首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A coarse-grained model for simulation of interfacial phenomena in aqueous systems has been developed. The model captures the hydrophobic effect by only considering the structure and cohesiveness of water. Monte Carlo (MC) simulations of water-oil mixtures show that low concentrations of oil are solvated with little perturbation of the hydrogen bonding network structure of the water, while high concentrations of oil are excluded altogether. Analysis of the water structure in the simulations indicates that the water molecules maintain close to four coordination in the presence of solutes and the distribution of bond angles is not markedly affected by the presence of solutes. MC simulations of an alkane oligomer in water and a poly(ethylene oxide) (PEO) oligomer in water indicate that the chains are quite flexible and also do not perturb the network structure of the water phase.  相似文献   

2.
Methyl-coenzyme M reductase (MCR) catalyzes the final reaction of the energy conserving pathway of methanogenic archaea in which methylcoenzyme M and coenzyme B are converted to methane and the heterodisulfide CoM-S-S-CoB. It operates under strictly anaerobic conditions and contains the nickel porphinoid F430 which is present in the nickel (I) oxidation state in the active enzyme. The known crystal structures of the inactive nickel (II) enzyme in complex with coenzyme M and coenzyme B (MCR-ox1-silent) and in complex with the heterodisulfide CoM-S-S-CoB (MCR-silent) were now refined at 1.16 A and 1.8 A resolution, respectively. The atomic resolution structure of MCR-ox1-silent describes the exact geometry of the cofactor F430, of the active site residues and of the modified amino acid residues. Moreover, the observation of 18 Mg2+ and 9 Na+ ions at the protein surface of the 300 kDa enzyme specifies typical constituents of binding sites for either ion. The MCR-silent and MCR-ox1-silent structures differed in the occupancy of bound water molecules near the active site indicating that a water chain is involved in the replenishment of the active site with water molecules. The structure of the novel enzyme state MCR-red1-silent at 1.8 A resolution revealed an active site only partially occupied by coenzyme M and coenzyme B. Increased flexibility and distinct alternate conformations were observed near the active site and the substrate channel. The electron density of the MCR-red1-silent state aerobically co-crystallized with coenzyme M displayed a fully occupied coenzyme M-binding site with no alternate conformations. Therefore, the structure was very similar to the MCR-ox1-silent state. As a consequence, the binding of coenzyme M induced specific conformational changes that postulate a molecular mechanism by which the enzyme ensures that methylcoenzyme M enters the substrate channel prior to coenzyme B as required by the active-site geometry. The three different enzymatically inactive enzyme states are discussed with respect to their enzymatically active precursors and with respect to the catalytic mechanism.  相似文献   

3.
BACKGROUND: Adenosylcobalamin (coenzyme B(12)) serves as a cofactor for enzymatic radical reactions. The adenosyl radical, a catalytic radical in these reactions, is formed by homolysis of the cobalt-carbon bond of the coenzyme, although the mechanism of cleavage of its organometallic bond remains unsolved. RESULTS: We determined the three-dimensional structures of diol dehydratase complexed with adeninylpentylcobalamin and with cyanocobalamin at 1.7 A and 1.9 A resolution, respectively, at cryogenic temperatures. In the adeninylpentylcobalamin complex, the adenine ring is bound parallel to the corrin ring as in the free form and methylmalonyl-CoA-mutase-bound coenzyme, but with the other side facing pyrrole ring C. All of its nitrogen atoms except for N(9) are hydrogen-bonded to mainchain amide oxygen and amide nitrogen atoms, a sidechain hydroxyl group, and a water molecule. As compared with the cyanocobalamin complex, the sidechain of Seralpha224 rotates by 120 degrees to hydrogen bond with N(3) of the adenine ring. CONCLUSIONS: The structure of the adenine-ring-binding site provides a molecular basis for the strict specificity of diol dehydratase for the coenzyme adenosyl group. The superimposition of the structure of the free coenzyme on that of enzyme-bound adeninylpentylcobalamin demonstrated that the tight enzyme-coenzyme interactions at both the cobalamin moiety and adenine ring of the adenosyl group would inevitably lead to cleavage of the cobalt-carbon bond. Rotation of the ribose moiety around the glycosidic linkage makes the 5'-carbon radical accessible to the hydrogen atom of the substrate to be abstracted.  相似文献   

4.
The crystal and molecular structures of the title complex has been determined by X-ray diffraction methods, as a model for tryptophan residues in protein-pyridine coenzyme interactions. The structure was solved by direct methods and was refined by standard methods (final R = 0.073). The light-green crystals consist of alternate layers of indole-3-acetic acid and 1-methyl-3-carbamoylpyridinium molecules piled up to the c-direction, and are stabilized by the crystal water participating in hydrogen bonds in the a- and b-directions. The parallel stackings and interplanar spacing distances between indole and pyridinium rings strongly suggest a II–II1 charge transfer from the indole ring to the lowest unoccupied orbital of the pyridinium ring in the ground state. Furthermore, this crystal structure provides evidence that quaternization of the N1 position enhances electron-acceptor properties of pyridine. On the other hand, the proton magnetic resonance spectra suggest that the stacking mode between both rings in solution is very similar to the one observed in the crystal structure.  相似文献   

5.
The nicotinic acetylcholine receptor (nAChR) is an integral membrane protein that forms ligand-gated and cation-selective channels. The central pore is lined by a bundle of five approximately parallel M2 helices, one from each subunit. Candidate model structures of the solvated pore region of a homopentameric (alpha7)5 nAChR channel in the open state, and in two possible forms of the closed state, have been studied using molecular dynamics simulations with restraining potentials. It is found that the mobility of the water is substantially lower within the pore than in bulk, and the water molecules become aligned with the M2 helix dipoles. Hydrogen-bonding patterns in the pore, especially around pore-lining charged and hydrophilic residues, and around exposed regions of the helix backbone, have been determined. Initial studies of systems containing both water and sodium ions together within the pore region have also been conducted. A sodium ion has been introduced into the solvated models at various points along the pore axis and its energy profile evaluated. It is found that the ion causes only a local perturbation of the water structure. The results of these calculations have been used to examine the effectiveness of the central ring of leucines as a component of a gate in the closed-channel model.  相似文献   

6.
Cortical circuitry shows an abundance of recurrent connections. A widely used model that relies on recurrence is the ring attractor network, which has been used to describe phenomena as diverse as working memory, visual processing and head direction cells. Commonly, the synapses in these models are static. Here, we examine the behaviour of ring attractor networks when the recurrent connections are subject to short term synaptic depression, as observed in many brain regions. We find that in the presence of a uniform background current, the network activity can be in either of three states: a stationary attractor state, a uniform state, or a rotating attractor state. The rotation speed can be adjusted over a large range by changing the background current, opening the possibility to use the network as a variable frequency oscillator or pattern generator. Finally, using simulations we extend the network to two-dimensional fields and find a rich range of possible behaviours.  相似文献   

7.
On- and off-velocity constants for NADH and NAD+ binding to liver alcohol dehydrogenase in the pH range 10-12 have been determined by stopped-flow kinetic methods. The results are consistent with previously reported equilibrium binding data and proposals attributing the main effects of pH on coenzyme binding to ionization of Lys-228 and zinc-bound water. Deprotonation of the group identified as Lys-228 decreases the NADH and NAD+ association rates by a factor exceeding 20 and has no detectable effect on the coenzyme dissociation rates in the examined pH range. Ionization of the group identified as zinc-bound water causes a 3-fold increase of the rate of NADH dissociation from the enzyme, and decreases the rate of NAD+ dissociation by a factor of 200. The NADH and NAD+ association rates are decreased by a factor of 30 and 5, respectively. The observed effects of pH can be rationalized in terms of electrostatic interactions of the ionizing groups with the charges present on the coenzyme molecules and lend support to the idea that binding of the coenzyme nicotinamide ring occurs subsequent to binding of the AMP portion of the coenzyme.  相似文献   

8.
The translocon is a protein-conducting channel conserved over all domains of life that serves to translocate proteins across or into membranes. Although this channel has been well studied for many years, the recent discovery of a high-resolution crystal structure opens up new avenues of exploration. Taking advantage of this, we performed molecular dynamics simulations of the translocon in a fully solvated lipid bilayer, examining the translocation abilities of monomeric SecYEbeta by forcing two helices comprised of different amino acid sequences to cross the channel. The simulations revealed that the so-called plug of SecYEbeta swings open during translocation, closing thereafter. Likewise, it was established that the so-called pore ring region of SecYEbeta forms an elastic, yet tight, seal around the translocating oligopeptides. The closed state of the channel was found to block permeation of all ions and water molecules; in the open state, ions were blocked. Our results suggest that the SecYEbeta monomer is capable of forming an active channel.  相似文献   

9.
The coenzyme A (CoA)-dependent aerobic benzoate metabolic pathway uses an unprecedented chemical strategy to overcome the high aromatic resonance energy by forming the non-aromatic 2,3-epoxybenzoyl-CoA. The crucial dearomatizing reaction is catalyzed by three enzymes, BoxABC, where BoxA is an NADPH-dependent reductase, BoxB is a benzoyl-CoA 2,3-epoxidase, and BoxC is an epoxide ring hydrolase. We characterized the key enzyme BoxB from Azoarcus evansii by structural and Mössbauer spectroscopic methods as a new member of class I diiron enzymes. Several family members were structurally studied with respect to the diiron center architecture, but no structure of an intact diiron enzyme with its natural substrate has been reported. X-ray structures between 1.9 and 2.5 Å resolution were determined for BoxB in the diferric state and with bound substrate benzoyl-CoA in the reduced state. The substrate-bound reduced state is distinguished from the diferric state by increased iron-ligand distances and the absence of directly bridging groups between them. The position of benzoyl-CoA inside a 20 Å long channel and the position of the phenyl ring relative to the diiron center are accurately defined. The C2 and C3 atoms of the phenyl ring are closer to one of the irons. Therefore, one oxygen of activated O2 must be ligated predominantly to this proximate iron to be in a geometrically suitable position to attack the phenyl ring. Consistent with the observed iron/phenyl geometry, BoxB stereoselectively should form the 2S,3R-epoxide. We postulate a reaction cycle that allows a charge delocalization because of the phenyl ring and the electron-withdrawing CoA thioester.  相似文献   

10.
Cytosolic and mitochondrial pig heart aspartate aminotransferases (cAspAT and mAspAT) and chicken heart cAspAT have been oriented in a compressed slab of polyacrylamide gel and their linear dichroism LD spectra have been recorded. The coenzyme's tilt angles in the active sites of chicken cAspAT and pig mAspAT and their quasisubstrate complexes imitating catalytic intermediates have been computed. The computations are based on reduced linear dichroism values (delta A/A), the known directions of the transition dipole moments in the coenzyme ring and atomic coordinates of the coenzyme obtained by X-ray crystallography. It has been found that formation of the enzyme complex with glutarate and protonation of the internal pyridoxal-lysine aldimine induce reorientations of the coenzyme. As a result of protonation, the coenzyme ring tilts by 27 degrees in cAspAT and 13 degrees in mAspAT. Formation of the external aldimine with 2-methylaspartate is accompanied by tilting of the coenzyme ring by 44 degrees in cAspAT and 39 degrees in mAspAT. For the quinonoid complex with erythro-3-hydroxyaspartate, the tilt angles were found to be 63 degrees in cAspAT and 53 degrees in mAspAT. It is inferred that the basic features of the active site dynamics are similar in the three AspAT's studied. The differences in the coenzyme tilt angles between cAspAT and mAspAT may be linked to catalytic and structural peculiarities of the isoenzymes.  相似文献   

11.
The three-dimensional structure of a ternary complex of horse liver alcohol dehydrogenase with reduced nicotinamide adenine dinucleotide and the inhibitor dimethyl sulfoxide has been determined to 4.5 A resolution independently of the apoenzyme structure. The electron density maps of both structures have been compared. The two coenzyme binding domains which form the center of the dimer molecular have retained their conformation and orientation within the molecule whereas the catalytic domains rotate and narrow the cleft between the domains. The active site becomes shielded from the solution by a combination of this rotation, local movements of a loop from residues 53 to 57 and coenzyme and substrate binding. Both subunits bind coenzyme and inhibitor to the same extent. The nicotinamide ring of the coenzyme is positioned close to the active zinc atom and the inhibitor is bound to this zinc atom. The difference between the two crystallographically independent subunits is small. The proposed mechanisms of action for the enzyme based on the apoenzyme structure are confirmed by the present investigation.  相似文献   

12.
Cytosolic and mitochondrial pig aspartate aminotransferases (cAAT and mAAT) and chicken cAAT were oriented in a compressed slab of polyacrylamide gel. Linear dichroism (LD) spectra of the pyridoxal and pyridoxamine forms of AATs and of complexes of the pyridoxal form with substrate analogues have been recorded. The tilt angles of the coenzyme at the intermediary steps of the transamination reaction have been calculated on the basis of reduced LD values (delta A/A), atomic coordinates of the coenzyme and directions of the transition dipole moments in the coenzyme ring. It was assumed that rotation of the coenzyme ring occurs around the C2-C5 axis in all cases except the enzyme complex with glutarate: in the latter case the direction N1-C4 was assumed to be a rotation axis. It has been found that formation of the enzyme complex with glutarate and protonation of the internal aldimine induce dissimilar reorientations of the coenzyme. As a result of protonation, the coenzyme tilts by 27 degrees in cAAT and 13 degrees in mAAT. Formation of the external aldimine with 2-methylaspartate is accompanied by tilting of the coenzyme ring by 44 degrees in cAAT and 39 degrees in mAAT. For the quinonoid complex with erythro-3-hydroxyaspartate, the tilt angles were found to be 63 degrees in cAAT and 53 degrees in mAAT. It was inferred that the basic features of the active site dynamics are similar in three AATs studied. The differences in the coenzyme tilt angles between cAAT and mAAT might be linked to catalytic peculiarities of the isoenzymes.  相似文献   

13.
Abstract

Cytosolic and mitochondrial pig heart aspartate aminotransferases (cAspAT and mAspAT) and chicken heart cAspAT have been oriented in a compressed slab of polyacrylamide gel and their linear dichroism LD spectra have been recorded. The coenzyme's tilt angles in the active sites of chicken cAspAT and pig mAspAT and their quasisubstrate complexes imitating catalytic intermediates have been computed. The computations are based on reduced linear dichroism values (ΔA/A), the known directions of the transition dipole moments in the coenzyme ring and atomic coordinates of the coenzyme obtained by X-ray crystallography. It has been found that formation of the enzyme complex with glutarate and protonation of the internal pyridoxal-lysine aldimine induce reorientations of the coenzyme. As a result of protonation, the coenzyme ring tilts by 27° in cAspAT and 13° in mAspAT. Formation of the external aldimine with 2-mehtylaspartate is accompanied by tilting of the coenzyme ring by 44° in cAspAT and 39° in mAspAT. For the quinonoid complex with erythro-3-hydroxyaspartate, the tilt angles were found to be 63° in cAspAT and 53° in mAspAT. It is inferred that the basic features of the active site dynamics are similar in the three AspATs studied. The diiferences in the coenzyme tilt angles between cAspAT and mAspAT may be linked to catalytic and structural peculiarities of the isoenzymes.  相似文献   

14.
Acyl‐coenzyme A‐dependent N‐acetyltransferases (AACs) catalyze the modification of aminoglycosides rendering the bacteria carrying such enzymes resistant to this class of antibiotics. Here we present the crystal structure of AAC(3)‐Ia enzyme from Serratia marcescens in complex with coenzyme A determined to 1.8 Å resolution. This enzyme served as an architype for the AAC enzymes targeting the amino group at Position 3 of aminoglycoside main aminocyclitol ring. The structure of this enzyme has been previously determined only in truncated form and was interpreted as distinct from subsequently characterized AACs. The reason for the unusual arrangement of secondary structure elements of AAC(3)‐Ia was not further investigated. By determining the full‐length structure of AAC(3)‐Ia we establish that this enzyme adopts the canonical AAC fold conserved across this family and it does not undergo through significant rearrangement of secondary structure elements upon ligand binding as was proposed previously. In addition, our results suggest that the C‐terminal tail in AAC(3)‐Ia monomer forms intramolecular hydrogen bonds that contributes to formation of stable dimer, representing the predominant oligomeric state for this enzyme.  相似文献   

15.
The C-terminal domain (C(t)-FDH) of 10-formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1) is an NADP(+)-dependent oxidoreductase and a structural and functional homolog of aldehyde dehydrogenases. Here we report the crystal structures of several C(t)-FDH mutants in which two essential catalytic residues adjacent to the nicotinamide ring of bound NADP(+), Cys-707 and Glu-673, were replaced separately or simultaneously. The replacement of the glutamate with an alanine causes irreversible binding of the coenzyme without any noticeable conformational changes in the vicinity of the nicotinamide ring. Additional replacement of cysteine 707 with an alanine (E673A/C707A double mutant) did not affect this irreversible binding indicating that the lack of the glutamate is solely responsible for the enhanced interaction between the enzyme and the coenzyme. The substitution of the cysteine with an alanine did not affect binding of NADP(+) but resulted in the enzyme lacking the ability to differentiate between the oxidized and reduced coenzyme: unlike the wild-type C(t)-FDH/NADPH complex, in the C707A mutant the position of NADPH is identical to the position of NADP(+) with the nicotinamide ring well ordered within the catalytic center. Thus, whereas the glutamate restricts the affinity for the coenzyme, the cysteine is the sensor of the coenzyme redox state. These conclusions were confirmed by coenzyme binding experiments. Our study further suggests that the binding of the coenzyme is additionally controlled by a long-range communication between the catalytic center and the coenzyme-binding domain and points toward an α-helix involved in the adenine moiety binding as a participant of this communication.  相似文献   

16.
Schizophyllan is a beta(1-->3)-D-glucan polysaccharide with beta(1-->6)-branched lateral glucose residues that presents a very stiff triple-helical structure under most experimental conditions. Despite the remarkable stability of this structure (which persists up to 120 degrees C in aqueous solution), schizophyllan undergoes a major change of state around 7 degrees C in water that has been hypothesized to result from an order-disorder transition in the lateral residues. This hypothesis is only supported by indirect experimental evidence and detailed knowledge (at the atomic level) concerning hydrogen-bonding networks, interactions with the solvent molecules, orientational freedom of the lateral residues, and orientational correlations among them is still lacking. In this study explicit-solvent molecular dynamics simulations of a schizophyllan fragment (complemented by simulations of its tetrasaccharide monomer) are performed at three different temperatures (273 K, 350 K, and 450 K) and with two different types of boundary conditions (finite nonperiodic or infinite periodic fragment) as an attempt to provide detailed structural and dynamical information about the triple-helical conformation in solution and the mechanism of the low-temperature transition. These simulations suggest that three important driving forces for the high stability of the triple helix are i), the limited conformational work involved in its formation; ii), the formation of a dense hydrogen-bonding network at its center; and iii), the formation of interchain hydrogen bonds between main-chain and lateral glucose residues. However, these simulations evidence a moderate and continuous variation of the simulated observables upon increasing the temperature, rather than a sharp transition between the two lowest temperatures (that could be associated with the state transition). Although water-mediated hydrogen-bonded association of neighboring lateral residues is observed, this interaction is not strong enough to promote the formation of an ordered state (correlated motions of the lateral residues), even at the lowest temperature considered.  相似文献   

17.
Polshakov VI  Birdsall B  Feeney J 《Biochemistry》1999,38(48):15962-15969
NMR measurements have been used to investigate rates of ring-flipping and the activation parameters for the trimethoxybenzyl ring of the antibacterial drug trimethoprim (TMP) bound to Lactobacillus casei dihydrofolate reductase (DHFR) for a series of ternary complexes formed with analogues of the coenzyme NADPH. Rates were obtained at several temperatures from line shape analyses ((13)C-edited HSQC (1)H spectra) and transfer of magnetization measurements (zz-HSQC) on complexes containing 3'-O-[(13)C]trimethoprim. Examination of the structures of the complexes indicates that ring-flipping can only be achieved following major conformational changes and transient fluctuations of the protein and coenzyme structure around the trimethoxybenzyl ring. There is no simple correlation between rates of ring-flipping and binding constants. The presence of the coenzyme nicotinamide ring (in either its reduced or its oxidized forms) in the binding site close to the trimethoxybenzyl ring moiety is the major factor reducing the ring-flipping on coenzyme binding. Thus, the ternary complex with NADPH shows the largest reduction in the rate of ring-flipping (11 +/- 3 s(-)(1) at 298 K) as compared with the binary complex (793 +/- 80 s(-)(1) at 298 K). Complexes with NADPH analogues that either have no nicotinamide ring or are known to have their nicotinamide rings removed from the binding site show the smallest reductions. For the DHFR.TMP.NADP(+) complex where there are two conformations present, very different rates of ring-flipping were observed for the two forms. The activation parameters (DeltaH() and DeltaS()) for the ring-flipping in all the complexes are discussed in terms of the protein-ligand interactions and the possible constraints on the pathway through the transition state.  相似文献   

18.
Two mutants of Lactobacillus casei dihydrofolate reductase, Trp 21----Leu and Asp 26----Glu, have been prepared by using site-directed mutagenesis methods, and their ligand binding and structural properties have been compared with those of the wild-type enzyme. 1H, 13C, and 31P NMR studies have been carried out to characterize the structural changes in the complexes of the mutant and wild-type enzymes. Replacement of the conserved Trp 21 by a Leu residue causes a decrease in activity of the enzyme and reduces the NADPH binding constant by a factor of 400. The binding of substrates and substrate analogues is only slightly affected. 1H NMR studies of the Trp 21----Leu enzyme complexes have confirmed the original resonance assignments for Trp 21. In complexes formed with methotrexate and the mutant enzyme, the results indicate some small changes in conformation occurring as much as 14 A away from the site of substitution. For the enzyme-NADPH complexes, the chemical shifts of nuclei in the bound coenzyme indicate that the nicotinamide ring binds differently in complexes with the mutant and the wild-type enzyme. There are complexes where the wild-type enzyme has been shown to exist in solution as a mixture of conformations, and studies on the corresponding complexes with the Trp 21----Leu mutant indicate that the delicately poised equilibria can be perturbed. For example, in the case of the ternary complex formed between enzyme, trimethoprim, and NADP+, two almost equally populated conformations (forms I and II) are seen with the wild-type enzyme but only form II (the one in which the nicotinamide ring of the coenzyme is extended away from the enzyme structure and into the solvent) is observed for the mutant enzyme complex. It appears that the Trp 21----Leu substitution has a major effect on the binding of the nicotinamide ring of the coenzyme. For the Asp 26----Glu enzyme there is a change in the bound conformation of the substrate folate. Further indications that some conformational adjustments are required to allow the carboxylate of Glu 26 to bind effectively to the N1 proton of inhibitors such as methotrexate and trimethoprim come from the observation of a change in the dynamics of the bound trimethoprim molecule as seen from the increased rate of the flipping of the 13C-labeled benzyl ring and the increased rate of the N1-H bond breaking.  相似文献   

19.
The pyridine nucleotide (NAD and NADP)-linked enzymes are a large class of enzymes constituting approximately 17% of all classified enzymes. When these enzymes catalyze their reactions, the hydride transfer between the substrate and the reaction site (i.e., C-4 of the nicotinamide/dihydronicotinamide ring) of the coenzyme takes place in a stereospecific manner. Thus, in the reaction of oxidation of the reduced coenzyme, one group of enzymes catalyzes the extraction of only the hydrogen having the R configuration at the No. 4 carbon, while the other group catalyzes the removal of only that with the S configuration. Because this aspect of enzyme stereospecificity provides essential information for a given enzyme's reaction mechanism, active site structure, and evolutionary relationship with other enzymes, intensive effort has been made to establish the stereospecificities of as many enzymes as possible. This review presents the compilation of the stereospecificities of these enzymes. Some empirical rules, which are useful but not definitive, in predicting a given enzyme's stereospecificity are also described. In addition, the stereospecificity in enzymatic reactions is compared to the stereo-preference in chemical oxidoreduction of the coenzyme. In order to elucidate the mechanism for the enzyme stereospecificity, the conformations of the coenzyme in free-state and enzyme-bound state are extensively discussed here.  相似文献   

20.
K(m) and V(max) values for 10 coenzyme analogs never previously studied with any aldehyde dehydrogenase and NADP(+) were compared with those for NAD(+) for three human aldehyde dehydrogenases (EC 1.2.1.3); the cytoplasmic E1 (the product of the aldh1 gene), the mitochondrial E2 (the product of the aldh2 gene) and the cytoplasmic E3 (the product of the aldh9 gene) isozymes. Structural information on changes in coenzyme-protein interactions were obtained via molecular dynamics (MD) studies with the E2 isozyme and quantum mechanical (QM) calculations were used to study changes in charge distribution of the pyridine ring and relative free energies of solvation of the purine ring in the analogs. E1 showed the broadest substrate specificity and was the only isozyme subject to substrate inhibition, both of which are suggested to be due to the two coenzyme conformations observed previously in the sheep crystal structure. NADP(+) selectivity is indicated to be influenced by Glu195 in E1 and E2. Substitutions in the purine ring affected K(m) but not V(max), with the changes in K(m) being dominated by the hydrophobicity of the purine ring as indicted by the QM calculations. Substitutions in the pyridine ring sometimes rendered the coenzymes inactive, with no consistent pattern observed for the three coenzymes. Structural analysis of the coenzyme analog-E2 MD simulations revealed different structural perturbations of the surrounding active site, though interactions with Asn169 and Glu399 were preserved in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号