首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Like superoxide dismutase (SOD), human ceruloplasmin (Cp) scavenges superoxide anion radicals injected into the solution with the aid a high-voltage generator, hydrogen peroxide being the product of reaction. The O2-/H2O2 ratio is close to 2:1. The dismutase activity of Cp is about 1500 times lower than that of Cu, Zn-SOD isolated from human erythrocytes. The dismutation of O2- accomplished by SOD, "free" copper ions, native Cp or partly copper-depleted Cp, is inhibited with equal efficiency by cyanide. All the copper ions of the multicopper catalytic center of Cp are not essentially required for the dismutation of O2-, since the enzyme depleted of all type 2 Cu2+ and partly of type 1 Cu2+ lost none of its dismutase activity. Type 1 copper ions of Cp seem to play the leading role in the one-electron transfer occurring upon dismutation of O2-.  相似文献   

2.
Coppersensor-1 (CS1) is a small-molecule, membrane-permeable fluorescent dye for imaging labile copper pools in biological samples, including live cells. This probe, comprising a boron dipyrromethene (BODIPY) chromophore coupled to a thioether-rich receptor, has a picomolar affinity for Cu+ with high selectivity over competing cellular metal ions. CS1 fluorescence increases up to 10-fold on binding to Cu+. In this protocol we describe the synthesis of CS1 and how to use this chemical tool to investigate intracellular levels of labile copper in cultured cells. The preparation of CS1 is anticipated to take 4-5 d, and imaging assays can be performed in 1-2 d with cultured cells.  相似文献   

3.
研究不同浓度(10^-6-10^-4mol/L)硫酸铜(CuSO4,5H2O)溶液对大蒜(Allium satiuwn L.)根,叶和蒜瓣生影响及其这些器官对Cu^2 的积累能力,研究结果指出:在106-5-10^-4mol/L,Cu的处理下,Cu严重影响大蒜根和叶生长,大蒜具有较强吸收和积累Cu^2 的能力,随着Cu^2 处理浓度的增加,大蒜根中的Cu^2 含量递增,大蒜经10^-4mol/L,Cu处理,根部积累了大量的Cu,其含量是对照的52倍,在10^-5和10^-6mol/L Cu处理中,根中Cu的含量分别是对照的13倍和1.4倍,Cu主要积累在极中(10^-5-10^-4mol/L Cu处理),只有少量的转移到叶子和蒜瓣中。  相似文献   

4.
The SH-groups in Escherichia coli membrane vesicles, prepared from cells grown in fermentation conditions on glucose at slightly alkaline pH, have a role in the F0F1-ATPase operation. The changes in the number of these groups by ATP are observed under certain conditions. In this study, copper ions (Cu2+) in concentration of 0.1 mM were shown to increase the number of SH-groups in 1.5- to 1.6-fold independent from K+ ions, and the suppression of the increased level of SH-groups by ATP was determined for Cu2+ in the presence of K+. Moreover, the increase in the number of SH-groups by Cu2+ was absent as well as the inhibition in ATP-dependent increasing SH-groups number by Cu2+ lacked when vesicles were treated with N-ethylmaleimide (NEM), specific thiol-reagent. Such an effect was not observed with zinc (Zn2+), cobalt (Co2+), or Cu+ ions. The increased level of SH-groups was observed in the hycE or hyfR mutants with defects in hydrogenases 3 or 4, whereas the ATP-dependent increase in the number of these groups was determined in hycE not in hyfR mutants. Both changes in SH-groups number disappeared in the atp or hyc mutants deleted for the F0F1-ATPase or hydrogenase 3 (no activity of hydrogenase 4 was detected in the hyc mutant used). A direct effect of Cu2+ but not Cu+ on the F0F1-ATPase is suggested to lead to conformational changes or damaging consequences, increasing accessible SH-groups number and disturbing disulfide-dithiol interchange within a protein-protein complex, where this ATPase works with K+ uptake system or hydrogenase 4 (Hyd-4); breaks in disulfides are not ruled out.  相似文献   

5.
The effects of different concentrations of copper sulfate on the growth of and the accumulation of Cu2+ by root, hypocotyl, cotyledon and leaf growth of sunflower (Helianthus annuus L.) were examined in this study. The concentrations of copper sulfate (CuSO4 x 5H2O) used were in the range from 10(-5) to 10(-3) M. Seedlings exposed to 10(-5) M Cu2+ solution exhibited a 33% increase in growth (P < 0.005) when compared with the root length of the control. The seedlings treated with 10(-3) M Cu2+ were significantly inhibited in shoot growth (P < 0.005). The Cu2+ content in roots, hypocotyls, cotyledons and leaves increased with increasing solution Cu2+ concentration. The roots of plants exposed to 10(-3) M Cu2+ accumulated a large amount of Cu (1070 microgram/g DW), and the Cu2+ level was approximately 25 fold higher than that of control. The Cu2+ contents in sunflower roots treated with 10(-4) and 10(-5) M Cu2+ were about 3.3 and 2.6 fold higher than the control, respectively. Also, the Cu2- level of the roots exposed to 10(-3) M Cu2+ was approximately 7.7 and 9.8 fold respectively, in comparison with the roots of plants grown in 10(-4) and 10(-5) M Cu2+. At 10(-3) M Cu2+, the Cu accumulated mainly in the roots (about 73%), and small amounts of Cu2+ (27%) were translocated to the hypocotyls, cotyledons and leaves. The Cu2+ concentration in the roots was less than that of the above parts of seedlings in treated groups with 10(-5) - 10(-4) M Cu2+. H. annuus has potential ability to accumulate Cu without being overly sensitive to Cu toxicity.  相似文献   

6.
Two new copper(II) complexes, Cu(L1)(ClO4)2 (1), {[(μ-oxalate)Cu(L1)] · 5H2O}n (2), and a zinc(II) complex, {[(μ-oxalate)Zn(L2)] · 3H2O · 0.5DMF}n (3) (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane), have been synthesized and characterized by X-ray crystallography. In 1, the ligand conformation is planar, and the octahedral coordination about the copper(II) ion is completed by weakly interacting ions. In 2 and 3, bridging oxalate ligands coordinate to copper(II) or zinc(II) ions in an unusually twisted bis-monodentate (trans-1,1′-bicoordination) mode.

The rigidity and steric hindrance of macrocycles L1 and L2 by the introduction of two cyclohexane rings and methyl groups on a cyclam (1,4,8,11-tetraazacyclotetradecane) skeleton cause the bridging oxalate ligands to adopt such unusual geometries in 2 and 3.  相似文献   


7.
The acid base behavior of phytate has been studied (at t=25 degrees C by potentiometry, ISE-H+ glass electrode) in NaNO3aq at different ionic strengths (0.1 < or = I/mol L(-1) < or = 1.0). The interactions with copper(II) were investigated in the same experimental conditions in different metal to ligand (Phy) ratios (1:1 < or = Cu2+ :Phy < or = 4:1), by using both ISE-H+ and ISE-Cu2+ electrodes. Phytate acid base behavior in sodium nitrate is very similar to that in sodium chloride, previously investigated. In the experimental conditions adopted, the formation of three CuiHjPhy(12-2i-j)- species is observed: the mononuclear CuH4Phy6- and CuH5Phy5-, and the dinuclear Cu2H5Phy3-. Analysis of complex formation constants at different ionic strengths reveals that both ISE-H+ and ISE-Cu2+ electrodes gave, within the experimental error, analogous values. Dependence of complex formation constants on ionic strength was modeled by EDH (Extended Debye-Hückel) and SIT (Specific ion Interaction Theory) equations. The sequestering ability of phytate toward copper(II) has been evaluated by the calculation of pL50 (the total ligand concentration, as -log CL, able to bind 50% of metal cation), an empirical parameter already proposed for an objective "quantification" of this ability. A thorough analysis of literature data on phytate-copper(II) complexes has been performed.  相似文献   

8.
The complexation between copper(II) and the antihypertensive drug oxprenolol (HOxp) was studied both in methanol and slightly alkaline aqueous media at Cu:HOxp molar ratio from 1:1 to 1:10. Copper(lI) forms two types of complexes-a mononuclear violet one, CuOxp2, with bidentately bound ligands and a green dimeric one, Cu2Oxp2Cl2, in which the two Cu(II) centres are linked by the ligand through oxygen bridges. The crystal structure of the Cu2Oxp2Cl2 complex consists of two crystallographically non-equivalent centrosymmetric copper dimers. Each copper atom is four-coordinated in a distorted square-planar environment. The Cu2O2 structural core is characterized by a Cu1-O1-Cu1' angle of 104.15(13)degrees (Cu2-O2-Cu2' 104.30(13) degrees) and a relatively short Cu1-Cu1' separation of 3.026(1) A (Cu2-Cu2'-3.023(1) A). Magnetic susceptibility and EPR measurements indicate an antiferromagnetic coupling of the copper(II) centers.  相似文献   

9.
The affinity of AMD3100, a symmetrical nonpeptide antagonist composed of two 1,4,8,11-tetraazacyclotetradecane (cyclam) rings connected through a 1,4-dimethylene(phenylene) linker to the CXCR4 chemokine receptor was increased 7, 36, and 50-fold, respectively, by incorporation of the following: Cu(2+), Zn(2+), or Ni(2+) into the cyclam rings of the compound. The rank order of the transition metal ions correlated with the calculated binding energy between free acetate and the metal ions coordinated in a cyclam ring. Construction of AMD3100 substituted with only a single Cu(2+) or Ni(2+) ion demonstrated that the increase in binding affinity of the metal ion substituted bicyclam is achieved through an enhanced interaction of just one of the ring systems. Mutational analysis of potential metal ion binding residues in the main ligand binding crevice of the CXCR4 receptor showed that although binding of the bicyclam is dependent on both Asp(171) and Asp(262), the enhancing effect of the metal ion was selectively eliminated by substitution of Asp(262) located at the extracellular end of TM-VI. It is concluded that the increased binding affinity of the metal ion substituted AMD3100 is obtained through enhanced interaction of one of the cyclam ring systems with the carboxylate group of Asp(262). It is suggested that this occurs through a strong concomitant interaction of one of the oxygen's directly with the metal ion and the other oxygen to one of the nitrogens of the cyclam ring through a hydrogen bond.  相似文献   

10.
The binding of divalent copper ions to the full-length recombinant murine prion protein PrP23-231 at neutral pH was studied using vibrational Raman optical activity (ROA) and ultraviolet circular dichroism (UV CD). The effect of the Cu2+ ions on PrP structure depends on whether they are added after refolding of the protein in water or are present during the refolding process. In the first case ROA reveals that the hydrated alpha-helix is lost, with UV CD revealing a drop from approximately 25% to approximately 18% in the total alpha-helix content. The lost alpha-helix could be that comprising residues 145-156, located within the region associated with scrapie PrP formation. In the second case, ROA reveals the protein's structure to be almost completely disordered/irregular, with UV CD revealing a drop in total alpha-helix content to approximately 5%. Hence, although Cu2+ binding takes place exclusively within the unfolded/disordered N-terminal region, it can profoundly affect the structure of the folded/alpha-helical C-terminal region. This is supported by the finding that refolding in the presence of Cu2+ of a mutant in which the first six histidines associated with copper binding to the N-terminal region are replaced by alanine has a similar alpha-helix content to the metal-free protein. In contrast, when the protein is refolded in the presence of divalent manganese ions, ROA indicates the alpha-helix is reinforced, with UV CD revealing an increase in total alpha-helix content to approximately 30%. The very different influence of Cu2+ and Mn2+ ions on prion protein structure may originate in the different stability constants and geometries of their complexes.  相似文献   

11.
We reported earlier that urate may behave as a pro-oxidant in Cu2+-induced oxidation of diluted plasma. Thus, its effect on Cu2+-induced oxidation of isolated low-density lipoprotein (LDL) was investigated by monitoring the formation of malondialdehyde and conjugated dienes and the consumption of urate and carotenoids. We show that urate is antioxidant at high concentration but pro-oxidant at low concentration. Depending on Cu2+ concentration, the switch between the pro- and antioxidant behavior of urate occurs at different urate concentrations. At high Cu2+ concentration, in the presence of urate, superoxide dismutase and ferricytochrome c protect LDL from oxidation but no protection is observed at low Cu2+ concentration. The use of Cu2+ or Cu+ chelators demonstrates that both copper redox states are required. We suggest that two mechanisms occur depending on the Cu2+ concentration. Urate may reduce Cu2+ to Cu+, which in turn contributes to formation. The Cu2+ reduction is likely to produce the urate radical (UH.-). It is proposed that at high Cu2+ concentration, the reaction of UH.- radical with generates products or intermediates, which trigger LDL oxidation. At low Cu2+ concentration, we suggest that the Cu+ ions formed reduce lipid hydroperoxides to alkoxyl radicals, thereby facilitating the peroxidizing chain reaction. It is anticipated that these two mechanisms are the consequence of complex LDL-urate-Cu2+ interactions. It is also shown that urate is pro-oxidant towards slightly preoxidized LDL, whatever its concentration. We reiterate the conclusion that the use of antioxidants may be a two-edged sword.  相似文献   

12.
The high toxicity of copper ions for Candida valida growth was established at pH-auxostat regime. The value of mu max decreased even at the residual Cu2+ concentration 1.0 mg/l. The inhibition constant (Ki) that characterized a copper ion concentration at which yeast specific growth rate was halved was equal to 7.7 mg/l. A linear dependence of 1/mu max on a residual concentration of copper ions indicates that yeast growth inhibition is due to inhibition of one enzymic reaction which is the most sensitive to copper. Yeast growth inhibition by copper was accompanied by accumulation of Cu2+ ions in biomass, a decrease in nucleic acid and true protein contents, and changes in amino acid composition of protein. The amounts of cystine and cysteine in protein increased and tryptophane content decreased with inhibition of yeast growth. Yeast growth inhibition by copper did not affect the lipid content but significantly reduced the degree of unsaturation due to a decrease in the amounts of polyunsaturated linoleic and alpha-linolenic acids.  相似文献   

13.
Chloride secretion (Isc) by the opercular epithelium of the teleost, Fundulus heteroclitus, is stimulated by elevations in intracellular cyclic AMP (cAMP) elicited by beta-adrenergic agonists, such as isoproterenol, and is accompanied by a small but significant increase in the transepithelial conductance (Gt). Cupric ions (Cu2+) have been shown to block the apical membrane Cl- channels in this epithelium, leading to a reduction in both the Isc and Gt (Degnan, '85). In the present studies, the effects of Cu2+ on cAMP-elevated and cAMP-depleted epithelia were observed to define the actions of cAMP in this stimulatory process. At a concentration of 5 X 10(-4) M in the mucosal solution, Cu2+ inhibited the Isc 79.8% and reduced the Gt 39.2%. Isoproterenol produced an attenuated stimulation of the Isc in these tissues compared to untreated controls, but had no effect on the Gt. In tissues bathed bilaterally with Cl- -free Ringer, the Isc was virtually abolished and the Gt was reduced 37.0%; neither Cu2+ nor isoproterenol had any effects on the Isc or Gt under this condition. Simultaneous 2 2Na and 3 6 Cl unidirectional flux determinations indicated that the only effects of both isoproterenol and Cu2+ were on the active Cl- secretory flux. An inhibitor of adenylate cyclase, 2',5' dideoxyadenosine (DDA), reduced the Isc and Gt 39.8% and 20.8% respectively. This inhibitor had no additional effects in Cu2+ -treated tissues and the action of Cu2+ on the Gt was reduced in DDA-treated tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The ability of bimetallic homo- and heteronuclear complexes of two spiro-linked ligands, viz. a biazacrown (i.e., 2,6,10,14,18,22-hexaazaspiro[11.11]tricosane (1)) and an azacrown-crown ether (i.e., 14,17,20,23,26-pentaoxa-2,6,10-triaza-spiro[11.15]heptacosane (2)), to promote the cleavage of the phosphoester linkage of dinucleoside 3',5'-phosphates and the phosphoric anhydride bridge of dinucleoside 5',5'-triphosphates was studied. In both reactions, the bimetallic homonuclear Cu2+ and Zn2+ complexes were better catalysts than their monometallic counterparts. The acceleration was two- to five-fold with the phosphoester cleavage and 3- to 20-fold with the phosphoric anhydride cleavage. Interestingly, the most-efficient catalyst of the phosphoester cleavage was the heterodinuclear Ni2+,Zn2+ complex of 1, the catalytic activity of which was up to 5- and 100-fold that of the homodinuclear Zn2+ and Ni2+ complexes, respectively. Moreover, this cooperative acceleration was observed to depend on the identity of the 5'-linked nucleoside: 3',5'-UpU and 3',5'-ApU were cleaved much faster than 3',5'-UpA, and no cooperative acceleration was observed with 3',5'-ApA. The reaction was second-order in hydroxide ion concentration, suggesting that a double deprotonation took place on going from the initial to the transition state. Evidently, in addition to deprotonation of the attacking 2'-OH group, N(3)H of the 5'-linked uridine was displaced by one of the metal ions of the cleaving agent. With the phosphoric anhydride cleavage, no similar cooperativity of two different metal ions was observed, but the greatest rate-acceleration was achieved with the homodinuclear Cu2+ complexes.  相似文献   

15.
A new dinuclear copper(II) complex has been synthesised and structurally characterised: [Cu2(tz-ben)4] (Htz-ben = N-thiazol-2-yl-benzenesulfonamide). Its crystal structure, magnetic properties and electronic paramagnetic resonance (EPR) spectra were studied in detail. In the compound the metal centres are bridged by four non-linear triatomic NCN groups. The coordination geometry of the copper ions in the dinuclear entity is distorted square pyramidal (4+1). Two thiazole N and two sulfonamido N atoms occupy the equatorial positions and one sulfonamido O atom is in the axial position. Magnetic susceptibility data show a strong antiferromagnetic coupling, -2J = 114.1 cm(-1). The EPR spectra of a polycrystalline sample of compound has been obtained at the X- and Q-band frequencies at different temperatures. Above 20K the spectra are characteristic of S = 1 species with a zero field splitting parameter D = 0.4 cm(-1). The EPR parameters are discussed in terms of the known binuclear structures. The chemical nuclease ability of the title complex and that of the related [Cu2(tz-tol)4] compound (Htz-tol = N-thiazol-2-yl-toluenesulfonamide) is reported. The participation of hydroxyl radicals and a singlet oxygen-like entity in the DNA cleavage reaction has been deduced from the assays with radical oxygen scavengers.  相似文献   

16.
Cyclic nucleotide phosphodiesterase from wheat sprouts was isolated and partially purified. The molecular weight of the enzyme is about 83 000. The enzyme activity sharply rises as the inhibiting factors present in the homogenate are separated. The pH optimum of the enzymatic reaction is 4,8. Divalent cations (Mg2+, Mn2+, Cu2+) within the concentration range of 1--5 mM and complexons (EDTA, EGTA) at the concentration of 1 mM do not affect the PDE activity. The temperature optimum for the reaction is 60 degrees. The enzyme hydrolyzes 3' : 5'-AMP, 3' : 5'-GMP and 2':3'-AMP. The Km value for cAMP is 4 . 10(-3) M. The enzyme activity is inhibited by chemical agents possessing the fungicide activity, the strongest effect being exerted by anylate.  相似文献   

17.
A series of mononuclear copper(II) complexes having a 1:1 molar ratio of copper and the planar heterocyclic base like 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) are prepared from a reaction of copper(II) nitrate.trihydrate and the base (L) in ethanol or aqueous ethanol at different temperatures. The complexes [Cu(dpq)(NO(3))(2)] (2), [Cu(dpq)(NO(3))(H(2)O)(2)](NO(3)) (3), [Cu(dpq)(NO(3))(2)(H(2)O)(2)].2H(2)O (4.2H(2)O) and [Cu(dppz)(NO(3))(2)(H(2)O)].H(2)O (5.H(2)O) have been characterized by X-ray crystallography. The crystal structures show the presence of the heterocyclic base in the basal plane. The coordination geometries of the copper(II) centers are axially elongated square-pyramidal (4+1) in 2, 3 and 5, and octahedral (4+2) in 4. The nitrate anion in the coordination sphere displays unidentate and bidentate chelating bonding modes. The axial ligand is either H(2)O or NO(3) in these structures giving a Cu-L(ax) distance of approximately 2.4 A. The one-electron paramagnetic complexes (mu approximately 1.8 mu(B)) exhibit axial EPR spectra in DMF glass at 77 K giving g(parallel)>g( perpendicular ) with an A(parallel) value of approximately 170G indicating a [d(x)2(-y)2](1) ground state. The complexes are redox active and display a quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.0 V vs. SCE giving an order of the E(1/2) values as 5(dppz)>2-4 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). The complexes bind to calf thymus DNA giving an order 5 (dppz)>2 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). An effect of the extended planar ring in dpq and dppz is observed in the DNA binding. The complexes show nuclease activity with pUC19 supercoiled DNA in DMF/Tris-HCl buffer containing NaCl in presence of mercaptopropanoic acid as a reducing agent. The extent of cleavage follows the order: [Cu(phen)(2)(H(2)O)](ClO(4))(2)>5>2 approximately 3 approximately 4>1. The bis-phen complex is a better cleaver of SC DNA than 1-5 having mono-heterocyclic base. Mechanistic investigations using distamycin reveal minor groove biding for the phen, dpq complexes, and a major groove binding for the dppz complex 5. The cleavage reactions are found to be inhibited in the presence of hydroxyl radical scavenger DMSO and the reactions are proposed to proceed via sugar hydrogen abstraction pathway. The ancillary ligand is found to have less effect in DNA binding but are of importance in DNA cleavage reactions.  相似文献   

18.
UK-1 is a bis(benzoxazole) natural product displaying activity against a wide range of human cancer cell lines. A simplified analog of UK-1, 4-carbomethoxy-2-(2'-hydroxyphenyl)benzoxazole, was previously found to be almost as active as UK-1 against cancer cell lines, and similar to the natural product, formed complexes with a variety of metal ions such as Mg2+ and Zn2+. A series of 4-substituted-2-(2'-hydroxyphenyl)benzoxazole analogs of this 'minimal pharmacophore' of UK-1 were prepared. The anti-cancer activity of these analogs was examined in breast and lung cancer cell lines. Spectrophotometric titrations in methanol were carried out in order to assess the ability of UK-1 and these analogs to coordinate with Mg2+ and Cu2+ ions. Although none of the new analogs were more cytotoxic than 4-carbomethoxy-2-(2'-hydroxyphenyl)benzoxazole, some analogs were identified that display similar cytotoxicity to this simplified UK-1 analog with improved water solubility. UK-1 and all of these new analogs bind Cu2+ ions better than Mg2+ ions, and the nature of the 4-substituent is important for the Mg2+ ion binding ability of these 2-(2'-hydroxyphenyl)benzoxazoles. Previous studies of a limited number of UK-1 analogs demonstrated a correlation between Mg2+ ion binding ability and cytotoxicity; however, within this series of 4-substituted-2-(2'-hydroxyphenyl)benzoxazoles the variations in cytotoxicity do not correlate with either Mg2+ or Cu2+ ion binding ability. These results, together with recent ESI-MS studies of Cu2+-mediated DNA binding by UK-1 and analogs, indicate that UK-1 and analogs may exert their cytotoxic effects by interaction with Cu2+ or other transition metal ions, rather than Mg2+, and that metal ion-mediated DNA binding, rather than metal ion binding affinity, is important for the cytotoxic effect of these compounds. The potential role of Cu2+ ions in the cytotoxic action of UK-1 is further supported by the observation that UK-1 in the presence of Cu2+ displays enhanced cytotoxicity to MCF-7 and A549 cells when compared to UK-1 alone.  相似文献   

19.
Cox17, a copper chaperone for cytochrome-c oxidase, is an essential and highly conserved protein in eukaryotic organisms. Yeast and mammalian Cox17 share six conserved cysteine residues, which are involved in complex redox reactions as well as in metal binding and transfer. Mammalian Cox17 exists in three oxidative states, each characterized by distinct metal-binding properties: fully reduced mammalian Cox17(0S-S) binds co-operatively to four Cu+; Cox17(2S-S), with two disulfide bridges, binds to one of either Cu+ or Zn2+; and Cox17(3S-S), with three disulfide bridges, does not bind to any metal ions. The E(m) (midpoint redox potential) values for two redox couples of Cox17, Cox17(3S-S)<-->Cox17(2S-S) (E(m1)) and Cox17(2S-S)<-->Cox17(0S-S) (E(m2)), were determined to be -197 mV and -340 mV respectively. The data indicate that an equilibrium exists in the cytosol between Cox17(0S-S) and Cox17(2S-S), which is slightly shifted towards Cox17(0S-S). In the IMS (mitochondrial intermembrane space), the equilibrium is shifted towards Cox17(2S-S), enabling retention of Cox17(2S-S) in the IMS and leading to the formation of a biologically competent form of the Cox17 protein, Cox17(2S-S), capable of copper transfer to the copper chaperone Sco1. XAS (X-ray absorption spectroscopy) determined that Cu4Cox17 contains a Cu4S6-type copper-thiolate cluster, which may provide safe storage of an excess of copper ions.  相似文献   

20.
Mutations in the p53 tumor suppressor gene frequently fall within the specific DNA-binding domain and prevent the molecule from transactivating normal targets. DNA-binding activity is regulated in vitro by metal ions and by redox conditions, but whether these factors also regulate p53 in vivo is unclear. To address this question, we have analyzed the effect of pyrrolidine dithiocarbamate (PDTC) on p53 DNA-binding activity in cell lines expressing wild-type p53. PDTC is commonly regarded as an antioxidant, but it can also bind and transport external copper ions into cells and thus exert either pro- or antioxidant effects in different situations. We report that PDTC, but not N-acetyl-L-cysteine, down-regulated the specific DNA-binding activity of p53. Loss of DNA binding correlated with disruption of the immunologically "wild-type" p53 conformation. Using different chelators to interfere with copper transport by PDTC, we found that bathocuproinedisulfonic acid (BCS), a non-cell-permeable chelator of Cu1+, prevented both copper import and p53 down-regulation. In contrast, 1,10-orthophenanthroline, a cell-permeable chelator of Cu2+, promoted the redox activity of copper and up-regulated p53 DNA-binding activity through a DNA damage-dependent pathway. We have previously reported that p53 protein binds copper in vitro in the form of Cu1+ (P. Hainaut, N. Rolley, M. Davies, and J. Milner, Oncogene 10:27-32, 1995). The data reported here indicate that intracellular levels and redox activity of copper are critical for p53 protein conformation and DNA-binding activity and suggest that copper ions may participate in the physiological control of p53 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号