cryopreservation than others.  相似文献   

20.
To characterize the requirements for T cell proliferation, we have studied the response of purified populations of human T cells to varying concentrations of the mitogen phytohemagglutinin (PHA). Concentrations of PHA which induce optimal proliferative responses induce increases in cytosolic free calcium ([Ca2+]i), expression of interleukin 2 (IL 2) receptors, and production of IL 2. As the concentration of PHA is decreased, each of these processes decreases in parallel. At suboptimal concentrations of PHA, the addition of exogenous IL 2 reconstitutes both the proliferative response and the expression of the IL 2 receptor, as measured by immunofluorescence with antibodies directed against the TAC/IL 2 receptor molecule, but without reconstituting the increase in [Ca2+]i. Therefore, the concentration dependence of responses to PHA appears to be secondary to an absence of IL 2 production due to a failure to induce an increase in [Ca2+]i. The addition of the calcium ionophores A23187 and ionomycin or of accessory cells to low concentrations of PHA induces increases in [Ca2+]i and subsequent proliferative responses, suggesting that the two events are linked. The proliferative response can be inhibited by antibodies directed towards IL 2 or the IL 2 receptor, indicating that the proliferative response was at least partially dependent on the production and action of IL 2. This suggests that, although increases in [Ca2+]i are an integral event in the induction of proliferation by PHA, the increase in [Ca2+]i is required for the production but not the action of IL 2. In addition, low concentrations of PHA deliver an additional signal to cells, independent of an increase in [Ca2+]i, which induces IL 2 receptor expression and allows a proliferative response in the presence of exogenous IL 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号