首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Form of plant body shows vertical polarity. Photosynthetic organs deploy upwards to seek light. Root system extends downward for water. In addition to this major polarity, flowers has similar features, because they bloom in the world where up and down asymmetry dominates. Many flowering plants co-evolved with pollinator animals. Success of their reproduction is linked to the shape of flower organs in many ways. Orientation of inflorescence and each individual flowers, arrangement and shape of flower organs exhibit various up and down asymmetry. Some flowers mimic female of its pollinator animal. In such case, posture of the target animal is copied to the flower. Since animal posture and shape have vertical polarity, flower happens to equip same kind of polarity. Tropic response of pistils is another up and down feature that improves fitness of flowering plants. Certain lily flowers show phototropism to bend pistil upward. Azalea flower depends on gravity as the major environmental cue, and light as the secondary signal for up. Molecular machinery for those tropic responses seems to be shared with other tropism expressed in shoot and root. However, certain differences are found in distribution of sediment amyloplast, or spatial allocation of photo-sensing and bending site. Tropic responses result in adaptation of those flowers against behavior of pollinator animals and terrestrial environment, where gravity affects living organisms and interaction among them.  相似文献   

2.
王茜  邓洪平  丁博  周光林 《生态学报》2012,32(12):3921-3930
据有关资料记载,柃属(Eurya Thunb.)植物属于雌雄异株植物,目前仅在柃木(Eurya japonica Thunb.)中有过两性花的报道。近年的调查发现,钝叶柃(Eurya obtusifolia H.T.Chang)也有性别变异,存在两性花。在对其性别特征及功能研究的基础上,进一步跟踪了钝叶柃的开花和传粉过程,对不同性别花的花部形态和传粉特征进行了比较分析。在重庆市北碚区选取了4个样地,测定了花部形态、花朵朝向、花粉活力、柱头可授性、花粉对水的耐受性、单花花粉量和单花泌蜜体积等形态和传粉相关指标,并对其开花动态、传粉昆虫种类和昆虫传粉行为进行了仔细观察,还进行了套袋试验。结果发现钝叶柃不同性别花的花部形态和传粉特征既有一些共同点,又存在着明显差异,性别变异株则呈现出雌雄植株间的过渡特征。钝叶柃是一种花期短,花小而多,开花同步性高的植物,雌花和雄花色味相同。该植物的主要传粉方式为虫媒,主要传粉者为两种蜜蜂科昆虫,但风媒也在其传粉中起着一定作用。该植物不同性别花的主要差异有:1)雄花呈灯笼状,花瓣不反卷,雌花辐射状,花瓣反卷;2)雄花较雌花大;3)雄花倾向于垂直朝下,雌花倾向于斜向下朝向枝条末端;4)雌花寿命较雄花长。钝叶柃在开花和传粉上的许多特征都在一定程度上体现了其对雌雄异株性系统的适应。相应地,传粉者在不同性别植株上的行为也存在一定差异。钝叶柃不同性别花在形态上的差异是其周围各种生物因素及非生物因素共同作用的结果,其中传粉昆虫和雨水的选择可能在这些差异的塑造中起着重要作用。  相似文献   

3.
Insect preference for symmetrical artificial flowers   总被引:5,自引:0,他引:5  
A. P. Møller  G. Sorci 《Oecologia》1998,114(1):37-42
An insect preference for floral symmetry may be maintained because plants with symmetrical flowers, which are able to control developmental processes under given environmental conditions, also are able to provide more pollinator rewards than plants with asymmetrical flowers. Alternatively, insects may have an inherent preference for symmetrical structures and thereby impose selection for the maintenance of symmetry in flowers even in the absence of any pollinator rewards. We tested for an insect preference for radially symmetrical flowers by using horizontally placed units of four circular coloured flower models varying in size and symmetry. The shape and colour of the model flowers did not resemble any naturally occurring flowers in the environment. Insects and Hymenoptera, respectively (five species of Diptera and one species of Coleoptera) that visited the flower models clearly preferred symmetrical models over asymmetrical ones, and the ranking of visits to the models reflected a preference for large, symmetrical flowers. These results provide evidence for a preference for symmetrical flower models, even in the absence of pollinator rewards. Received: 11 September 1997 / Accepted: 2 November 1997  相似文献   

4.
Members of the euasterid angiosperm family Solanaceae have been characterized as remarkably diverse in terms of flower morphology and pollinator type. In order to test the relative contribution of phylogeny to the pattern of distribution of floral characters related to pollination, flower form and pollinators have been mapped onto a molecular phylogeny of the family. Bilateral flower symmetry (zygomorphy) is prevalent in the basal grades of the family, and more derived clades have flowers that are largely radially symmetric, with some parallel evolution of floral bilateralism. Pollinator types (‘syndromes’) are extremely homoplastic in the family, but members of subfamily Solanoideae are exceptional in being largely bee pollinated. Pollinator relationships in those genera where they have been investigated more fully are not as specific as flower morphology and the classical pollinator syndrome models might suggest, and more detailed studies in some particularly variable genera, such as Iochroma and Nicotiana, are key to understanding the role of pollinators in floral evolution and adaptive radiation in the family. More studies of pollinators in the field are a priority.  相似文献   

5.
Some flowering plants signal the abundance of their rewards by changing their flower colour, scent or other floral traits as rewards are depleted. These floral trait changes can be regarded as honest signals of reward states for pollinators. Previous studies have hypothesized that these signals are used to maintain plant-level attractiveness to pollinators, but the evolutionary conditions leading to the development of honest signals have not been well investigated from a theoretical basis. We examined conditions leading to the evolution of honest reward signals in flowers by applying a theoretical model that included pollinator response and signal accuracy. We assumed that pollinators learn floral traits and plant locations in association with reward states and use this information to decide which flowers to visit. While manipulating the level of associative learning, we investigated optimal flower longevity, the proportion of reward and rewardless flowers, and honest- and dishonest-signalling strategies. We found that honest signals are evolutionarily stable only when flowers are visited by pollinators with both high and low learning abilities. These findings imply that behavioural variation in learning within a pollinator community can lead to the evolution of an honest signal even when there is no contribution of rewardless flowers to pollinator attractiveness.  相似文献   

6.
Abstract.— The most common sexual system in animal-pollinated plants is hermaphroditism, while some species are dioecious or gynodioecious and a very few are androdioecious. In this paper, I attempt to explain this pattern by extending previous models for the evolution of sexual systems to incorporate two main features: (1) a portion of investment in pollinator attraction contributes to only female or male function, because one sexual function of a flower is saturated with pollinator visitation earlier than the other sexual function; and (2) there are trade-offs between the size and number of flowers. The analysis was conducted to determine the conditions when females and males can increase in frequency in a hermaphroditic population, assuming either concave or convex pollinator gain curves (relation between investment to attractive structures of a flower and frequency of pollinator visits to the flower). The results suggest that both of the main factors play important roles in the evolution of plant sexual systems: uneven contribution of pollinator-attractive structures and nonlinear trade-offs between flower size and number can destabilize hermaph-roditism. When a convex pollinator gain curve was assumed, the effect of nonlinear trade-offs can produce accelerating compensation from the elimination of one sexual function, allowing males to increase for large regions of parameter space, where females could not increase. The last prediction obviously conflicts with the observed rarity of androdioecy in nature, indicating the necessity of exploring pollinator gain curves in more detail.  相似文献   

7.
A range of beetle species are associated with plants and many of them reside primarily in flowers; of these Nitidulidae possess a large share. Beetles which thrive upon angiosperms exhibited a rapid rate of speciation as compared to others with different feeding habits. Hence, beetles and angiosperms have co-evolved and influenced each others’ evolution for better survival. Some flower-visiting beetles have developed special features for floral diet and other purposes like pollination, shelter, reproduction, etc. Likewise, certain flowers also have adapted structurally and physiologically to attract beetles for pollination which include pollen, nectar, floral heat etc. Although beetles are found to be amongst the pioneer flower visitors, they are not as efficient pollinator as bee and butterfly. However, they have been found to be chief pollinators for a few plant families like Magnoliaceae, Annonaceae and Palmae. Several sap beetles have been encountered in floral parts in West Bengal, Assam, Uttar Pradesh, Karnataka and Tripura. Nature of relationships of those beetles with inflorescence and flowers were examined. None of them is yet found to be a true pollinator.  相似文献   

8.
The functional floral morphology of the three genera of Vivianiaceae (= Ledocarpaceae, Geraniales), Rhynchotheca, Viviania and Balbisia, is compared. Likely pollination mechanisms are inferred from morphology and field observations. The flowers of Viviania are nectariferous and apparently zoophilous with nectar as the (primary) pollinator reward. Balbisia has pollen flowers without nectaries, its showy corolla indicates that it is also zoophilous with pollen as sole pollinator reward; bees were observed as flower visitors. One taxon (B. gracilis) may be anemophilous. Rhynchotheca has flowers without petals, with large, pendulous anthers and lacks nectaries. It shows synchronous mass flowering in its natural populations and is evidently anemophilous. A comparison with other Geraniales shows that nectar flowers with small anthers are likely the ancestral condition in Vivianiaceae. This suggests that the pollen flowers with larger anthers of Balbisia and Rhynchotheca may represent an apomorphic condition. The documentation of pollen flowers and anemophily in Vivianiaceae expands the range of known floral and pollination syndromes in Geraniales.  相似文献   

9.
Flower form is one of many floral features thought to be shaped by pollinator‐mediated selection. Although the drivers of variation in flower shape have often been examined in microevolutionary studies, relatively few have tested the relationship between shape evolution and shifts in pollination system across clades. In the present study, we use morphometric approaches to quantify shape variation across the Andean clade Iochrominae and estimate the relationship between changes in shape and shifts in pollination system using phylogenetic comparative methods. We infer multiple shifts from an ancestral state of narrow, tubular flowers toward open, bowl‐shaped, or campanulate flowers as well as one reversal to the tubular form. These transitions in flower shape are significantly correlated with changes in pollination system. Specifically, tubular forms tend to be hummingbird‐pollinated and the open forms tend to be insect‐pollinated, a pattern consistent with experimental work as well as classical floral syndromes. Nonetheless, our study provides one of the few empirical demonstrations of the relationship between flower shape and pollination system at a macroevolutionary scale.  相似文献   

10.
  • Pollination of the pantropical Vanilla has been linked to melittophily and food deception.
  • Here we investigated the role of flower traits on the reproduction of Neotropical Vanilla. We also studied the evolution of pollination systems in order to understand the origin of production of flower resources and the diversification of pollinators in this orchid genus. Our study was founded on data of adaptations in flower morphology, production of resources, scent release, pollinators and breeding systems of Vanilla and presenting new data on reproductive biology of V. palmarum. Data on reproductive biology of Vanilla were mapped onto a phylogeny to address our queries on the evolution of pollination systems in this genus.
  • Vanilla palmarum shows a mixed mating system, with its facultative autogamous flowers being pollinated by hummingbirds. Its yellow flowers are scentless and produces nectar. Mapping of the pollination system onto trees resulted in one origin for bird pollination and at least two origins for autogamy in Vanilla. Nectar secretion has a single origin in the Neotropical thick-leafed lineage.
  • Bird pollination of Vanilla is shown for the first time. The origin of ornithophily within a bee-pollinated clade is supported by flower morphology. Floral transitions to ornithophily have been favoured by the occupation of a distinct niche from that of the other thick-leafed Vanilla species. Despite its specialized pollination, V. palmarum is autogamous. A mixed mating system can promote reproductive assurance in the case of a decline in pollinator populations, or in areas where pollinator services are irregular or absent.
  相似文献   

11.
Bat-pollinated flowers have to attract their pollinators in absence of light and therefore some species developed specialized echoic floral parts. These parts are usually concave shaped and act like acoustic retroreflectors making the flowers acoustically conspicuous to the bats. Acoustic plant specializations only have been described for two bat-pollinated species in the Neotropics and one other bat-dependent plant in South East Asia. However, it remains unclear whether other bat-pollinated plant species also show acoustic adaptations. Moreover, acoustic traits have never been compared between bat-pollinated flowers and flowers belonging to other pollination syndromes. To investigate acoustic traits of bat-pollinated flowers we recorded a dataset of 32320 flower echoes, collected from 168 individual flowers belonging to 12 different species. 6 of these species were pollinated by bats and 6 species were pollinated by insects or hummingbirds. We analyzed the spectral target strength of the flowers and trained a convolutional neural network (CNN) on the spectrograms of the flower echoes. We found that bat-pollinated flowers have a significantly higher echo target strength, independent of their size, and differ in their morphology, specifically in the lower variance of their morphological features. We found that a good classification accuracy by our CNN (up to 84%) can be achieved with only one echo/spectrogram to classify the 12 different plant species, both bat-pollinated and otherwise, with bat-pollinated flowers being easier to classify. The higher classification performance of bat-pollinated flowers can be explained by the lower variance of their morphology.  相似文献   

12.
BACKGROUND AND AIMS: The functional morphology of Salvia pratensis flowers was re-investigated, after new insights revealed that pollen dispensing is one of the main functions of the staminal lever. In particular, no detailed information was available regarding the process of pollen transfer and the forces arising between the pollen-bearing thecae and the pollinating bee's body. The assumption was made that these forces play a significant role in pollen dispensing. METHODS: The functional morphology of S. pratensis flowers and the interaction between flowers and bees (Apis mellifera) were studied by reconstructing stress and strains by using qualitative and semi-quantitative theoretical analysis. Flowers were manipulated to study the spatial arrangement of the filament and lever, and of the head and proboscis of the visiting bee inside the tube. Photographs and films of bee visits on flowers were used to analyse the interaction of pollinator and staminal lever. KEY RESULTS: The spoon-shaped lower lever of S. pratensis has a small hole through which a bee introduces its proboscis into the corolla tube. Although mentioned for the first time by Kerner von Marilaun in 1891, presented here is the first drawing and the first photograph showing this interaction in detail. The analysis of the interaction of flower visitor and the lever mechanism revealed that the position of bees on different flowers is spatially very similar. Flower morphology constrains postures of legitimately nectar-probing bees within narrow bounds. A theoretical discussion on structural elements and force progression in the flower allows the principles of lightweight architecture in flower morphology to be recognized. CONCLUSIONS: The staminal lever of S. pratensis is a pollen-dispensing device. It seems to influence the amount of pollen deposited on pollinators by determining the forces arising between the pollinator and the pollen. The relevant forces occur either during the first, dynamic phase or during the second, almost static phase of a flower visit.  相似文献   

13.
Coevolution in Ficus carica (Moraceae) and the fig wasp (Blastophaga psenes, Agaonidae, Chalcidoidea) has resulted in a complex breeding system involving two tree morphs (Caprifig and Edible fig), three floral forms (long-styled female, short-styled female, and male flowers) and the insect pollinator. The two female floral forms have been reported to differ only in style length and stigma shape. In the present study, we demonstrate that the two female flowers differ from inception—short-styled flower primordia are smaller and exhibit significantly greater individual variation than do those of the long-styled flower, and the relative growth rate of each flower type differs. Mature forms exhibit disparity in style length, in stigma characteristics, and in degree of fusion of stylar lobes. Female flowers of both tree morphs are unisexual from inception. Male flowers of the Caprifig tree morph are initiated as hermaphrodites and gynoecium abortion occurs before megaspore mother cell stage. A single inflorescence therefore expresses two pathways to unisexuality. Hermaphrodite flower primordia were repeatedly found in the supposedly unisexual female syconium of the Edible fig tree morph. Based on its developmental morphology, Ficus carica appears to be of gynomonoecious ancestry.  相似文献   

14.
  • The association between plants and flower visitors has been historically proposed as a main factor driving the evolutionary change of both flower and pollinator phenotypes. The considerable diversity in floral morphology within the tribe Antirrhineae has been traditionally related to pollinator types. We used empirical data on the flower visitors from 59 Antirrhineae taxa from the literature and our own field surveys, which provide an opportunity to test whether flower phenotypes are reliable predictors of visitors and pollinator niches.
  • The degree of adjustment between eight key floral traits and actual visitors was explored by testing the predictive value of inferred pollinator syndromes (i.e. suites of floral traits that characterise groups of plant species related to pollination). Actual visitors and inferred pollinator niches (categorisation of visitors’ association using a modularity algorithm) were also explored using Linear Discriminant Analysis (LDA).
  • The bee pollinator niche is correctly classified for flowers with dull corolla colour, without nectar guides, as the most important predictor. Both predictive value and statistical classification prove useful in classifying Antirrhineae taxa and the bee pollinator niche, mostly as a consequence of the high proportion of genera and taxa with occluded corollas primarily visited by bees. Our predictive approach rendered a high Positive Predictive Value (PPV) of floral traits in the diagnosis of visitors/pollinator niches. In particular, a high PPV was found for bees as both visitors and forming pollinator niches. In addition, LDA showed that four pollinator niches are well defined based on floral traits.
  • The large number of species visited by bees irrespective of pollinator syndromes leads us to hypothesise their generalist pollinator role, despite the phenotypically specialised flowers of Antirrhineae.
  相似文献   

15.
In many plants, including orchids, differential fruit set along the inflorescence has been attributed to pollinator behaviour. For instance, the pollinator, moving up the inflorescence, becomes satiated with the resources and leaves before visiting the upper flowers. Consequently, the pollinators do not visit flowers as frequently higher up the inflorescence. Alternatively, flower size may vary along the inflorescence, making pollination ineffective as flowers decrease in size. I tested for the presence of differential pollination along the inflorescence in a pollinator-limited tropical epiphyte, Lepanthes rupestris Stimson, and determined the likely cause of the observed pattern. As this species has inflorescences with sequential flowering, pollinator behaviour, moving up the inflorescence as in synchronous multiflowering inflorescences, can be discounted as an explanation for differential fruit set. Fruit set is shown to be more frequent at the base of the inflorescence, but male reproductive success through pollinarium removal is basically independent of flower position. Moreover, cross-pollination by hand at variable flower positions along the inflorescence results in equal fruit set, suggesting that resources are not limiting and cannot explain the cause of differential fruit production along the inflorescence in natural populations. Furthermore, flower size is shown to diminish along the inflorescence, suggesting that the pollinator(s) may be ineffective at depositing the pollinarium in the smaller higher flowers. Consequently, pollinator behaviour and its interaction with flower size, and not resource limitation, is likely to be the main cause of differential fruit set along the inflorescence in L. rupestris .  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 151 , 405–410.  相似文献   

16.
Pollinator-mediated stabilizing selection (PMSS) has been proposed as the driver of the evolutionary shift from radial to bilateral symmetry of flowers. Studies have shown that variation in flower size is lower in bilateral than in radial species, but whether bilateral flowers experience more stabilizing selection pressures by employing fewer, more specialized pollinators than radial flowers remains unclear. To test the PMSS hypothesis, we investigate plant–pollinator interactions from a whole community in an alpine meadow in Hengduan Mountains, China, to examine: (i) variance in flower size and level of ecological generalization (pollinator diversity calculated using functional groups) in 14 bilateral and 13 radial species and (ii) the role pollinator diversity played in explaining the difference of variance in flower size between bilateral and radial species. Our data showed that bilateral species had less variance in flower size and were visited by fewer pollinator groups. Pollinator diversity accounted for up to 40 per cent of the difference in variance in flower size between bilateral and radial species. The mediator effect of pollinator diversity on the relationship between floral symmetry and variance in flower size in the community is consistent with the PMSS hypothesis.  相似文献   

17.
Nectar robbing – harvesting nectar illegitimately – can have a variety of outcomes for plant sexual reproduction and for the pollinator community. Nectar robbers can damage flowers while robbing nectar, which could affect the behavior of subsequent flower visitors and, consequently, plant reproduction. However, only nectar manipulation by nectar robbers has so far received attention. We found a short-tongued bee, Hoplonomia sp. (Halictidae), mutilating the conspicuous lower petal of the zygomorphic flowers of Leucas aspera (Lamiaceae) while robbing nectar. We hypothesized that the mutilation of the conspicuous lower petal deters legitimate pollinators on L. aspera flowers, which, in turn, might affect plant reproduction. We first assessed the proportion of naturally-robbed flowers in plant populations for three years to confirm that it was not a purely local phenomenon due to a few individual bees. We then studied diversity, community and visitation characteristics of pollinators, nectar dynamics and fruit set in unrobbed and robbed open flowers in naturally-robbed populations. The proportion of robbed flowers varied significantly across sites and years. Robbing did not affect nectar dynamics in flowers, but it did alter flower morphology, so much so that it reduced pollinator visitation and altered the pollinator community on robbed flowers. However, the maternal function of plant reproduction was not affected by nectar robbing. This study for the first time shows that a nectar robber can have an ecologically significant impact on floral morphology.  相似文献   

18.
Diversity of flower traits is often proposed as the outcome of selection exerted by pollinators. Positive directional pollinator‐mediated selection on floral size has been widely shown to reduce phenotypic variance. However, the underlying mechanism of maintaining within‐population floral color polymorphism is poorly understood. Divergent selection, mediated by different pollinators or by both mutualists and antagonists, may create and maintain such polymorphism, but it has rarely been shown to result from differential behavior of one pollinator. We tested whether different behaviors of the same pollinators in morning and evening are associated with dimorphic floral trait in Linum pubescens, a Mediterranean annual plant that exhibits variable within‐population frequencies of dark‐ and light‐colored flower tubes. Usia bicolor bee‐flies, the major pollinators of L. pubescens, are mostly feeding in the flower in the morning, while in the evening they are mostly visiting the flowers for mating. In 2 years of studying L. pubescens in a single large population in the Carmel, Israel, we found in one year that dark‐centered flowers received significantly higher fraction of visits in the morning. Fitness was positively affected by number of visits, but no fitness differences were found between tube‐color morphs, suggesting that both morphs have similar pollination success. Using mediation analysis, we found that flower size was under positive directional pollinator‐mediated selection in both years, but pollinator behavior did not explain entirely this selection, which was possibly mediated also by other agents, such as florivores or a‐biotic stresses. While most pollinator‐mediated selection studies show that flower size signals food reward, in L. pubescens, it may also signal for mating place, which may drive positive selection. While flower size found to be under pollinator‐mediated selection in L. pubescens, differential behavior of the pollinators in morning and evening did not seem to explain flower color polymorphism.  相似文献   

19.
Visitation rates and assemblage composition of pollinators have often been related to environmental, ecological and phenotypic variables. However, the interaction between flowers and pollinators has not been evaluated in a biomechanical context. Floral rewards in keel flowers (Fabaceae, Faboideae) are concealed behind four joined petals, the keel-wing unit, and are accessible only if pollinators open this unit by exerting force on it. Force needed to open the flower is expected to affect the interaction with pollinators because pollinators must invest time and energy to open the keels. Consequently, plants with stiff flowers should be expected to experience diminished visitation frequency, particularly by weak visitors. To test this expectation of diminished visitation rates and of assemblage composition biased by pollinator strength, we measured the force needed to open the keel flowers of five co-occurring legume species and, using a canonical correspondence analysis (CCA), we tested their association with pollinator visitation rates and assemblage composition. We additionally included a size flag variable in CCA to test the effect of attractiveness on pollinator visits. There was no association between flower stiffness and visitation frequency. According to the CCA, pollinator assemblage compositions were associated with the force needed to open the keel and not flag size. As a general pattern, weak flowers are pollinated by an uneven assemblage of weak bees while the stiffest flowers are pollinated by an even assemblage of large and strong bees. These results supports the idea that force has an effect in controlling pollinator assemblage composition.  相似文献   

20.
Flower morphology and pollinator dynamics play an important role in the evolution and maintenance of many breeding systems, including andromonoecy. We used a series of field experiments to test the functional relationship between flower morphology and pollination dynamics (e.g., pollen receipt and export) in Solanum carolinense. We find that long-styled flowers serve primarily as pollen recipients and short-styled flowers as pollen donors, making this the first study to support the male-female interference hypothesis for the evolution of andromonoecy. However, this difference in the primary male or female function of the flowers depends on the pollinator identity. In flowers visited by Bombus impatiens, style length has a positive relationship with pollen deposition and a negative relationship with pollen removal. In contrast, neither morphological nor behavioral traits determine pollen deposition or removal by small halictid bees. We demonstrate that different pollinators could select for different floral morphologies, and thus, our research suggests that pollinator-specific interactions with flower morphology play an important role in the evolution and maintenance of anrdromonoecy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号