首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The improved recombinant form of the death ligand Apo2L/TRAIL (Apo2L/TRAIL.0) is not cytotoxic for normal human cells and is a good candidate for the therapy of multiple myeloma (MM), a B-cell neoplasia that remains incurable. We have analyzed the molecular determinants of myeloma sensitivity to Apo2L/TRAIL.0 in a number of MM cell lines, the mechanisms of resistance and a possible way of overcoming it. Expression of one death receptor for Apo2L/TRAIL (DR4 or DR5) is sufficient to transduce death signals, though DR5 was more efficient when both receptors were present. Membrane expression of decoy receptors (DcR1, DcR2) and intracellular levels of c-FLIP(L), XIAP and Mcl-1 were not predictive of resistance to Apo2L/TRAIL. Inhibition of Mcl-1 degradation did not prevent Apo2L/TRAIL-induced apoptosis. In IM-9 cells, resistance was associated to a reduced caspase-8 expression. U266 cells, though expressing significant levels of DR4 and caspase-8, were nevertheless resistant to Apo2L/TRAIL. This resistance could be overcome by co-treatment with valproic acid (VPA), a histone deacetylase inhibitor. VPA caused the redistribution of DR4 to plasma membrane lipid rafts and restored DR4 signaling. Overexpression of Mcl-1 in U266 cells did not prevent Apo2L/TRAIL cytotoxicity in VPA-sensitized cells. These results, taken together, support the possible use of Apo2L/TRAIL.0 in the treatment of MM.  相似文献   

2.
Apoptosis-inducing ligand 2 (Apo2L), also called tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), triggers programmed cell death in various types of cancer cells but not in most normal cells. Apo2L/TRAIL is a homotrimeric protein that interacts with five receptors: death receptor 4 (DR4) and DR5 mediate apoptosis activation, whereas decoy receptor 1 (DcR1), DcR2, and osteoprotegerin counteract this function. Many cancer cell lines express both DR4 and DR5, and each of these receptors can initiate apoptosis independently of the other. However, the relative contribution of DR4 and DR5 to ligand-induced apoptosis is unknown. To investigate this question, we generated death receptor-selective Apo2L/TRAIL variants using a novel approach that enables phage display of mutated trimeric proteins. Selective binding to DR4 or DR5 was achieved with three to six-ligand amino acid substitutions. The DR4-selective Apo2L/TRAIL variants examined in this study showed a markedly reduced ability to trigger apoptosis, whereas the DR5-selective variants had minimally decreased or slightly increased apoptosis-inducing activity. These results suggest that DR5 may contribute more than DR4 to Apo2L/TRAIL-induced apoptosis in cancer cells that express both death receptors.  相似文献   

3.
Apo2 ligand (Apo2L)/TRAIL induces apoptosis of cancer cells that express the specific receptors while sparing normal cells. Because the tumor microenvironment protects myeloma from chemotherapy, we investigated whether hemopoietic stroma induces resistance to Apo2L/TRAIL apoptosis in this disease. Apo2L/TRAIL-induced death was diminished in myeloma cell lines (RPMI 8226, U266, and MM1s) directly adhered to a human immortalized HS5 stroma cell line but not adhered to fibronectin. In a Transwell assay, with myeloma in the upper well and HS5 cells in the lower well, Apo2L/TRAIL apoptosis was reduced when compared with cells exposed to medium in the lower well. Using HS5 and myeloma patients' stroma-conditioned medium, we determined that soluble factor(s) produced by stroma-myeloma interactions are responsible for a reversible Apo2/TRAIL apoptosis resistance. Soluble factor(s) attenuated procaspase-8, procaspase-3, and poly(ADP-ribose) polymerase cleavage and diminished mitochondrial membrane potential changes without affecting Bcl-2 family proteins and/or Apo2L/TRAIL receptors. Soluble factor(s) increased the baseline levels of the anti-apoptotic protein c-FLIP in all cell lines tested. Inhibition of c-FLIP by means of RNA interference increased Apo2/TRAIL sensitivity in RPMI 8226 cells. Unlike direct adhesion to fibronectin, soluble factor(s) have no impact on c-FLIP redistribution within cellular compartments. Cyclohexamide restored Apo2L/TRAIL sensitivity in association with down-regulation of c-FLIP, suggesting that c-FLIP synthesis, not intracellular traffic, is essential for soluble factor(s) to regulate c-FLIP. Additionally, IL-6 conferred resistance to Apo2L/TRAIL-mediated apoptosis in association with increased c-FLIP levels. In conclusion, the immune cytotoxic effect of Apo2L/TRAIL can be restored at least in part by c-FLIP pathway inhibitors.  相似文献   

4.
The importance of Bax for induction of tumor apoptosis through death receptors remains unclear. Here we show that Bax can be essential for death receptor--mediated apoptosis in cancer cells. Bax-deficient human colon carcinoma cells were resistant to death-receptor ligands, whereas Bax-expressing sister clones were sensitive. Bax was dispensable for apical death-receptor signaling events including caspase-8 activation, but crucial for mitochondrial changes and downstream caspase activation. Treatment of colon tumor cells deficient in DNA mismatch repair with the death-receptor ligand apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selected in vitro or in vivo for refractory subclones with Bax frameshift mutations including deletions at a novel site. Chemotherapeutic agents upregulated expression of the Apo2L/TRAIL receptor DR5 and the Bax homolog Bak in Baxminus sign/minus sign cells, and restored Apo2L/TRAIL sensitivity in vitro and in vivo. Thus, Bax mutation in mismatch repair--deficient tumors can cause resistance to death receptor--targeted therapy, but pre-exposure to chemotherapy rescues tumor sensitivity.  相似文献   

5.
6.
Apo2L/TRAIL and its death and decoy receptors   总被引:43,自引:0,他引:43  
Apo2 ligand or tumour necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is one of the several members of the tumour necrosis factor (TNF) gene superfamily that induce apoptosis through engagement of death receptors (DRs). Apo2L/TRAIL interacts with an unusually complex receptor system of two DRs and three decoys. This protein has garnered intense interest as a potential candidate for cancer therapy because as a trimer it selectively induces apoptosis in many transformed cells but not in normal cells. While much of the early characterisation of Apo2L/TRAIL and its receptors relied on overexpression studies, recent work using untransfected cells has clarified how endogenous proteins transmit apoptotic signals from this ligand. In this review, we focus on the apoptotic signalling pathways stimulated by Apo2L/TRAIL and summarise what is known about its physiological role.  相似文献   

7.
8.
Interferon-alpha (IFN-alpha) is currently used for the therapy of multiple myeloma (MM) though it is only effective in some patients. IFN-alpha induces apoptosis in some MM cell lines and it has been proposed to occur through an autocrine loop involving Apo2L/TRAIL. We have analysed the sensitivity to IFN-alpha and Apo2L/TRAIL of five MM cell lines and found no correlation between the apoptosis inducing ability of both cytokines. IFN-alpha-induced apoptosis in MM cells was not prevented by a caspase-8 selective inhibitor (Z-IETD-fmk) or blocking Apo2L/TRAIL. However, human monocytes treated with IFN-alpha release bioactive Apo2L/TRAIL to culture media which was cytotoxic for MM cells resistant to IFN-alpha. We propose that Apo2L/TRAIL released from IFN-alpha-stimulated blood monocytes would be a major mediator of the anti-myeloma effect of IFN-alpha in vivo.  相似文献   

9.
Melanoma cells are relatively resistant to Apo2L/TRAIL (TNF-related apoptosis-inducing ligand). We postulated that resistance might result from higher expression of inhibitors of apoptosis including Bcl-2, FLIP (FLICE-like inhibitory protein) or IAPs such as XIAP (X-linked inhibitor of apoptosis) or survivin. Compared to scrambled or mismatch controls, targeting individual inhibitors with siRNA (si-Bcl-2, si-XIAP, si-FLIP or si-Surv), followed by Apo2L/TRAIL resulted in marked increase in apoptosis in melanoma cells. Compared to Bcl-2 or FLIP, siRNAs against XIAP and survivin were most potent in sensitizing melanoma cells. A similar substantial increase in apoptosis was seen in renal carcinoma cells (SKRC-45, Caki-2), following the inhibition of either XIAP or survivin by siRNAs. Apo2L/TRAIL treatment in IAP-targeted cells resulted in cleavage of Bid, activation of caspase-9 and cleavage of PARP (poly ADP-ribose polymerase). Thus, Apo2L/TRAIL resistance can be overcome by interfering with expression of inhibitors of apoptosis regulating both extrinsic (death receptor) or intrinsic (mitochondrial) pathways of apoptosis in melanoma cells.  相似文献   

10.
Parathyroid hormone-related protein (PTHrP) is a key component in breast development and breast tumour biology. PTHrP has been discovered as a causative agent of hypercalcaemia of malignancy and is also one of the main factors implicated in breast cancer mediated osteolysis. Clinical studies have determined that PTHrP expression by primary breast cancers was an independent predictor of improved prognosis. Furthermore, PTHrP has been demonstrated to cause tumour cell death both in vitro and in vivo. Apo2L/TRAIL is a promising new anti-cancer agent, due to its ability to selectively induce apoptosis in cancer cells whilst sparing most normal cells. However, some cancer cells are resistant to Apo2L/TRAIL-induced apoptosis thus limiting its therapeutic efficacy. The effects of PTHrP on cell death signalling pathways initiated by Apo2L/TRAIL were investigated in breast cancer cells. Expression of PTHrP in Apo2L/TRAIL resistant cell line MCF-7 sensitised these cells to Apo2L/TRAIL-induced apoptosis. The actions of PTHrP resulted from intracellular effects, since exogenous treatment of PTHrP had no effect on Apo2L/TRAIL-induced apoptosis. Apo2L/TRAIL-induced apoptosis in PTHrP expressing cells occurred through the activation of caspase-10 resulting in caspase-9 activation and induction of apoptosis through the effector caspases, caspase-6 and -7. PTHrP increased cell surface expression of Apo2L/TRAIL death receptors, TRAIL-R1 and TRAIL-R2. Antagonistic antibodies against the death receptors demonstrated that Apo2L/TRAIL mediated its apoptotic signals through activation of the TRAIL-R2 in PTHrP expressing breast cancer cells. These studies reveal a novel role for PTHrP with Apo2L/TRAIL that maybe important for future diagnosis and treatment of breast cancer.  相似文献   

11.
Delineation of the cell-extrinsic apoptosis pathway in the zebrafish   总被引:2,自引:0,他引:2  
The mammalian extrinsic apoptosis pathway is triggered by Fas ligand (FasL) and Apo2 ligand/tumor necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL). Ligand binding to cognate receptors activates initiator caspases directly in a death-inducing signaling complex. In Drosophila, TNF ligand binding activates initiator caspases indirectly, through JNK. We characterized the extrinsic pathway in zebrafish to determine how it operates in a nonmammalian vertebrate. We identified homologs of FasL and Apo2L/TRAIL, their receptors, and other components of the cell death machinery. Studies with three Apo2L/TRAIL homologs demonstrated that they bind the receptors zHDR (previously linked to hematopoiesis) and ovarian TNFR (zOTR). Ectopic expression of these ligands during embryogenesis induced apoptosis in erythroblasts and notochord cells. Inhibition of zHDR, zOTR, the adaptor zFADD, or caspase-8-like proteases blocked ligand-induced apoptosis, as did antiapoptotic Bcl-2 family members. Thus, the extrinsic apoptosis pathway in zebrafish closely resembles its mammalian counterpart and cooperates with the intrinsic pathway to trigger tissue-specific apoptosis during embryogenesis in response to ectopic Apo2L/TRAIL expression.  相似文献   

12.
13.
Tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) selectively induces apoptosis in transformed cells. Normal cells and certain tumor cells can evade Apo2L/TRAIL induced cell death, but the determinants of Apo2L/TRAIL sensitivity are poorly understood. To better understand the factors that contribute to Apo2L/TRAIL resistance, we characterized two colon carcinoma lines with pronounced differences in Apo2L/TRAIL sensitivity. Colo205 cells are highly sensitive to Apo2L/TRAIL whereas Colo320 cells are unresponsive. Components of the DISC (death inducing signaling complex) could be immunoprecipitated from both cell lines in response to Apo2L/TRAIL. Sensitizing agents including a proteasome inhibitor conferred Apo2L/TRAIL sensitivity in Colo320 cells, indicating that the apoptotic machinery was intact and functional. We specifically suppressed the expression of Bcl-2, FLIP or XIAP in Colo320 cells. Downregulation of either FLIP or XIAP but not Bcl-2 restored sensitivity of Colo320 cells to Apo2L/TRAIL. Moreover, stable knockdown of XIAP expression in Colo320 subcutaneous tumors resulted in suppression of tumor growth and sensitivity to Apo2L/TRAIL in vivo. Our results indicate that only a specific subset of anti-apoptotic proteins can confer resistance to Apo2L/TRAIL in Colo320 cells. Elucidation of the factors that contribute to Apo2L/TRAIL resistance in tumor cells may provide insight into combination therapies with Apo2L/TRAIL in a clinical setting.  相似文献   

14.
We have previously demonstrated that nitrosylcobalamin (NO-Cbl), an analogue of vitamin B12 that delivers nitric oxide (NO), had potent antiproliferative activity against several human cancer cell lines. NO-Cbl induced apoptosis via a death receptor/caspase-8 pathway. In this study, we demonstrate that a functional Apo2L/TRAIL receptor was necessary for the induction of cell death by NO-Cbl. Furthermore, the Apo2L/TRAIL death receptor DR4 (TRAIL R1) was S nitrosylated following NO-Cbl treatment. Human melanoma (A375), renal carcinoma (ACHN), and ovarian carcinoma (NIH-OVCAR-3) cells were treated with NO-Cbl and subjected to the biotin switch assay; S-nitrosylated DR4 was detected in all three cell lines. NO-Cbl treatment did not cause S nitrosylation of DR5. The seven cysteine residues located in the cytoplasmic domain of DR4 were individually point mutated to alanines. NIH-OVCAR-3 cells expressing the DR4 C336A mutation lacked S nitrosylation following NO-Cbl treatment. Overexpression of wild-type DR4 sensitized cells to growth inhibition by NO-Cbl. Cells expressing the DR4 C336A mutant were more resistant to NO-Cbl and Apo2L/TRAIL than were the other six C-A mutations or wild-type cells. The C336A mutant also displayed blunted caspase-8 enzymatic activity following NO-Cbl treatment compared to the other mutants. Thus, DR4 residue C336 becomes S nitrosylated and promotes apoptosis following NO-Cbl treatment.  相似文献   

15.
16.
Gazitt Y  Shaughnessy P  Montgomery W 《Cytokine》1999,11(12):1010-1019
TRAIL, the ligand for the newly discovered DR-4 and DR-5 receptor is a member of the tumour necrosis factor (TNF) family of death signal tranduction proteins with a mechanism of cell death, similar to the Fas and Fas ligand (Fas-L) system. Here, we provide first time evidence that TRAIL and TNF-alpha are potent inducers of apoptosis in multiple myeloma (MM) cell lines and freshly isolated myeloma cells. TRAIL effectively induced extensive apoptosis in 8226 and ARP-1 MM cells in a time- and dose-dependent manner reaching 80% within 48 h of treatment with a dose of 160 ng/ml. Bcl-2 transfected 8226 and ARP-1 cells were equally sensitive to apoptosis by TRAIL. Apoptosis with TNFalpha, reached >60% within 48 h of treatment with a dose of 160 ng/ml. In addition to MM cell lines, freshly isolated, flow-sorted myeloma cells from 8 different MM patients expressing variable levels of bcl-2 were equally sensitive to both TRAIL and TNF-alpha. We have previously shown that anti-Fas-induced apoptosis is not blocked by endogenous or ectopic bcl-2 in MM cell lines. Here we extend our observation with Fas to include TNF-alpha and TRAIL to the apoptotic signals that are not be blocked by bcl-2, in MM cells.  相似文献   

17.
18.
BACKGROUND: Many tumor cells are resistant to Apo2L/TRAIL-induced apoptosis in the absence of inhibitors of protein synthesis. Apo2L/TRAIL, in addition to induction of apoptosis, may therefore also activate survival pathways. METHODS: Here we investigated whether such survival pathways mediate resistance to Apo2L.0-induced apoptosis in human glioma cells. RESULTS: Apo2L.0 induced the phosphorylation of ERK1/2, but not of Akt. This effect was unaffected by caspase inhibition. Inhibitors of protein synthesis, PI3 kinase, ERK kinase, NF-kappaB or casein kinase 2 sensitized for Apo2L.0-induced apoptosis to a different extent in a panel of human malignant glioma cell lines. However, none of the sensitizers overcame resistance mediated by ectopic expression of the viral caspase 8 inhibitor, crm-A. Primary glioma cultures were almost completely resistant to Apo2L.0-induced cell death even in the presence of the inhibitors. Caspase-8 was expressed in these cells whereas only weak expression of DR5 was detected. Transient expression of DR5 conferred sensitivity to Apo2L.0. CONCLUSION: These data challenge the view that specific cell lines harbour specific mechanisms of resistance to Apo2L/TRAIL. Weak expression of DR5 in primary glioma might limit the therapeutic application of Apo2L/TRAIL in human glioblastoma patients.  相似文献   

19.
TRAIL, the ligand for the newly discovered DR-4 and DR-5 receptor is a member of the tumour necrosis factor (TNF) family of death signal tranduction proteins with a mechanism of cell death, similar to the Fas and Fas ligand (Fas-L) system. Here, we provide first time evidence that TRAIL and TNF-α are potent inducers of apoptosis in multiple myeloma (MM) cell lines and freshly isolated myeloma cells. TRAIL effectively induced extensive apoptosis in 8226 and ARP-1 MM cells in a time- and dose-dependent manner reaching 80% within 48 h of treatment with a dose of 160 ng/ml. Bcl-2 transfected 8226 and ARP-1 cells were equally sensitive to apoptosis by TRAIL. Apoptosis with TNFα, reached >60% within 48 h of treatment with a dose of 160 ng/ml. In addition to MM cell lines, freshly isolated, flow-sorted myeloma cells from 8 different MM patients expressing variable levels of bcl-2 were equally sensitive to both TRAIL and TNF-α. We have previously shown that anti-Fas-induced apoptosis is not blocked by endogenous or ectopic bcl-2 in MM cell lines. Here we extend our observation with Fas to include TNF-α and TRAIL to the apoptotic signals that are not be blocked by bcl-2, in MM cells.  相似文献   

20.
Death receptor-mediated apoptosis of human malignant glioma cells triggered by CD95 ligand (CD95L) or Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) share several features, including processing of multiple caspases and mitochondrial cytochrome c release. We here report that CD95L-induced cell death is inhibited by sulfasalazine (SS) in all of four human glioma cell lines, both in the absence and presence of cycloheximide (CHX). Coexposure to CD95L and SS prevents the CD95L-evoked processing of caspases 2, 3, 8 and 9, the release of cytochrome c from mitochondria, and the loss of BCL-x(L) protein. This places the protective effect of SS proximal to most known events triggered by the CD95-dependent signaling pathway in glioma cells. CD95L promotes the accumulation of nuclear factor kappa B (NF-kappaB) in the nucleus and induces the DNA-binding activity of NF-kappaB assessed by electrophoretic mobility shift assay. The total levels of p50, p65 and IkappaBalpha remain unchanged, but the levels of phosphorylated IkappaBalpha and of nuclear p65 increase, in response to CD95L. IkappaBalpha phosphorylation as well as nuclear NF-kappaB translocation and DNA binding are blocked by SS. However, unlike SS, dominant-negative IkappaBalpha (IkappaBdn) does not block apoptosis, suggesting that SS inhibits CD95L-mediated apoptosis in an NF-kappaB-independent manner. In contrast to CD95L, the cytotoxic effects of Apo2L/TRAIL are enhanced by SS, and SS facilitates Apo2L/TRAIL-evoked caspase processing, cytochrome c release, and nuclear translocation of p65. These effects of SS are nullified in the presence of CHX, suggesting that the effects of SS and CHX are redundant or that enhanced apoptosis mediated by SS requires protein synthesis. IkappaBdn fails to modulate Apo2L/TRAIL-induced apoptosis. Similar effects of SS on CD95L- and Apo2L/TRAIL-induced apoptosis are observed in MCF-7 breast and HCT116 colon carcinoma cells. Interestingly, HCT cells lacking p21 (80S14(p21-/-)) are only slightly protected by SS from CD95L-induced apoptosis, but sensitized to Apo2L/TRAIL-induced apoptosis, indicating a link between the actions of SS and p21. Thus, SS modulates the death cascades triggered by CD95L and Apo2L/TRAIL in opposite directions in an NF-kappaB-independent manner, and SS may be a promising agent for the augmentation of Apo2L/TRAIL-based cancer therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号