首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Several aspects of lipid metabolism in the soleus and diaphragm muscles of streptozotocin-diabetic and control rats were investigated. The triglyceride content of both muscles was elevated in the diabetic state and the presence of increased intracellular lipid was confirmed by electron microscopy. In vitro glucose and palmitate oxidation studies showed that both types of muscle from the diabetic animals metabolized more fat than did the soleus and diaphragm from control rats. While isoproterenol alone produced a significant lipolytic response in both the soleus and diaphragm from control and diabetic animals, there was no difference in the percent increase in fatty acids released from muscles of diabetic rats compared to controls. However, the absolute difference was greater when the diaphragms were compared. Muscles from experimental and control animals showed a marked reduction in the amount of free fatty acids released in response to insulin. In addition, in the presence of the hormone, both the absolute and percent isoproterenol-stimulated increases in fatty acids were significantly greater for both diaphragm and soleus muscles from diabetic rats. The effects of insulin, isoproterenol, and the combination of these two hormones on the amount of glycerol released into the incubation medium were similar to those found on free fatty acid release. The results of these experiments show that there is an apparent increase in fat utilization in skeletal muscle of diabetic rats. Furthermore, measurements of triglyceride concentration and the enhanced response to isoproterenol stimulation in the muscles from these animals suggests that they may have an increased capacity for mobilization of intracellular lipids. Finally, in the diabetic state, both the soleus and diaphragm appear to demonstrate an increased response to the antilipolytic effect of insulin as measured by the decreased amount of fatty acid released into the incubation medium, the percent change also being significant for the soleus muscle.-Stearns, S. B., H. M. Tepperman, and J. Tepperman. Studies on the utilization and mobilization of lipid in skeletal muscles from streptozotocin-diabetic and control rats.  相似文献   

3.
4.
The effects of insulin therapy in streptozotocin diabetic rats on the glucose transport response to insulin in adipose cells have been examined. At sequential intervals during subcutaneous insulin infusion, isolated cells were prepared and incubated with or without insulin, and 3-O-methylglucose transport was measured. Insulin treatment not only reversed the insulin-resistant glucose transport associated with diabetes, but resulted in a progressive hyperresponsiveness, peaking with a 3-fold overshoot at 7-8 days (12.1 +/- 0.3 versus 3.4 +/- 0.1 fmol/cell/min, mean +/- S.E.) and remaining elevated for more than 3 weeks. During the peak overshoot, glucose transporters in subcellular membrane fractions were assessed by cytochalasin B binding. Insulin therapy restored glucose transporter concentration in the plasma membranes of insulin-stimulated cells from a 40% depleted level previously reported in the diabetic state to approximately 35% greater than control (38 +/- 4 versus 28 +/- 2 pmol/mg of membrane protein). Glucose transporter concentration in the low-density microsomes from basal cells was also restored from an approximately 45% depleted level back to normal (50 +/- 4 versus 50 +/- 6 pmol/mg of membrane protein), whereas total intracellular glucose transporters were further increased due to an approximately 2-fold increase in low-density microsomal membrane protein. However, these increases remained markedly less than the enhancement of insulin-stimulated glucose transport activity in the intact cell. Thus, insulin treatment of diabetic rats produces a marked and sustained hyperresponsive insulin-stimulated glucose transport activity in the adipose cell with little more than a restoration to the non-diabetic control level of glucose transporter translocation. Because this enhanced glucose transport activity occurs through an increase in Vmax, insulin therapy appears to be associated with a marked increase in glucose transporter intrinsic activity.  相似文献   

5.
Aldrin epoxidase activity in liver microsomes from streptozotocin-diabetic rats is only 40% of that from normal rats. Epoxidation of aldrin has also been assayed in freshly isolated hepatocytes from normal rats. Addition of 10–7 M glucagon to the incubation medium leads to a decreased aldrin epoxidase activity. Owing to the previously reported phosphorylation of a purified cytochrome P-450 isozyme, it is postulated that the cytochrome P-450 dependent aldrin epoxidase may be regulated by a glucagon induced phosphorylation process.  相似文献   

6.
The urinary bladder depends on intracellular ATP for the support of a number of essential intracellular processes including contraction. The concentration of ATP is maintained constant primarily via the rapid transfer of a phosphate from creatine phosphate (CP) to ADP catalyzed by the enzyme creatine kinase (CK). Since muscular pathologies associated with diabetes are in part related to intracellular alterations in metabolism, we have characterized the CK activity in both skeletal muscle and urinary bladder from control and streptozotocin-diabetic rats.The following is a summary of the results: 1) Bladder tissue from control rats showed linear kinetics with a Vmax = 390 nmoles/mg protein/min, and a Km = 275 µM. 2) Urinary bladder tissue isolated from diabetic rats displayed biphasic kinetics with Vmax = 65 and 324 nmoles/mg protein/min, and Km's = 10 µM and 190 µM respectively. 3) Skeletal muscle isolated from control rats showed linear kinetics with an approximate Vmax of 800 nmoles/mg protein/min and a Km of 280 µM CP. 4) Homogenates of skeletal muscle from diabetic rats showed complex kinetics not separable into distict component forms. 5) The Km for ADP for both skeletal muscle and bladder was approximately 10 µM.These studies demonstrate that whereas bladders isolated from both control and diabetic rats possess a low-affinity isomer(s) of CK with similar maximum enzymatic activity, there is a high affinity isomer present within the urinary bladder muscle of diabetic rats that is not present in bladder tissue isolated from control rats. Skeletal muscle isolated from both diabetic and control rats exhibited a maximal activity 2 to 3 times higher than that of the bladder.  相似文献   

7.
In adult female rats born from Streptozotocin-diabetic mothers, blood glucose measured under basal conditions or 30 min after glucose administration was similar to controls; however at 180 min 50% of offspring from diabetics was moderately hyperglycemic whereas 100% of controls were normoglycemic. The time of vaginal opening, and after maturity, the number of rats with regular estrous cycles was in the range of controls. After ovariectomy, control rats receiving estradiol showed a sharp increase of serum LH at 4 pm following progesterone treatment at 10 am, while rats born from diabetic mothers failed to modify serum LH. Estradiol receptors in cell nuclei and cytosolic progestin receptors were determined in anterior pituitary, hypothalamus and preoptic area of rats subjected to a 4-day estradiol treatment. Changes were statistically significant in the hypothalamus only, in that rats born from diabetic mothers showed reduced induction of progestin receptors coupled to increased binding of (3H)-estradiol in cell nuclei. These findings bring support for a hypothalamic defect in rats born from diabetic mothers, the reduction of hypothalamic progestin receptors being reflected in the reduced sensitivity to the positive feedback action of progesterone to release LH.  相似文献   

8.
Summary 1-Antitrypsin and 1-inhibitor-3 were localized for the first time inside skeletal muscle cells. Their content, especially that of 1-inhibitor-3, was greatly reduced following streptozotocin-induced diabetes. 1-Antitrypsin and 1-inhibitor-3 were also observed in the vascular components and interstitial space surrounding both control and diabetic soleus muscles as revealed by immunofluorescence. In diabetic muscles, the non-myofibre locale of 1-inhibitor-3 was reduced, and to a lesser extent, 1-antitrypsin. Both myofibre and extracellular patterns were reversed to control levels by insulin replacement.  相似文献   

9.
By using an in situ rat hindquarter perfusion, we evaluated ketone body utilization and its metabolic effects in the resting muscle of 24 h fasted normal and streptozotocin (STZ)-diabetic rats. Under the perfusion with ketone body-supplementation (1 mM each of acetoacetic acid (AcAc) and 3-hydroxybutyric acid (3-OHB], the AcAc and 3-OHB uptake of STZ-diabetic rats was significantly (P less than 0.05) smaller than that of normal rats. This might be explained by the low enzyme activity of 3-oxoacid CoA transferase demonstrated in the hindlimb muscles of STZ-diabetic rats and this reduced ketone body uptake would be one of the causes of the development of diabetic ketoacidosis. The glucose uptake and the phosphofructokinase (PFK) activity of normal rats were significantly (P less than 0.05) higher than those of STZ-diabetic rats. In both normal and STZ-diabetic rats, the glucose utilization and PFK activity of the muscles in the ketone body-supplemented condition were significantly (P less than 0.05) lower than those in the non-supplemented condition. This inhibition of glucose utilization by ketone bodies should be due to the mechanism by which the oxidation of ketone bodies inhibits PFK in the muscle.  相似文献   

10.
The Golgi-rich membrane fraction isolated from streptozotocin-diabetic rat liver had a lower protein content than the corresponding fraction from normal liver. Its UDPgalactose-N-acetylglucosamine galactosyltransferase activity calculated per 1 g of liver or whole liver was decreased. The electron-microscopic examination of the negatively stained fraction revealed morphological changes. The morphology of the Golgi complex in thin sections of diabetic liver was also changed.  相似文献   

11.
Glycerol utilization for phospholipid biosynthesis was examined in type II pneumocytes isolated from normal and streptozocinin-diabetic rats. With glucose in the incubation medium, incorporation of exogenous [1,3-14C]glycerol into disaturated phosphatidylcholine, total phosphatidylcholine (PC), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) was increased 4-fold in cells from diabetic rats. In the absence of glucose, glycerol incorporation was 5-fold greater than in its presence in cells from normal animals, but was further increased 2.2-fold in cells from diabetic rats. Insulin treatment of diabetic rats returned all incorporation rates to control values. The increased glycerol incorporation rates were not due to differences in either phospholipid turnover or the size of the glycerol 3-phosphate precursor pool. Kinetic analysis of glycerol entry into the acid-soluble cell fraction indicated that glycerol transport occurred largely by simple diffusion, and was not rate limiting for its entry into lipids. Glycerol entry into the total lipid fraction was saturable, reaching a Vmax of 48 pmol/micrograms DNA per h in normal cells and 120 pmol/micrograms DNA per h in cells from diabetic rats, with no change in the Km (0.31 mM). While glycerol oxidation was reduced 23% in cells from diabetic rats in the presence of glucose and by 44% in the absence of glucose, glycerol kinase activity in sonicates of cells from diabetic animals was increased 210% and was reversed by in vivo insulin treatment. These results suggest that glycerol utilization in type II pneumocytes is a hormonally regulated function of both glycerol oxidation and glycerol phosphorylation.  相似文献   

12.
Formation of gastric mucosal lesions by streptozotocin-induced diabetes was investigated in rats. A single intravenous administration of streptozotocin in a dose of 65 mg/kg effectively produced hyperglycemia and damaged the gastric mucosa. Incidence and severity of mucosal lesions were progressively increased with time, from one to six weeks posttreatment. Microscopic lesions of the mucosa included hyperemia, desquamation of the surface epithelium with diffuse hemorrhage, and severe hemorrhage with localized erosion. Concurrent to the hyperglycemia, the histamine stimulated gastric H+-secretion was significantly decreased whereas pepsin secretion was not affected. Both soluble mucus and surface mucus gel were increased. The result suggests that the early lesion of gastric mucosa may be associated with the direct action of streptozotocin, the severity of which may be further aggravated by diabetic state.  相似文献   

13.
The rate of accumulation of 3,4-dihydroxy-phenylalanine following decarboxylase inhibition and of homovanillic acid following probenecid treatment were significantly decreased in streptozotocin-diabetic rats. These changes were observed in both the striatum and limbic forebrain. The Bmax for [3H]spiroperidol receptor binding was significantly increased in both brain regions. All of these neurochemical changes were reversed by insulin replacement therapy. Whether these neurochemical changes are attributable to chronic hyperglycemia or some other aspect of the diabetic state is not known.  相似文献   

14.
A procedure for the isolation of sarcoplasmic reticulum from winter flounder (Pseudopleuronectes americanus) resulted in a fraction with a specific activity of lipid peroxidation two to three times that of previous preparations. In addition, good stability of the NADH-dependent lipid peroxidative activity was achieved. There appeared to be minimal contamination of the preparation with lysosomes and mitochondria. The flounder sarcoplasmic reticulum was highly active with respect to ATPase and calcium uptake. The membrane fraction contained 43% lipid and 57% protein; 60% of the lipids were phospholipids. Phosphatidylcholine was the major phospholipid present.  相似文献   

15.
This communication documents for the first time the presence of an endogeneous macromolecule of biological importance, a lipoprotein, inside normal rat skeletal muscle cells but absent in those from rats made diabetic by streptozotocin treatment. Apoprotein B was localized in the vascular components and interstitial spaces surrounding both control and diabetic extensor digitorum muscles as revealed by immunofluorescence. However, in muscles from control but not diabetic rats, apoprotein B was also observed inside the myofibres, especially in regions adjacent to capillaries. The staining pattern was unaltered by the addition of albumin to the antisera and was absent in all situations in which absorbed antisera were tested.  相似文献   

16.
To study the effect of diabetes on pulmonary surfactant secretion, type II pneumocytes from adult streptozotocin-induced diabetic rats were placed in short-term culture. As opposed to a linear secretory rate by control type II cells, the secretory rate of type II cells from diabetic animals was biphasic reaching a minimum at 1.5 h. When exogenous surfactant containing radioactive phosphatidylcholine was added to the incubation media for 1.5 h, the cells from diabetic animals incorporated more exogenous phosphatidylcholine into lamellar bodies than control cells. This suggests that in the type II cell from diabetic animals, the rate of reutilization is greater than the rate of secretion until 1.5 h, at which time the rate of secretion becomes greater. The altered secretory pattern was reversed by in vivo insulin treatment 30 min prior to killing but not by the addition of insulin to the incubation media. When challenged by isoproterenol, a beta-adrenergic agonist, the secretory pattern of cells from diabetic animals was biphasic as observed with basal secretion; however, secretion was stimulated 30% as opposed to 100% increase in control cells. These data suggest that basal and stimulated secretion are altered in the cultured type II cell from diabetic animals and restored by in vivo but not in vitro insulin treatment.  相似文献   

17.
To determine whether type II pneumocytes isolated from diabetic animals could serve as a useful model for the study of surfactant phospholipid biosynthesis and its regulation, type II pneumocytes were isolated from adult streptozotocin-diabetic rats and placed in short-term primary culture. On a DNA basis, total cellular disaturated phosphatidylcholine (disaturated PC) and phosphatidylglycerol (PG) were decreased 36 and 66%, respectively, in type II cells from diabetic animals. 7 days of insulin treatment of diabetic rats returned the cellular disaturated PC and PG content to control values and increased the total cellular phosphatidylethanolamine (PE) content by 51%. The rates of glucose and acetate incorporation into disaturated PC per unit DNA were reduced 32 and 38%, respectively, in cells isolated from diabetic rats, while glycerol incorporation was increased by 143%. Insulin treatment of diabetic rats returned the glucose and glycerol incorporation rates to control values and increased acetate incorporation into disaturated PC by 66%. These data suggest that the biosynthesis of surfactant is altered by both diabetes mellitus and in vivo insulin treatment.  相似文献   

18.
Evidence for pre-receptor, receptor and post-receptor glucagon defects was investigated in adipocytes from streptozotocin-diabetic rats. For this purpose male Wistar rats were injected by cardiac puncture with streptozotocin (65 mg/Kg body-weight) or saline solution and sacrificed after 7 and 15 days of drug administration. Increased glucagon levels and increased glucagon degradation in serum together with a decrease in glucagon binding were found in both groups of diabetic rats. The decrease in glucagon binding was related to a decrease in the number of glucagon receptors/cell rather than to a change in receptor affinity. The lipolytic response of glucagon was increased. However, the ability of glucagon to increase basal or theophylline-stimulated cAMP accumulation in the incubation medium of adipocytes from diabetic rats was decreased. Such alterations could represent a counter-regulatory mechanism of the hyperglucagonemia detected in streptozotocin-diabetic rats.  相似文献   

19.
Few previous studies have discussed the changes in serotonin receptor activity in the small intestine of diabetic animals. Therefore, we examined serotonin content in duodenal tissue and dose-dependent effects of serotonin agonists and antagonists on the motor activity of ex vivo vascularly perfused duodenum of streptozotocin (STZ)-diabetic rats. Serotonin content was significantly increased in enterochromaffin cells but not altered in serotonin-containing neurons in STZ-diabetic rats. Motor activity assessed by frequency, amplitude, and percent motility index per 10 min of pressure waves was reduced in the duodenum of diabetic rats, and this reduction was reversed by insulin treatment. Serotonin dose dependently increased the motor activity in control rat duodenum but only a higher concentration of serotonin increased the motor activity in diabetic rats. The 5-hydroxytryptamine (5-HT) receptor subtype 4 (5-HT(4)) antagonist SB-204070 dose dependently reduced motor activity in both control and diabetic rats, whereas the 5-HT(3) receptor antagonist azasetron, even at a higher concentration, failed to affect motor activity in diabetic rat duodenum but dose dependently reduced motor activity in control rat duodenum. These results suggest that 5-HT(3) receptor activity was impaired but 5-HT(4) receptor activity was intact in STZ-diabetic rat duodenum. Such an impairment of 5-HT(3) receptor activity may induce the motility disturbance in the small intestine of diabetes mellitus.  相似文献   

20.
The peptide alpha-amidating activity of a homogenate of pancreatic islets from 5-7-day-old rats was investigated, using as substrate a glycine-extended tripeptide (D-Tyr-Val-Gly). The islet homogenates had a marked amidating activity, with a Km of 57 microM, a Vmax. of 185 pmol/h per mg and a pH optimum of 7.0. This activity was dependent on the presence of ascorbic acid (in the reduced form) and Cu2+, the optimum concentrations being 4 mM and 40 microM respectively. On fractionation of the homogenate, the highest specific activity was found in the soluble fraction. Exocrine pancreatic tissue showed very low levels of amidating activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号